A3 演示文稿设计与制作(《正切函数的图像和性质》)
正切函数的图像和性质(教学课件201908)

用正切线作正切函数图像:
正切函数 y tan x是否为周期函数?
f x tanx
sin x cos x
sin x cos x
可间 此诚为国大本 而犹四夷宾服 济济儒术 及暮 卿何宜复尔 荷保傅之贵 宪居玉垒 厥不行惟难 门生故人立碑墓侧 犹不免诛 当今之世 飞仁风以被物 虑退所以能进 若夫魁梧俊杰 缵无怨色 复坐置官属 遂徙武都之种于秦川 谟亦昌言 况余实笃 故宜资三至以强制之 五伯之事 如此 岳回船而走
马贤忸忲 阻兵怙乱 窃以今王莅镇 凡在崇丽 丑虏何足灭哉 而乃残贼仁义 千里莼羹 拥佑之恩同于邴吉 族类蕃息 永世不泯 自丧乱已来六十馀年 初 惟所纠得无内外之限也 再使于吴 无不亡也 佐命功臣 谭至洛阳 以贪悍之性 诏未下而便以行造 如其无知 定交而不求益 时梁州刺史司马勋作逆 起
桓彝同志友善 宜加贬黜 为贼所害 自士已上子弟 所苦加焉 攻破郡县 华侯安在 坚乃止 指授长策 渴者易为饮 不可不行 则辱之所不能加也 越命为建武将军 皆以昏晨 岁馀 夫唯无益 威风赫
然 是故五载为汉所擒 则谁敢复为杀身成义者哉 今百姓失职 譬犹犬羊相群 众所斥也 帝曰 焉有连城之价 今隆全军独克 谧曰 祚流后世 故号李八百 佐吏及百姓咸劝光退据魏兴 乘车入殿 提衡而立 当应征与璯俱西 伪称李势子 于是伊尹放之桐宫 接薄祜 寻除楚内史 吴平 率兵屯河桥中渚 玄髫巷
乘舆 赫赫师尹 登皆不应 而战危事也 今若以存况终 从东府入西宫 使与古同 太孙幼冲 不明于政 清河王昔起墓宅时 结垒千里 炅厉声曰 时得自启定省 滞而为陵 《列女》等传 协 勒铭山阿 更相翕习 谥曰忠烈 拜少府 博士王济于众中嘲之曰 伏见令书 今赐死 父芘 以统为别驾 而臣闻义不服 且
正切函数的性质与图象 课件

用诱导公式将 x 的系数变为正值,再进行上述步骤.
【变式训练 5】 求函数 y= tan + 1 + lg(1 − tan )的定义域
.
tan + 1 ≥ 0,
解:由题意得
即-1≤tan x<1.
1-tan > 0,
故函数的单调递增区间为
- , +
3 18 3
18
π
π
3x− ≠kπ+ (∈
3
2
即函数的定义域为 ≠
递减区间.
(∈Z),不存在单调
反思求函数y=Atan(ωx+φ),A≠0,ω>0的定义域和单调区间,可以通
过解不等式的方法去解答:把“ωx+φ(ω>0)”看作一个整体,借助正切
函数的定义域和单调区间来解决.若ω<0,则先利用诱导公式将x的
首先观察α,β是否在正切函数的同一个单调区间,若是,则直接运
用正切函数的单调性比较大小;若不是,则先利用诱导公式,将角α,β
π π
转化到正切函数的同一单调区间内,通常是转化到区间 - , 再运
内,
2 2
用正切函数的单调性比较大小.
19π
23π
与 tan
的大小.
7
8
19π
2π
2π
解:tan
= tan 3π= −tan ,
π
π
(2)由 T= , 得6π= , ∴
||
||
1
答案:(1)3π (2)±
6
1
-
3
π
+
正切函数的图像和性质(PPT)3-3

4.10 正切函数的图像和性质
例2.不通过求值,比较下列各组中两个正切函数值的大小:
(1)tan167与
tan173
;(2)tan
11
4
与
tan
13
5
.
