核辐射测量原理 (3)
核辐射测量原理课后习题解析

第一章 辐射源1、实验室常用辐射源有哪几类?按产生机制每一类又可细分为哪几种?2、选择放射性同位素辐射源时,需要考虑的几个因素是什么? 答题要点:射线能量、放射性活度、半衰期。
3、252Cf 可作哪些辐射源?答题要点:重带电粒子源(α衰变和自发裂变均可)、中子源。
4、137Cs 和60Co 是什么辐射源?能量分别为多少? 答题要点:γ辐射源;137Cs :0.662MeV 或0.661MeV ; 60Co :1.17MeV 和1.33MeV ;第二章 射线与物质的相互作用1、某一能量的γ射线在铅中的线性吸收系数是0.6cm -1,它的质量吸收系数和原 子的吸收截面是多少?按防护要求,源放在容器中,要用多少厚度的铅容器才能 使容器外的γ强度减为源强的1/1000? 解:已知μ=0.6cm -1,ρ=11.34g/cm 3,则由μm =μ/ρ得质量吸收系数μm =0.6/11.34cm 2/g=0.0529 cm 2/g 由 得原子的吸收截面: A m N Aγμμσρ==232322070.0529 6.02101.8191018.19m A A N cm bγσμ-⎛⎫==⨯ ⎪⨯⎝⎭≈⨯=由 得:()000111000ln ln 33ln 10 2.311.50.60.6I I t I I cm μμ⎛⎫⎛⎫ ⎪== ⎪ ⎪⎝⎭ ⎪⎝⎭==⨯=或由 得01()1000I t I =时铅容器的质量厚度t m 为: ()()()000332111000ln ln11ln 10ln 100.052933 2.3ln 100.05290.0529130.435/m m m m I I t I I g cm μμμ--⎛⎫⎛⎫ ⎪=-=- ⎪ ⎪⎝⎭ ⎪⎝⎭=-=-⨯==≈10、如果已知质子在某一物质中的射程和能量关系曲线,能否从这一曲线求得d (氘核)与t (氚核)在物质中的射程值?如果能够求得,请说明如何计算? 答题要点:方式一:若已知能量损失率,从原理上可以求出射程: 整理后可得:在非相对论情况下:()m m t I t I e μ-=0()t I t I e μ-=0001(/)RE E dE R dx dxdE dE dE dx ===-⎰⎰⎰0202404πE m v R dEz e NB=⎰22E v M =0024'02πE m E R dE z e NM B=⎰212E Mv =则在能量相同的情况下:从而得:方式二:若已知能量损失率,从原理上可以求出射程: 整理后可得:在非相对论情况下:从而得: 在速度v 相同的情况下,上式积分项相同,则12、当10MeV 氘核与10MeV 电子穿过铅时,请估算他们的辐射损失之比是多少?当20MeV 电子穿过铅时,辐射损失与电离损失之比是多少? 答题要点:已知辐射能量损失率理论表达式为:对于氘核而言,m d =1875.6139MeV ;对于电子而言,m e =0.511MeV ,而它们的电荷数均为1,则10MeV 的氘核与10MeV 的电子穿过铅时,它们的辐射损失率之比为:22222228222220.5117.42101857.6139d e d e de e d Z Z Z m Z NE Z NE m m Z m -==≈⨯222NZm E z dx dE S radrad∝⎪⎭⎫ ⎝⎛-=00001(/)R E E dE R dx dx dEdEdE dx ===-⎰⎰⎰0202404πE m v R dEz e NB =⎰212E Mv =dE Mvdv =21222211R M z R M z =0302404πv m Mv R dv z e N B=⎰222222aa ab ab b b ab a ba bb aM R M z z M R M z z M z R R M z ==⋅=⋅⋅22212211M z R R M z =E e =20MeV 时,在相对论区,辐射损失和电离损失之比有如下表达式:()()700re ZE dE dx dE dx -=-则 20MeV 的电子穿过铅时,辐射损失和电离损失之比为:20822.34700⨯≈第三章 核辐射测量的统计误差和数据处理3 本底计数率是10±1s -1,样品计数率是50±2s -1, 求净计数率及误差。
核辐射的检测方法

核辐射的检测方法,指标,仪器,原理和相关的环境标准核辐射与物质间的相互作用是核辐射检测方法的物理基础。
核辐射与物质间的相互作用包括电离作用、核辐射的散射与吸收,利用物质衰变辐射后的电离、吸收和反射作用并结合α、β和γ射线的特点可以完成多种检测工作。
核辐射检测仪器核辐射监测原理及方法能够指示、记录和测量核辐射的材料或装置。
辐射和核辐射探测器内的物质相互作用而产生某种信息(如电、光脉冲或材料结构的变化),经放大后被记录、分析,以确定粒子的数目、位置、能量、动量、飞行时间、速度、质量等物理量。
核辐射探测器是核物理、粒子物理研究及辐射应用中不可缺少的工具和手段。
按照记录方式,核辐射探测器大体上分为计数器和径迹室两大类。
计数器以电脉冲的形式记录、分析辐射产生的某种信息。
计数器的种类有气体电离探测器、多丝室和漂移室、半导体探测器、闪烁计数器和切伦科夫计数器等。
气体电离探测器通过收集射线在气体中产生的电离电荷来测量核辐射。
主要类型有电离室、正比计数器和盖革计数器。
它们的结构相似,一般都是具有两个电极的圆筒状容器,充有某种气体,电极间加电压,差别是工作电压范围不同。
电离室工作电压较低,直接收集射线在气体中原始产生的离子对。
其输出脉冲幅度较小,上升时间较快,可用于辐射剂量测量和能谱测量。
正比计数器的工作电压较高,能使在电场中高速运动的原始离子产生更多的离子对,在电极上收集到比原始离子对要多得多的离子对(即气体放大作用),从而得到较高的输出脉冲。
脉冲幅度正比于入射粒子损失的能量,适于作能谱测量。
盖革计数器又称盖革-弥勒计数器或G-M计数器,它的工作电压更高,出现多次电离过程,因此输出脉冲的幅度很高,已不再正比于原始电离的离子对数,可以不经放大直接被记录。
它只能测量粒子数目而不能测量能量,完成一次脉冲计数的时间较长。
多丝室和漂移室这是正比计数器的变型。
既有计数功能,还可以分辨带电粒子经过的区域。
多丝室有许多平行的电极丝,处于正比计数器的工作状态。
核辐射探测的原理

