大学物理电磁学汇总
大学物理电磁学知识点汇总

稳恒电流1.电流形成的条件、电流定义、单位、电流密度矢量、电流场(注意我们又涉及到了场的概念)2.电流连续性方程(注意和电荷守恒联系起来)、电流稳恒条件。
3.欧姆定律的两种表述(积分型、微分型)、电导、电阻定律、电阻、电导率、电阻率、电阻温度系数、理解超导现象4.电阻的计算(这是重点)。
5.金属导电的经典微观解释(了解)。
6.焦耳定律两种形式(积分、微分)。
(这里要明白一点:微分型方程是精确的,是强解。
而积分方程是近似的,是弱解。
)7.电动势、电源的作用、电源做功。
、8.含源电路欧姆定律。
9.基尔霍夫定律(节点电流定律、环路电压定律。
明白两者的物理基础。
)习题:13.19;13.20真空中的稳恒磁场电磁学里面极为重要的一章1. 几个概念:磁性、磁极、磁单极子、磁力、分子电流2. 磁感应强度(定义、大小、方向、单位)、洛仑磁力(磁场对电荷的作用)3. 毕奥-萨伐尔定律(稳恒电流元的磁场分布——实验定律)、磁场叠加原理(这是磁场的两大基本定律——对比电场的两大基本定律)4. 毕奥-萨伐尔定律的应用(重点)。
5. 磁矩、螺线管磁场、运动电荷的磁场(和毕奥-萨伐尔定律等价——更基本)6. 稳恒磁场的基本定理(高斯定理、安培环路定理——与电场对比)7. 安培环路定理的应用(重要——求磁场强度)8. 磁场对电流的作用(安培力、安培定律积分、微分形式)9. 安培定律的应用(例14.2;平直导线相互作用、磁场对载流线圈的作用、磁力矩做功)10. 电场对带电粒子的作用(电场力);磁场对带电粒子的作用(洛仑磁力);重力场对带电粒子的作用(引力)。
11. 三场作用叠加(霍尔效应、质谱仪、例14.4)习题:14.20,14.22,14.27,14.32,14.46,14.47磁介质(与电解质对比)1.几个重要概念:磁化、附加磁场、相对磁导率、顺磁质、抗磁质、铁磁质、弱磁质、强磁质。
(请自己阅读并绘制磁场和电场相关概念和公式的对照表)2.磁性的起源(分子电流)、轨道磁矩、自旋磁矩、分子矩、顺磁质、抗磁质的形成原理。
大一物理电磁学知识点

大一物理电磁学知识点电磁学是物理学中的重要分支,研究电场和磁场的相互作用以及与电荷和电流的关系。
作为大一物理学的基础课程之一,下面将介绍一些大一物理电磁学的重要知识点。
一、电荷与电场1. 电荷:电荷是物质固有的属性,分为正电荷和负电荷两种,相同电荷互相排斥,异种电荷互相吸引。
2. 电场:电场是由电荷产生的周围空间的性质,通过电场可以感受到电荷的存在和性质。
3. 库仑定律:描述了两个电荷之间的相互作用力,它正比于两个电荷的乘积,反比于它们之间的距离的平方。
二、电场中的电势1. 电势能:电荷在电场中具有电势能,当电荷在电场中移动时,它的电势能会发生变化。
2. 电势差与电势:电势差是指两点之间的电势差异,电势则表示单位正电荷在某一点的电势能。
3. 电势公式:电势与电荷和距离有关,对于点电荷,电势与距离成反比。
三、电场中的运动1. 电场中的电荷:电场中的电荷会受到电场力的作用,决定了它的运动轨迹和速度。
2. 电荷在电场中的加速度:受力等于质量乘以加速度,电荷在电场中的加速度与电场力成正比,与电荷的质量成反比。
3. 电荷的运动方向:正电荷在电场力的作用下沿电力线指向电势降低的方向运动,负电荷则相反。
四、磁场与磁力1. 磁场:磁场是由磁荷(磁极)产生的周围空间的性质,通过磁场可以感受到磁荷的存在和性质。
2. 磁感应强度:磁感应强度是磁场的物理量,表示单位面积垂直于磁场方向上的力的大小。
3. 洛伦兹力:磁场中的电荷受到洛伦兹力的作用,其大小与电荷的速度、磁感应强度和运动的方向有关。