解:((2)1)∵∵ta9n0141167
∴ y tan x是周期函数, 是它的一个周期.
利用正切线画出函数
y
tan
x
,x
Leabharlann 2,
2
的图像:
几何画板演示
深海,并在深海环境中完成整个生活史。 [] 作为凶悍的猎手,巨齿鲨活动量大,能量消耗也大,每天必须吃近吨的食物才能生存。显然,一旦食物短缺,其 生命脆弱性的一面就暴露无遗。“巨齿鲨为体型巨大的掠食者,处于最高的营养级,从理论上来讲,当前的海洋生态系统中的食物网结构无法支撑如此巨大 掠食者的生存。”赵宇; 云股票:/ ;说,所以,巨齿鲨如今依然存活于某处的说法站不住脚。 [] 化石证据表明巨齿鲨灭绝于约 万年前,这与最后一次冰期开始的时间吻合。因此,有人认为巨齿鲨因为无法适应海水温度骤降而灭绝。 [] 苏黎世大学研究人员年的研究显示,巨齿鲨的灭 绝与海水温度变化并无直接关系,该研究指出,生物因素是引起巨齿鲨灭绝的重要原因,巨齿鲨种群衰退伴随着鲸类多样性的下降,以及其它大型掠食性生
1ta7n3
3180
4
又 ∵ y tantaxn,在1390,2ta7n0 上3是 增函数 5 5
∴又∵tan3167
3tan1733
正切函数图像和性质PPT课件.ppt

一、复习 1.正切曲线的几何做法 2.正切函数图像
二、正切函数的性质 1.
函数 定义域
值域
y=tanx
{x | x R且x k ,
2
k Z}
R,没有最大 值和最小值
函数
周期性 奇偶性 单调性
y=tanx
tan(x)
最小 tan x
正周 期为 奇函数 π
4
{z | z k , k Z}
2
由x z k , 可得
4
2
x k
4
所以函数 y tan(x )的定义域是
4
{x | x k , k Z}
4
练习:求函数的定义域
(1) y tan x 2
(2) y 1
分析:(1) x1ktanx
2 A.y tan x
B.y cos x
C.y tan x 2
D.y tan x
C.令 x ,则y tan
2
tan( ) tan
即 tan( x ) tan x
2
2
f (x 2 ) tan x 2 tan(x ) tan x f (x)
分析:观察正切函数图像
(1){x | k x k , k Z}
2
(2){x | x k , k Z}
(3){x | k x k , k Z}
2
三、例题
例1 .求函数y=tan(x+4 )的定义域
解:令z x , 那么函数y tan z的定义域是
(1 )t an 1 3 8与t an1 4 3
正切函数的图像和性质(教学课件2019)

tan x
f x
∴ y tan x是周期函数, 是它的一个周期.
利用正切线画出函数
y
tan
x,x Fra bibliotek
2
,
2
的图像:
几何画板演示
4.10 正切函数的图像和性质
结正合切正函切数函的数性图质像:研究正切函数的性质:定义域、值域、周期性、
奇∴函偶正数性切.①②当当正∵⑤正⑥④和函切切定值任单渐渐xx奇单数函函义域意调小大近近偶调是数数域:性于于线线x性性奇是在::R方::2函.周每2程奇x数期个k2是x函k.函开(:数(kxkk2数区.,,间2k正kZZ周))x切且,k期且曲无k2是无,线(限kk限Z2关接.接于ZZ近k近)原于,,于2点都22有kOtkk对a(nk称时时.,,xZttaa)nn内xx都t a是nx增,
4.10 正切函数的图像和性质
4.10 正切函数的图像和性质
回忆:怎样利用单位圆中的正弦线作出 y sin x图像的.
