大学物理电磁学知识点汇总
大学物理电磁学部分总结

电磁学部分总结 静电场部分第一部分:静电场的基本性质和规律电场是物质的一种存在形态,它同实物一样也具有能量、动量、质量等属性。
静电场的物质特性的外在表现是:(1)电场对位于其中的任何带电体都有电场力的作用(2)带电体在电场中运动,电场力要作功——电场具有能量1、描述静电场性质的基本物理量是场强和电势,掌握定义及二者间的关系。
电场强度 电势2、反映静电场基本性质的两条定理是高斯定理和环路定理要掌握各个定理的内容,所揭示的静电场的性质,明确定理中各个物理量的含义及影响各个量的因素。
重点是高斯定理的理解和应用。
3、应用(1)、电场强度的计算a)、由点电荷场强公式 及场强叠加原理 计算场强q FE =⎰∞⋅==aa ar d E q W U 0∑⎰⎰=⋅=ΦiSe qS d E 01ε ⎰=⋅0r d E L 02041r r q E πε=iiE E ∑=一、离散分布的点电荷系的场强二、连续分布带电体的场强其中,重点掌握电荷呈线分布的带电体问题b)、由静电场中的高斯 定理计算场源分布具有高度对称性的带电体的场强分布一般诸如球对称分布、轴对称分布和面对称分布,步骤及例题详见课堂笔记。
还有可能结合电势的计算一起进行。
c)、由场强和电势梯度之间的关系来计算场强(适用于电势容易计算或电势分布已知的情形),掌握作业及课堂练习的类型即可。
(2)、电通量的计算a)、均匀电场中S 与电场强度方向垂直b)、均匀电场,S 法线方向与电场强度方向成θ角2041i ii i i i r r q E E πε∑=∑=⎰⎰π==0204d r rq E d E εUgradU E -∇=-=)(k zU j y U i x U ∂∂+∂∂+∂∂-=c)、由高斯定理求某些电通量(3)、电势的计算a)、场强积分法(定义法)——根据已知的场强分布,按定义计算b)、电势叠加法——已知电荷分布,由点电荷电势公式,利用电势叠加原理计算第二部分:静电场中的导体和电介质 一、导体的静电平衡状态和条件导体内部和表面都没有电荷作宏观定向运动的状态称为静电平衡状态。
大学物理知识点(磁学与电磁感应)

y
Idl B
B
dF
dF
I
Idl
x L 任意闭合平面载流导线在均匀磁场中所受的力为零 。 F3 P 注:载流线圈在均匀磁 F2 M 场中所受力矩不一定为 零 B I O F 1 M Npm B en N F4
在均匀磁场中
F BIL
o
P
**应用介质中安培环路定理解题方法**
I 0 Bo
2R
2 IR 0 pm B 0 3 3
2x
2πx
注意:在一定的x处,磁场强弱随载流环的半径变 化,故可用求极值的方法讨论轴线某一定点处磁 场随载流环半径变化的趋势。
无限长柱面电流的磁场
无限长柱体电流的磁场
L1
r
R
I
L2
r
B
0 I
2π R
o R
r
二、磁场的基本性质
1、 感生电动势
S定
B dS i s t
方向由楞次定律判断
o
B变
2、 感生电场
B Ei dl s t dS
感生电场是涡旋场,其电场线与磁感 应强度增大的方向成左手螺旋关系。
3、 感生电场与感生电动势的计算 感生电场 : 当变化的磁场的分布具有特殊对称性时: 1 dB Ei r (r R) 2 dt
五、磁场的能量
1、通电线圈的自感磁能 2、磁场的磁能
1 2 Wm LI 2
目前范畴内:
1 1 2 1 2 w m H B BH 2 2 2
W m V w m dV
电磁学基本物理图象
运动
电荷
激 发
电流
激 发
大一物理电磁学知识点

大一物理电磁学知识点电磁学是物理学中的重要分支,研究电场和磁场的相互作用以及与电荷和电流的关系。
作为大一物理学的基础课程之一,下面将介绍一些大一物理电磁学的重要知识点。
一、电荷与电场1. 电荷:电荷是物质固有的属性,分为正电荷和负电荷两种,相同电荷互相排斥,异种电荷互相吸引。