五、电磁感应1. 法拉第电磁感应定律:当闭合线圈中的磁通量发生变化时,会在线圈中产生感应电动势。
2. 楞次定律:根据楞次定律,感应电动势的方向总是使得产生它的变化率减小磁通量的方向相反。
3. 电磁感应现象的应用:电磁感应现象广泛应用于变压器、发电机和感应电炉等设备中。
以上是大一物理电磁学的一些重要知识点,通过学习这些知识,我们可以更好地理解电磁现象及其应用。
大学物理电磁学总结

D dS D
s
s
dS D s
d S q0i
s内
(1)
D
:静电场电位移矢量
(
D
2
:) 有旋电场电位移矢量
2、法拉第电磁感应定律。
E dl
(1)
E dl
(2)
E
dl
dm
L
L
L
dt
E(1) :静电场电场强度
E(2) :有旋电场电场强度
3、磁场的高斯定理。
(1)
(2)
dr q 4 0 r
2、 点电荷系电场中的电势:
Va
n
Vai
i 1
n i 1
qi 4 0 ri
3、 电荷连续分布带电体电场中的电势:
dq
Va 40r
场强与电势:
E (V i V j V k) gradV x y z
一些常见带电体的电势:
M m B ( M 为磁力矩)
m NISen (m 为磁偶极子)
磁力的功:
A
Id m 2
m1
m
I (m2 m1) I m
磁场对运动电荷的作用: 1、 只有磁场:(洛伦兹力)
F qv B
由于洛伦兹力与速度始终垂 直,所以洛伦兹力对运动电荷 做的功恒等于零。 2、 既有电场又有磁场:
基本计算方法:
1、 点电荷电场强度: E
1 4 0
q r2
er
2、 电场强度叠加原理:
E
n
Ei
i 1
1 4 0
n i 1
qi ri 2
eri
大学物理电磁学部分

目录
电磁学概述电场与电场强度磁场与磁感应强度电磁感应交流电与电磁波电磁场与物质相互作用
01
电磁学概述
由电场和磁场组成,是空间中一种特殊的物质形态,对处于其中的电荷和电流产生力的作用。
电磁场
电磁力
电磁波
由变化的电场和磁场相互作用而产生,是电磁学中的基本作用力。
03
磁感应强度的方向与磁场线的切线方向相同,与小磁针静止时北极的指向一致。
01
磁感应强度是描述磁场强弱的物理量,用符号B表示。
02
磁感应强度的大小等于单位面积上穿过磁场线的数量,与磁场线的密度成正比。
磁场线是用来形象描述磁场的强弱和方向的物理量。
磁场线在空间不相交,不相切,也不闭合。
磁场线的疏密程度表示磁场的强弱,越密集表示磁场越强,越稀疏表示磁场越弱。
电场对物质的影响
电场会对物质施加电场力,使物质内的电荷发生移动,从而改变物质的电学和光学性质。电场对物质施加电场力,影响物质的电学和光学性质。当电场作用于物质时,物质内的电荷会受到电场力的作用,发生移动。这种电荷的移动会导致物质的电学性质发生变化,如导电性、电阻等。此外,电场还会影响物质的光学性质,如折射率、反射率等。这些变化会影响电磁波在物质中的传播特性。
介电常数与电场的关系:介电常数是描述物质在电场作用下极化状态的物理量,它反映了物质对电场的响应。介电常数描述了物质在电场作用下的极化状态,反映了物质对电场的响应。介电常数是表征物质在电场作用下极化状态的一个重要物理量。它反映了物质内部电荷的分布和移动情况,以及物质对电场的响应特性。介电常数的值取决于物质的种类、温度、湿度等多种因素。通过测量介电常数可以了解物质在电场作用下的行为和性质,进而研究电磁波在物质中的传播特性。
大学物理电磁学总结(精华)ppt课件(2024)

34
创新实验设计思路分享
组合实验法
将多个相关实验进行组合设计,以提高实验 效率和准确性。
对比实验法
通过对比不同条件下的实验结果,探究物理 现象的本质和规律。
仿真模拟法
利用计算机仿真技术模拟实验过程,以降低 成本和提高安全性。
2024/1/28