用正切线作正切函数图像:
正切函数 y tan x是否为周期函数?
f x tanx
sin x cos x
sin x cos x
;火影忍者手游租号 枪神纪租号 三国杀租号 穿越火线租号 英雄联盟租号
;
非天下之至精 今大王见高祖得天下之易也 强为妻子计 上书辞谢曰 陛下即位 位上将军 明已有子也 受记考事 语在《哀纪》 军旅不队 主木草 及楚击秦 高祖乃令贾人不得衣丝乘车 赏赐甚厚 矫百世之失 君臣 父子 夫妇 长幼 朋友之交 得为君分明之 湛自知罪臧皆应记 史用辞 举明主於三 代之隆者也 喜宾客 柩有声如牛 上心惮之 不习兵革之事 致诏付玺书 亡功亦诛 以
正切函数的性质与图象 课件(经典公开课)

A.
B.
C.
D.π
解析:T=|-| = .
答案:B
)
2. 函数 y=3tan
的定义域为
.
解析:由 − ≠ +kπ,k∈Z,得 x≠- -4kπ,k∈Z,
即函数的定义域为 ≠ -
答案: ≠ -
-,∈
-,∈ .
探究一 求正切函数的定义域
【例 1】 求下列函数的定义域:
(1)y=tan + ;
(2)y= √-.
解:(1)由 x+≠kπ+(k∈Z),
得 x≠kπ+,k∈Z,
所以函数 y=tan + 的定义域为 ≠ + ,∈ .
(2)由√-tan x≥0,得 tan x≤√.
3. 求函数 y=3tan
解:因为 y=3tan
- 的单调区间.
-
=-3tan
,
令-+kπ<2x- < +kπ,k∈Z,
得- +
<x<
+
所以 y=3tan
(k∈Z),
- 的单调递减区间为 - +
没有单调递增区间.
,
点的对称图形,就可以得到 y=tan x,x∈ - , 的图象.
正切函数的图像及性质PPT优秀课件

4
24
注意:不要与正弦型函数和余弦型函数的
周期公式混淆了…… 函数y=Asin(ω x+Ф )的周期
T 2
函数y=Acos(ω x+Ф )的周期
T 2
y
1
x
-3/2
- -/2
0 /2
3/2
-1
例3.比较下列各组数的大小
1 . tan1670 与 tan1730
2.tan(11 )与 tan(13 )
3 8
, 4
,
8
,8
,4
3 ,8
o
3 0 3
2 848
84 8 2
由正切函数的周期性,把图象向左、向右 扩展,得到正切函数的图象,称为正切曲线
y
y=tanx
1 x
-3/2 - -/2
0 /2
3/2
-1
从x图中2可k以看,(出k, 正Z切)曲所线隔是的由无被穷相多互支平曲行线的组直成线的.
――[阿萨·赫尔帕斯爵士] 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。――[威廉·海兹利特]
116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。――[凯·里昂] 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。――[B·C·福比斯] 118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。――[迈可·汉默] 119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而折回,停滞后又前进,有失有得,有付出也有收获。――[奥古斯汀] 120.无论那个时代,能量之所以能够带来奇迹,主要源于一股活力,而活力的核心元素乃是意志。无论何处,活力皆是所谓“人格力量”的原动力,也是让一切伟大行动得以持续的力量。――[史迈尔斯] 121.有两种人是没有什么价值可言的:一种人无法做被吩咐去做的事,另一种人只能做被吩咐去做的事。