2. 电场:电场是由电荷产生的周围空间的性质,通过电场可以感受到电荷的存在和性质。
3. 库仑定律:描述了两个电荷之间的相互作用力,它正比于两个电荷的乘积,反比于它们之间的距离的平方。
二、电场中的电势1. 电势能:电荷在电场中具有电势能,当电荷在电场中移动时,它的电势能会发生变化。
2. 电势差与电势:电势差是指两点之间的电势差异,电势则表示单位正电荷在某一点的电势能。
3. 电势公式:电势与电荷和距离有关,对于点电荷,电势与距离成反比。
三、电场中的运动1. 电场中的电荷:电场中的电荷会受到电场力的作用,决定了它的运动轨迹和速度。
2. 电荷在电场中的加速度:受力等于质量乘以加速度,电荷在电场中的加速度与电场力成正比,与电荷的质量成反比。
3. 电荷的运动方向:正电荷在电场力的作用下沿电力线指向电势降低的方向运动,负电荷则相反。
四、磁场与磁力1. 磁场:磁场是由磁荷(磁极)产生的周围空间的性质,通过磁场可以感受到磁荷的存在和性质。
2. 磁感应强度:磁感应强度是磁场的物理量,表示单位面积垂直于磁场方向上的力的大小。
3. 洛伦兹力:磁场中的电荷受到洛伦兹力的作用,其大小与电荷的速度、磁感应强度和运动的方向有关。
五、电磁感应1. 法拉第电磁感应定律:当闭合线圈中的磁通量发生变化时,会在线圈中产生感应电动势。
2. 楞次定律:根据楞次定律,感应电动势的方向总是使得产生它的变化率减小磁通量的方向相反。
3. 电磁感应现象的应用:电磁感应现象广泛应用于变压器、发电机和感应电炉等设备中。
以上是大一物理电磁学的一些重要知识点,通过学习这些知识,我们可以更好地理解电磁现象及其应用。
物理电磁学知识点

物理电磁学知识点物理电磁学是研究电和磁现象及其相互关系的一门学科。
在现代科学技术中起着重要的作用,广泛应用于通信、能源、电子工程等领域。
本文将介绍一些物理电磁学的基本知识点。
一、电磁感应与法拉第定律电磁感应是指通过磁场的变化而产生电流的现象。
法拉第定律描述了电磁感应现象的定量关系。
根据法拉第定律,当磁通量发生变化时,电磁感应电动势的大小与变化率成正比。
公式可表示为:ε = -dΦ/dt其中,ε表示感应电动势,Φ表示磁通量,t表示时间。
根据右手定则,可以确定电磁感应电动势的方向。
二、电磁波电磁波是由电场和磁场相互作用而形成的一种波动现象。
根据麦克斯韦方程组,电磁波的传播速度等于真空中光速,即3.0×10^8 m/s。
电磁波按频率可分为射频、微波、红外线、可见光、紫外线、X射线和γ射线等不同波段。
三、电磁辐射和电磁谱电磁辐射是指电磁波将能量从发射源传播到接收源的过程。
电磁谱是对电磁辐射按频率或波长进行分类的图表。
根据波长递增的顺序,电磁谱可分为无线电波、微波、红外线、可见光、紫外线、X射线和γ射线。
四、电场和电势电场是描述电荷相互作用的场。
电场的强度大小由电场力和电荷之间的关系决定。
电势则是衡量电场的势能。
在静电场中,电场强度的势能差被称为电势差。
电势差的单位为伏特(V),1 V表示1焦耳(J)的势能差对应于1库仑(C)的电荷。
五、磁场和磁感应强度磁场是由磁荷(即磁单极子)或电流所产生的场。
磁感应强度(也称磁场强度)则用来描述磁场的强弱。
磁感应强度的单位为特斯拉(T),1 T表示1库仑在1米处所受的力为1牛顿(N)。
六、电磁力和洛伦兹力电磁力是指电荷或电流受到的相互作用力。
洛伦兹力是描述带电粒子在电磁场中受到的作用力。
洛伦兹力的大小和方向由洛伦兹定律给出。
七、电磁感应和变压器电磁感应在变压器中起着重要作用。
变压器利用电磁感应原理实现电压的升降。
通过改变线圈的匝数比,可以调整变压器的输入和输出电压。
大学物理电磁学知识点总结

大学物理电磁学总结一、三大定律库仑定律:在真空中,两个静止的点电荷q1 和q2 之间的静电相互作用力与这两个点电荷所带电荷量的乘积成正比,与它们之间距离的平方成反比,作用力的方向沿着两个点电荷的连线,同号电荷相斥,异号电荷相吸。