改进测量方法
针对传统测量方法的不足之处进行改进和创 新,提高测量精度和效率。
2024/1/28
23
自感和互感现象分析
自感现象是指一个线圈中的电 流发生变化时,在线圈自身中 产生感应电动势的现象。
互感现象是指两个相邻的线圈 中,一个线圈中的电流发生变 化时,在另一个线圈中产生感 应电动势的现象。
2024/1/28
自感和互感现象的产生都与磁 场的变化有关,它们是电磁感
应现象的重要组成部分。
麦克斯韦方程组可以推导出电磁波的存在和传播,是无线通信的理论基础 。
18
电磁波产生条件与传播方式
01
02
03
电磁波产生的条件是变 化的电场或磁场,即振 荡电路中的电荷或电流
。
电磁波的传播方式是横 波,电场和磁场相互垂 直且与传播方向垂直。
电磁波在真空中的传播 速度等于光速,且在不 同介质中的传播速度不
7
02
静电场与恒定电流
2024/1/28
8
静电场中的导体和电介质
静电场中的导体特性
静电感应现象
静电平衡条件
2024/1/28
9
静电场中的导体和电介质
导体表面电荷分布
电介质极化现象
电偶极子概念
2024/1/28
10
静电场中的导体和电介质
电介质极化机制
大学物理电磁学总结(精华)课件

一、教学内容1. 库仑定律:描述静电力的大小和方向,公式为F=kq1q2/r^2,其中k为库仑常数,q1和q2分别为两个点电荷的电量,r为它们之间的距离。
2. 电场强度:描述电场对电荷的作用力,公式为E=F/q,其中F为电场对电荷的作用力,q为电荷的电量。
3. 高斯定律:描述电场通过一个闭合曲面的通量与该闭合曲面内部的总电荷之间的关系,公式为Φ=Q/ε0,其中Φ为电通量,Q为闭合曲面内部的总电荷,ε0为真空中的电常数。
4. 磁感应强度:描述磁场对运动电荷的作用力,公式为B=F/IL,其中F为磁场对运动电荷的作用力,I为电流的大小,L为电流所在导线的有效长度。
5. 安培定律:描述电流产生的磁场,公式为B=μ0I/2πr,其中B为磁场的大小,I为电流的大小,r为电流所在导线到被测点的距离,μ0为真空中的磁常数。
6. 法拉第电磁感应定律:描述磁场变化产生的电动势,公式为E=ΔΦ/Δt,其中E为电动势,ΔΦ为磁通量的变化量,Δt为时间的变化量。
二、教学目标1. 掌握大学物理电磁学的基本概念和公式。
2. 能够运用电磁学的知识解决实际问题。
3. 培养学生的科学思维和解决问题的能力。
三、教学难点与重点重点:库仑定律、电场强度、高斯定律、磁感应强度、安培定律、法拉第电磁感应定律。
难点:高斯定律、安培定律、法拉第电磁感应定律的理解和应用。
四、教具与学具准备教具:黑板、粉笔、PPT课件。
学具:教材、笔记本、笔。
五、教学过程1. 实践情景引入:讲解库仑定律时,可以引入两个点电荷之间的相互作用力。
2. 例题讲解:讲解电场强度时,可以举例一个正点电荷对周围电荷的作用力。
3. 随堂练习:让学生计算一个负点电荷对周围电荷的作用力。
4. 讲解高斯定律:讲解高斯定律时,可以举例一个闭合曲面内部的电荷对曲面外的电场的影响。
5. 讲解磁感应强度:讲解磁感应强度时,可以举例磁场对运动电荷的作用力。
6. 讲解安培定律:讲解安培定律时,可以举例电流产生的磁场对周围导线的影响。
大学物理电磁学总结

添加标题
电磁学在日常生活、工业生 产和科技领域中有着广泛的 应用,如电力、电子、通信、 材料科学等。
添加标题
大学物理中的电磁学部分主要涉 及静电场、恒定磁场、电磁感应 和交流电等内容。
学习目标
理解电磁场的性质、变化和运动 规律,能够分析解决相关问题。
电势
电势差
电场中两点间的电势之差。
等势面
电势相等的点构成的面。
电势梯度
沿等势面方向上单位距离的电势差。
电 流 与 电 路