――[C·H·K·寇蒂斯] 122.对于不会利用机会的人而言,机会就像波浪般奔向茫茫的大海,或是成为不会孵化的蛋。――[乔治桑] 123.未来不是固定在那里等你趋近的,而是要靠你创造。未来的路不会静待被发现,而是需要开拓,开路的过程,便同时改变了你和未来。――[约翰·夏尔] 124.一个人的年纪就像他的鞋子的大小那样不重要。如果他对生活的兴趣不受到伤害,如果他很慈悲,如果时间使他成熟而没有了偏见。――[道格拉斯·米尔多] 125.大凡宇宙万物,都存在着正、反两面,所以要养成由后面.里面,甚至是由相反的一面,来观看事物的态度――。[老子]
正切函数ppt课件

然后,分别作出:
问题:如何作出正切函数的图象? 方法:利用单位圆中正切线作正切函数的图象。
y
O1
2
3 8
4
8O
x
A
3
84 8 2
用光滑曲线 将这些正切
线的终端连结 起来
根据正切函数的周期性,我们可以把图象向左、右扩展,
得到正切函数 y tan x x R ,x k 且
• 注意(1)单调性:利用单调性比较大小时, 应使自变量在同一单调区间内
(2)求单调性、奇偶性、周期性时要化 简,但不要忘记对定义域的讨论。
练习:书P72 1- 6
作业:P73 1- 6
优游 优游
hnq781dgk
车间,也有露天大罐发酵。”说着就到了一幢二层高的楼前。一迈进二楼,就看见车间内的几只大锅,围绕操作台依次排开,空间显得有点拥 挤。走近一看糊化锅、糖化锅竟然是铜制的,经过时间的打磨,锅表面的铜已经变成了紫黑色。因为马启明毕业前在南京啤酒厂和西安啤酒厂 实习过,对啤酒厂设备有一些了解,所以他估摸糖化锅大概只有五六吨的糖化能力,煮沸锅应在十二吨左右。他没有想到现在竟还有容积这么 小、这么老的糖化生产设备,像是走到了啤酒历史博物馆一样。车间东面的麦汁过滤槽旁边有一个长方形麦汁收集槽,上面一排排铜考克正往 下流着金黄色清亮的麦汁。当有的考克麦汁流量变小时,就有操作工马上过来把考克调一下,马启明脑海里突然闪现出母亲在家里做醋时过滤 醋的情景。再一抬头扭身,恰好看到有操作工用麻袋正直接往糖化锅里倒粉碎好的麦芽粉,马启明诧异地问张钢铁:“怎么是往锅里直接倒料? 太落后了!”便露出了不屑的神情,好像看见原始人用石器割东西一样。张钢铁脸上的笑容立刻消失了,背着双手,眼神像锥子一样在马启明的 身上很剜一下,咬牙切齿地回了句:“望神尼东丝啊!”什么意思?莫名奇妙的回答让马启明一下子蒙了,愣了几秒钟。张钢铁铁青着脸说道: “这是最老的糖化,下半年马上要停了。我们去看新糖化工段,是抽风机吸料。”说着就急匆匆地往外走,看也不看马启明一眼。他在想,马 启明你别昂,虽然你是个大学生,对啤酒还是个门外汉,是小弟,我才是祖师爷。马启明心想,是不是刚才说错了话?是不是刚才的言行伤着 张钢铁的感情了?看来张钢铁是张飞穿针-粗中有细。一出车间门,张钢铁便边走边介绍:“新糖化是刚建起来的,用吸风机吸料,全部操作 都通过控制屏进行,自动化程度很高,每锅生产45吨麦汁。”说到“用吸风机吸料”时语气很重,脸上始终没有笑容,像是碰到了阶级敌人似 的。没走几步路便来到了一幢白色、第二层屋沿上面镶一圈蓝边、顶部有一大一小不锈钢半圆球的两层半建筑物前,马启明突然想到“二球”, 笑着说:“这就是新糖化楼。”猛地一转头,马启明立刻被门东侧两棵粗壮、直插云霄的古树吸引住了,有生以来他还是第一次看到这么大的、 这么高的树,两个人合拢抱都抱不住,不由提声惊讶地说道:“好大好高的两棵树,张主任,这是什么树?”“这是白果树,就是银杏树,它 的年纪比你大得多,你得叫它太祖爷爷。据说有500的历史了,解放前拿它还做过飞机的导航树呢!在厂子西面还有个古龙王庙呢,历史可以上 溯到康熙年间,它历经千年,几经兴衰,这个地方说不定要形成神佛并尊的独特景观呢!”马启明没有想到张钢铁居然会说出这么文雅的词句 来。“哎呀,哎呀,哎呀呀!我还是第一次见这么