uuu r q q ur F21 = k 1 2 2 er rur u r 高斯定理:a) 静电场:Φ e = E d S = ∫s∑qiiε0(真空中)b) 稳恒磁场:Φ m =u u r r Bd S = 0 ∫s环路定理:a) 静电场的环路定理:b) 安培环路定理:二、对比总结电与磁∫Lur r L E dl = 0 ∫ ur r B dl = 0 ∑ I i (真空中)L电磁学静电场稳恒磁场稳恒磁场电场强度:E磁感应强度:B 定义:B =ur ur F 定义:E = (N/C) q0基本计算方法:1、点电荷电场强度:E =ur r u r dF (d F = Idl × B )(T) Idl sin θ方向:沿该点处静止小磁针的N 极指向。
基本计算方法:urq ur er 4πε 0 r 2 1r ur u Idl × e r 0 r 1、毕奥-萨伐尔定律:d B = 2 4π r2、连续分布的电流元的磁场强度:2、电场强度叠加原理:ur n ur 1 E = ∑ Ei = 4πε 0 i =1r qi uu eri ∑ r2 i =1 inr ur u r u r 0 Idl × er B = ∫dB = ∫ 4π r 23、安培环路定理(后面介绍)4、通过磁通量解得(后面介绍)3、连续分布电荷的电场强度:ur ρ dV ur E=∫ e v 4πε r 2 r 0 ur σ dS ur ur λ dl ur E=∫ er , E = ∫ e s 4πε r 2 l 4πε r 2 r 0 04、高斯定理(后面介绍)5、通过电势解得(后面介绍)几种常见的带电体的电场强度公式:几种常见的磁感应强度公式:1、无限长直载流导线外:B = 2、圆电流圆心处:B = 3、圆电流轴线上:B =ur 1、点电荷:E =q ur er 4πε 0 r 2 10 I2R0 I 2π r2、均匀带电圆环轴线上一点:ur E=r qx i 2 2 32 4πε 0 ( R + x )R 2 IN 2 ( x 2 + R 2 )3 21 0α 23、均匀带电无限大平面:E =σ 2ε 0(N 为线圈匝数)4、无限大均匀载流平面:B =4、均匀带电球壳:E = 0( r < R )(α 是流过单位宽度的电流)ur E=q ur er (r > R ) 4πε 0 r 25、无限长密绕直螺线管内部:B = 0 nI (n 是单位长度上的线圈匝数)6、一段载流圆弧线在圆心处:B = (是弧度角,以弧度为单位)7、圆盘圆心处:B =r ur qr (r < R) 5、均匀带电球体:E = 4πε 0 R 3 ur E= q 4πε 0 r ur er (r > R ) 20 I 4π R0σω R2(σ 是圆盘电荷面密度,ω 圆盘转动的角速度)6、无限长直导线:E =λ 2πε 0 x λ 0(r > R ) 2πε 0 r7、无限长直圆柱体:E =E=λr (r < R) 4πε 0 R 2电场强度通量:N·m2·c-1)(磁通量:wb)(sΦ e = ∫ d Φ e = ∫ E cos θ dS = ∫s sur u r E d S通量u u r r Φ m = ∫ d Φ m = ∫ Bd S = ∫ B cos θ dS s s s若为闭合曲面:Φ e =∫sur u r E d S若为闭合曲面:u u r r Φ m = Bd S = B cos θ dS ∫ ∫s s均匀电场通过闭合曲面的通量为零。
大学物理电磁学总结(精华)课件

一、教学内容1. 库仑定律:描述静电力的大小和方向,公式为F=kq1q2/r^2,其中k为库仑常数,q1和q2分别为两个点电荷的电量,r为它们之间的距离。
2. 电场强度:描述电场对电荷的作用力,公式为E=F/q,其中F为电场对电荷的作用力,q为电荷的电量。