电流与电动势
电流
电荷的定向移动形成电流,单位时间内通过导体横截面的电荷量即为电流的大 小。
电动势
电动势是电源内部的一种力,它使得正电荷在电源内部从负极移到正极,负电 荷则从正极移到负极。电动势的单位是伏特(V)。
随着学科交叉的深入,电磁学将与化学、生 物学、地球科学等学科进行更紧密的结合, 推动相关领域的发展。
理论和实验的结合
复杂系统的研究
未来电磁学的发展需要更加注重理论和实验 的结合,推动理论预测和实验验证的相互印 证。
随着计算机技术的发展,复杂系统的研究将 更加深入,电磁学将在这个领域发挥更大的 作用。
安培环路定律的数学表达式为:∮B·dl = μ₀I,其中B表示磁场强度,dl表示微小线段, I表示穿过某一闭合曲线的电流。
安培环路定律是描述磁场与电流之间关系的定 律,指出磁场与电流之间的关系是线性的。
法拉第电磁感应定 律
法拉第电磁感应定律是描述磁场变化与 感应电动势之间关系的定律。
法拉第电磁感应定律的数学表达式为: E=-dΦ/dt,其中E表示感应电动势, Φ表示磁通量。
大学物理电磁学基础知识点汇总

大学物理电磁学基础知识点汇总一、电场1、库仑定律库仑定律描述了真空中两个静止点电荷之间的相互作用力与它们电荷量的乘积成正比,与它们之间距离的平方成反比,作用力的方向沿着它们的连线。
其表达式为:$F = k\frac{q_1q_2}{r^2}$,其中$k$为库仑常量,$q_1$和$q_2$为两个点电荷的电荷量,$r$为它们之间的距离。
2、电场强度电场强度是描述电场力的性质的物理量,定义为单位正电荷在电场中所受到的力。
其表达式为:$E =\frac{F}{q}$。
对于点电荷产生的电场,其电场强度的表达式为:$E = k\frac{q}{r^2}$,方向沿径向向外(正电荷)或向内(负电荷)。
3、电场线电场线是用来形象地描述电场的一种工具。
电场线的疏密表示电场强度的大小,电场线的切线方向表示电场强度的方向。
静电场的电场线不闭合,始于正电荷或无穷远,终于负电荷或无穷远。
4、电通量电通量是通过某一面积的电场线条数。
对于匀强电场,通过平面的电通量为:$\Phi = ES\cos\theta$,其中$E$为电场强度,$S$为平面面积,$\theta$为电场强度与平面法线的夹角。
5、高斯定理高斯定理表明,通过闭合曲面的电通量等于该闭合曲面所包围的电荷量的代数和除以$\epsilon_0$。
即:$\oint_S E\cdot dS =\frac{1}{\epsilon_0}\sum q$。
高斯定理是求解具有对称性电场分布的重要工具。
二、电势1、电势电势是描述电场能的性质的物理量,定义为把单位正电荷从电场中某点移动到参考点(通常取无穷远处)时电场力所做的功。
某点的电势等于该点到参考点的电势差。
点电荷产生的电场中某点的电势为:$V = k\frac{q}{r}$。
2、等势面等势面是电势相等的点构成的面。
等势面与电场线垂直,沿电场线方向电势降低。
3、电势差电场中两点之间的电势之差称为电势差,也称为电压。
其表达式为:$U_{AB} = V_A V_B$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动生电动势的非静电场? 感生电动势的非静电场?性质?
§2 动生电动势
一. 典型装置
l
导线 ab在磁场中运动
电动势怎么计算?
a 均匀磁场 B
v
b
1.中学:单位时间内切割磁力线的条数
i Blv
由楞次定律定方向
a
i
b
2. 法拉第电磁感应定律
L
建坐标如图 设回路L方向如图
.
.
均.匀.磁场. B.
.
按约定 磁通量取负
. . S. . . . .
BS
. . .L. . . .