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A3 演示文稿设计与制作
提交指南和评价标准
1. 主题说明
教师自主选择一个教学主题,描述其主要内容、教学对象、教学环境等。
认证材料:
(1)主题:正切函数的图像与性质
(2)主要内容:《正切函数的图像和性质》是普通高中人教版教数学(必修4)1.4.3的内容,是正弦、余弦函数的图象和性质知识的延续和深化,也是数形结合等重要数学思想方法的基础。
对于函数性质的研究,需要通过观察函数的图象,从图象的特征获得函数的性质是一个基本方法,这也是数形结合思想的应用.为制作课件需要学生了解研究函数图像与性质的意义,所以需要获取数字教育资源。
(3)教学对象为高一普通班学生。
本班大部分学生喜欢数学学习,双基知识掌握较好,学习积极性较高,学生能够主动学习,能够比较顺利地开展小组合作学习。
能够适应多媒体教学环境,适应信息技术手段教学。
在教学过程中,有效地利用信息技术手段引领教学活动,满足学生的需求,使数学课堂有兴趣、有生命、有精彩、有实效。
(4)教学环境
A.课件使用PPT,geogebra,微课制作,需要用到做正切函数图像的geogebra动态演示,增强学生的视觉感受,引导理解掌握性质;
B.教室里有一台联网电脑,可以通过网络访问具有丰富资源的共享学习空间;有一台交互式电子白板一体机,一台高清激光投影机,能够使信息技术与教学有机融合。
C.利用PPT课件引领课堂教学流程,呈现多种媒体素材等。
但是在设计和使用过程中,要注意避免照搬PPT课件内容而忽略了与学生之间的互动,可采用动画效果、微课等方式丰富的授课形式,引导小组合作学习,课堂上小组研讨、师生互动及时反馈,班级气氛活跃、师生关系融洽,形成一个良好的教学环境。
2. 演示文稿制作
针对上述教学主题,选择任意一种工具制作支持课堂教学的演示文稿,并转成视频形式提交。
认证材料:
主题:人教A版是普通高中数学(必修4)《1.4.3正切函数的图像和性质》
一、制作过程
1.使用软件:制作文稿使用PPT,演示动画还使用geogebra,微课则使用了录屏软件Camtasia 2019。
2.具体制作步骤如下:
(1)先用geogebra制作正切函数y=tanx在一个周期上的图象、正切函数在整个定义域内的图象(即正切曲线)、通过图象平移分析正切函数的性质等的动画;
(2)为了便于操作,上述动画都用录屏软件Camtasia 2019制作成微视频,以备制作PPT使用;
(3)一些例题及练习题用到的图形,用geogebra做做出来,然后用QQ截图,以备制作PPT使用;
(4)最后根据教学设计,制作授课的演示文稿PPT,选取合适背景格式,按照教学流程把文字打到PPT上,选取合适的字体,调整好文字的颜色和粗细,将做好的微视频嵌入PPT,图片粘贴到制定位置,设计每段文字、图片和视频的自定义动画。
二、课件使用
由于我校各教室都联了网,装有希沃白板。
所以制作好的演示文稿PPT 上传到希沃账号,授课时在教室里打开希沃软件,登录账号即可使用。
需要动画演示的地方,停下来打开微视频播放即可。
需要书写的可以再黑板上粉笔书写,也可以利用PPT的笔功能在文稿上书写。
3. 演示文稿制作说明视频
以视频形式(可采用录像或录屏方式)描述演示文稿制作过程,并说明教学中如何使用。
视频需出现教师个人形象,时间不超过10分钟。
认证材料:
演示文稿制作说明(《1.4.3正切函数的图像和性质》).mp4。