3. 高斯定律:描述电场通过一个闭合曲面的通量与该闭合曲面内部的总电荷之间的关系,公式为Φ=Q/ε0,其中Φ为电通量,Q为闭合曲面内部的总电荷,ε0为真空中的电常数。
4. 磁感应强度:描述磁场对运动电荷的作用力,公式为B=F/IL,其中F为磁场对运动电荷的作用力,I为电流的大小,L为电流所在导线的有效长度。
5. 安培定律:描述电流产生的磁场,公式为B=μ0I/2πr,其中B为磁场的大小,I为电流的大小,r为电流所在导线到被测点的距离,μ0为真空中的磁常数。
6. 法拉第电磁感应定律:描述磁场变化产生的电动势,公式为E=ΔΦ/Δt,其中E为电动势,ΔΦ为磁通量的变化量,Δt为时间的变化量。
二、教学目标1. 掌握大学物理电磁学的基本概念和公式。
2. 能够运用电磁学的知识解决实际问题。
3. 培养学生的科学思维和解决问题的能力。
三、教学难点与重点重点:库仑定律、电场强度、高斯定律、磁感应强度、安培定律、法拉第电磁感应定律。
难点:高斯定律、安培定律、法拉第电磁感应定律的理解和应用。
四、教具与学具准备教具:黑板、粉笔、PPT课件。
学具:教材、笔记本、笔。
五、教学过程1. 实践情景引入:讲解库仑定律时,可以引入两个点电荷之间的相互作用力。
2. 例题讲解:讲解电场强度时,可以举例一个正点电荷对周围电荷的作用力。
3. 随堂练习:让学生计算一个负点电荷对周围电荷的作用力。
4. 讲解高斯定律:讲解高斯定律时,可以举例一个闭合曲面内部的电荷对曲面外的电场的影响。
5. 讲解磁感应强度:讲解磁感应强度时,可以举例磁场对运动电荷的作用力。
6. 讲解安培定律:讲解安培定律时,可以举例电流产生的磁场对周围导线的影响。
大学物理电磁学总结

几种典型电流的磁场分布 (1)有限长直线电流的磁场
z
D
2
B
(cos1 cos 2) 4π r0
B
0 I
dz
I
z
1
r
dB
x
C
o
r0
*
(2)无限长载流直导线的磁场
P
y
1 0 2 π
π 1 2 2 π
0 I
2π r0
(3)半无限长载流直导线的磁场
BP
Ex 0
o a
dq
r
1
P dE y
y
E Ey 20a
E Ey 2 0 a
dE
dq
y
dE
a
P
dq
x
o
3)无限大带电平面
E 2 0
E
E
E
E
4)带电圆环轴线上的场强
qx E 2 2 32 4π 0 ( x R )
①由电荷分布的对称性分析电场分布的对称性. ②在对称性分析的基础上选取高斯面. 目的是使 s E dS 能够积分,成为E 与面积的乘积形式。
选取高斯面的技巧: • 使场强处处与面法线方向垂直, 以致该面上的电通量为零。 • 使场强处处与面法线方向平行, 且面上场强为恒量。这种面上的 电通量简单地为 ES 。
5)带电圆环轴线上的场强
q R
y dq dl r
o
P x
x
z
y
R o
dR
E
dq 2π RdR
( x 2 R 2 )1/ 2
x 1 1 E ( ) 2 0 x 2 x 2 R02
大学物理 电磁学

大学物理:电磁学电磁学是物理学的一个分支,主要研究电磁现象、电磁辐射、电磁场以及它们与物质之间的相互作用。
在本文中,我们将探讨电磁学的基本概念、历史背景、研究领域以及在现实生活中的应用。
一、基本概念1、电荷与电荷密度电荷是物质的一种属性,它可以产生电场。
电荷分为正电荷和负电荷。
电荷的分布可以用电荷密度来描述,它表示单位体积内所包含的电荷数量。
2、电场与电场强度电场是空间中由电荷产生的力线所形成的场。
电场强度是描述电场强弱的物理量,它与电荷密度有关。
3、磁场与磁感应强度磁场是由电流或磁体产生的场。
磁感应强度是描述磁场强弱的物理量,它与电流密度和磁场中的电荷有关。
4、电磁波电磁波是由电磁场产生的波动现象,它包括无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线等。
二、历史背景电磁学的研究可以追溯到17世纪和18世纪,当时科学家们开始研究静电和静磁现象。