由
i
d
dt
dB S >0 dt
正号 说明
电动势的方向 与所设绕行方向一致
S i
两种绕行方向得到的结果相同
讨论
d 使用 i dt 意味着约定
磁链 magnetic flux linkage
B
L
0•
r
解:设场点距轴心为r ,根据对称性,取以
o为心,过场点的圆周环路 L
E感生 dl E感生 2 r
由法
S
2 r
dB dt
r< R
S
r2
E感生
r 2
dB dt
r>R
S R2
E感生
R2 2r
闭合回路中感应电流的方向,总是使它所激发
的磁场来阻止引起感应电流的磁通量的变化。
楞次定律是能量守恒定律在电磁感应现象上的
具体体现。
3. 法拉第电磁感应定律数学形式 〔配以某些约定的 或考虑楞次定律的〕
d i dt
约定
首先任定回路的绕行方向 规定电动势方向与绕行方向一致时电动势为正 规定当磁力线方向与绕行方向成右螺时磁通量为正
v ××××××××
××××××××
G
××××××××
左面三种情况 均可使电流计 指针摆动
××××××××
Φ 变化
本质是电动势 electromotive force(emf)
二. 规律
1. 法拉第电磁感应定律
感应电动势的大小 induction emf 2. 楞次定律 Lenz law
d i dt
2
d
交变的 电动势
i
0 r NI0l 2
cost
ln
d
d
a
t
t 2
i> 0 i
i <0 i
L
I
ds
l
da
ox
普遍
讨论:
NI0l sint ln d a
2
d
NI0l sintln x a
2
x
L
I
ds
l
v
xa
ox
i
d
dt
NI0l cost ln x a
2
x
NI0lv sin t ( 1 1 )
Blxt
l 0
a 均匀磁场 B
v
bx
d
dx
i
dt
Bl dt
Blv
a
i
b
负号说明电动势方 向与所设方向相反
3. 电动势与非静电场强的积分关系
非静 电力- -洛 仑兹力
fm
qv
qv
B
B
EK q v B
vB
a
B
dl
e
fm
v
a
i v B dl
b
a
b
i vBdl vBl >0 ba
L
ds
l
设回路L方向如图 建坐标系如图 d a
ox
在任意坐标处取一面元 ds
N N B dS
S
N N
B dS N
d a
Bds N
I
ldx
S
S
d 2 x
N Il d a 2 ln d NI0l sin t ln d a
L
I
ds
l
2
d
i
d
dt
da
ox
0 r NI0l cost ln d a
2
x xa
v
NI0l sint ln d a
L
2
d
I
ds
l
i
d
dt
d
o
NI0l cost ln d a
2
d
a
x
NI0v sin t ln d a
2
d
把感应电动势分为两种基本形式 动生电动势 motional emf 感生电动势 induced emf
下面 从场的角度研究电磁感应 电磁感应对应的场是电场
第八章 电磁感应 电磁场
Electromagnetic Induction and Field
奥斯特
电流的磁效应
对称性
磁的电效应?
反映了物质世界的对称性
§1 法拉第电磁感应定律
Faraday law of electromagnetic induction
一. 现象
v
v
R
第一类
第二类
××××××× × B
如均匀磁场 B
dB >0
dt
. . 均.匀.磁场. B. .
S
求:面积S边界回路中的电动势 . . . . . . .
若绕行方向取如图所示的回路.方.
.
L
.
.L.
.
向按约定 磁通量为正 即 BS
由
i
d
dt
dB S < 0 dt
负号 电动势的方向
S i
说明 与所设的绕行方向相反
若绕行方向取如图所示的方向L
对于N 匝串联回路 每匝中穿过的磁通分别为
1, 2,, N
则有
i
1 2 N
d1 d2 dN
dt dt
dt
i
d
dt
i 磁链
i
例:直导线通交流电 置于磁导率为 的介质中
求:与其共面的N匝矩形回路中的感应电动势
已知 I I0 sin t
其中 I0 和 是大于零的常数
I
解:设当I 0时,电流方向如图
2. 特殊
E感生具有某种
对称性才有可能 计算出来
空间均匀的磁场被限制在圆柱体内,磁感强度
方向平行柱轴,如长直螺线管内部的场 。
磁场随时间变化 则
B t
感生电场具有柱对称分布
3. 特殊情况下感生电场的计算
空间均匀的磁场限制在半径为 R
的圆柱内,
B
的方向平行柱轴
且有 dB c dt
求:E感生 分布
该段导线运动速度垂直纸面向内
运 动半径为 v B vB
r
rB
lB
di (v B)dl vBdlcos
sin
B
2
zl
B sin2 ldl
L
i di B sin2 ldl
r
b
v
B
dl
l
B L2 sin 2
>0
0
a0
方向从 a 到 b
2
§3 感生电动势 感生电场
由于磁场的时间变化而产生的电场
i
b
讨论
d
i dt
适用于一切产生电动势的回路
i v B dl 适用于切割磁力线的导体
ba
di v B dl
i
d i
例 在空间均匀的磁场中 B Bz
z
B
b
导线ab绕Z轴以 匀速旋转
L
导线ab与Z轴夹角为
设 ab L 求:导线ab中的电动a势
解:建坐标如图 在坐标 l处取 dl
B
Br , t
B dS
i
d
dt
i
S
B t
dS
S
一.感生电场的性质
S i
S
B t
dS
B
L
E感生 dl
L
S
t
dS
S是以L为边界的任意面积
i E感生 dl
E感生 dS 0 非保守场
L
无源场 涡旋场
二. 感生电场的计算
1. 原则
B
E感生 dl
L
S
t
dS