19世纪初,英国物理学家迈克尔·法拉第发现了电磁感应定律,即变化的磁场可以产生电流。
1864年,英国物理学家詹姆斯·克拉克·麦克斯韦将法拉第的发现与自己的研究结合起来,提出了著名的麦克斯韦方程组,预言了电磁波的存在。
三、研究领域1、静电学:研究静止电荷所产生的电场、电势、电容、电导等性质。
2、静磁学:研究静止磁场以及磁体和电流所产生的磁场和磁场分布。
3、电磁感应:研究变化的磁场和电场以及它们之间的相互作用和变化规律。
4、电磁波:研究电磁波的产生、传播、散射、反射和吸收等性质以及在各种介质中的行为。
四、应用电磁学在现实生活中有着广泛的应用,如:1、电力工业:利用电磁感应原理发电、输电和用电。
2、通信工程:利用电磁波传递信息,包括无线电通信、微波通信、光纤通信等。
3、电子技术:利用电磁学原理制造电子设备,如电视机、计算机、雷达等。
4、磁悬浮技术:利用磁力使物体悬浮,减少摩擦和能耗。
5、医学成像:利用电磁波和磁场进行医学诊断和治疗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
稳恒电流
1.电流形成的条件、电流定义、单位、电流密度矢量、电流场(注意我们
又涉及到了场的概念)
2.电流连续性方程(注意和电荷守恒联系起来)、电流稳恒条件。
3.欧姆定律的两种表述(积分型、微分型)、电导、电阻定律、电阻、电
导率、电阻率、电阻温度系数、理解超导现象
4.电阻的计算(这是重点)。
5.金属导电的经典微观解释(了解)。
6.焦耳定律两种形式(积分、微分)。
(这里要明白一点:微分型方程是
精确的,是强解。
而积分方程是近似的,是弱解。
)
7.电动势、电源的作用、电源做功。
、
8.含源电路欧姆定律。
9.基尔霍夫定律(节点电流定律、环路电压定律。
明白两者的物理基
础。
)
习题:13.19;13.20
真空中的稳恒磁场
电磁学里面极为重要的一章
1. 几个概念:磁性、磁极、磁单极子、磁力、分子电流
2. 磁感应强度(定义、大小、方向、单位)、洛仑磁力(磁场对电荷的作用)
3. 毕奥-萨伐尔定律(稳恒电流元的磁场分布——实验定律)、磁场叠加原理(这是磁场的两大基本定律——对比电场的两大基本定律)
4. 毕奥-萨伐尔定律的应用(重点)。
5. 磁矩、螺线管磁场、运动电荷的磁场(和毕奥-萨伐尔定律等价——更基本)
6. 稳恒磁场的基本定理(高斯定理、安培环路定理——与电场对比)
7. 安培环路定理的应用(重要——求磁场强度)
8. 磁场对电流的作用(安培力、安培定律积分、微分形式)
9. 安培定律的应用(例14.2;平直导线相互作用、磁场对载流线圈的作用、磁力矩做功)
10. 电场对带电粒子的作用(电场力);磁场对带电粒子的作用(洛仑磁力);重力场对带电粒子的作用(引力)。
11. 三场作用叠加(霍尔效应、质谱仪、例14.4)
习题:14.20,14.22,14.27,14.32,14.46,14.47
磁介质(与电解质对比)
1.几个重要概念:磁化、附加磁场、相对磁导率、顺磁质、抗磁质、铁磁
质、弱磁质、强磁质。
(请自己阅读并绘制磁场和电场相关概念和公式的对照表)
2.磁性的起源(分子电流)、轨道磁矩、自旋磁矩、分子矩、顺磁质、抗
磁质的形成原理。
3.磁化强度、磁化电流、磁化面电流密度、束缚电流。
4.磁化强度和磁化电流的关系(微分关系、积分关系)
5.有磁介质存在时的磁场基本定理、磁场强度矢量H、有磁介质存在时的
安培环路定律(有电解质存在的安培环路定律)、磁化规律。
6.请比较B、H、M和E、D、P的关系。
磁化率、相对磁导率、绝对磁导
率。
7.有磁介质存在的安培环路定理的应用(例15.1、例15.2)、有磁介质存
在的高斯定理。
8.铁磁质(起始磁化曲线、磁滞回线、饱和磁感应强度、起始磁导率、磁
滞效应、磁滞、剩磁、矫顽力、磁滞损耗、磁畴、居里点、软磁材料、硬磁材料、矩磁材料)(了解)
习题: 15.11。