核辐射探测的原理核辐射探测是一种用于探测和测量核辐射的技术,它在核能、医学、环境保护等领域具有重要的应用价值。
核辐射是指放射性物质在衰变过程中释放出的能量和粒子,包括α粒子、β粒子和γ射线。
核辐射探测的原理是基于核辐射与物质的相互作用。
核辐射与物质相互作用的方式有多种,其中包括电离作用、激发作用和散射作用。
电离作用是指核辐射与物质中的原子或分子相互作用,将电子从原子或分子中脱离出来;激发作用是指核辐射与物质中的原子或分子相互作用,使其电子跃迁到较高的能级;散射作用是指核辐射与物质中的原子或分子相互作用,改变其传播方向。
核辐射探测的常用方法包括计数法、能谱法和图像法。
计数法是通过对核辐射进行计数来测量辐射剂量率或活度水平。
计数器是核辐射探测中常用的仪器,它可以对核辐射进行计数和测量。
能谱法是通过分析核辐射的能量分布来确定其成分和能量水平。
能谱仪是能谱分析的主要工具,它可以将核辐射的能量分布转化为能谱图,从而得到核辐射的详细信息。
图像法是通过核辐射与物质相互作用的位置分布来获取核辐射的空间分布信息。
放射性显像仪是图像法的主要工具,它可以将核辐射的位置分布转化为图像,从而实现对核辐射的图像化显示。
核辐射探测的应用非常广泛。
在核能领域,核辐射探测可以用于核电站的辐射监测和核燃料的检验;在医学领域,核辐射探测可以用于放射治疗的剂量监控和核医学诊断;在环境保护领域,核辐射探测可以用于核废料的处理和环境辐射监测。
此外,核辐射探测还可以应用于核安全、核材料检测和核辐射防护等方面。
为了确保核辐射探测的准确性和可靠性,需要进行仪器校准和质量控制。
仪器校准是通过与标准源进行比对,确定仪器的灵敏度和响应特性;质量控制是通过定期检查和维护仪器,确保其性能和工作状态处于良好的状态。
此外,还需要进行辐射防护措施,保护操作人员和周围环境不受核辐射的伤害。
核辐射探测是一种重要的技术手段,可以用于核能、医学、环境保护等领域的辐射监测和剂量测量。
核辐射监测仪工作原理

核辐射监测仪工作原理一、核辐射监测仪的作用核辐射监测仪是一种用于检测和测量周围环境中的核辐射水平的仪器。
它主要用于核电站、医疗机构、核工业企业、辐射实验室等场所,用于保护工作人员和公众的安全。
二、核辐射的种类核辐射主要分为三种类型:α射线、β射线和γ射线。
其中,α射线带有正电荷,能被一张纸或几厘米的空气层阻挡;β射线带有负电荷,能被几毫米到几十米的物质层阻挡;γ射线没有电荷,穿透能力强,能被厚重的混凝土或铅层阻挡。
三、核辐射监测仪的组成核辐射监测仪主要由探头、放大器、计数器、显示器和报警系统等部分组成。
1. 探头:探头是核辐射监测仪的核心部分,用于接收并转换核辐射为电信号。
根据不同的辐射类型,探头分为α、β、γ探头,并根据需要选择不同的探头进行测量。
2. 放大器:放大器用于放大探头接收到的微弱信号,使其能够被后续电路处理。
3. 计数器:计数器用于计算单位时间内探头接收到的辐射粒子数量,以达到对辐射水平的测量。
4. 显示器:显示器用于显示测量结果,通常以计数率(单位时间内辐射粒子的数量)或剂量率(单位时间内辐射剂量的大小)的形式呈现。
5. 报警系统:核辐射监测仪通常还配备有报警系统,当辐射水平超过设定的安全阈值时,会发出声音或光信号,提醒操作人员注意。
四、核辐射监测仪的工作原理核辐射监测仪的工作原理是基于核辐射与物质的相互作用。
当核辐射通过探头时,会与探头中的物质发生相互作用,产生电离效应。
这些电离效应会导致探头中的电子获得能量,从而产生微弱的电流信号。
探头接收到的微弱电流信号经过放大器放大后,进入计数器进行计数。
计数器会根据单位时间内探头接收到的辐射粒子数量,计算出辐射的计数率或剂量率。
计数率或剂量率通过显示器显示出来,以提供给操作人员参考。
如果辐射水平超过设定的安全阈值,报警系统会发出警报,提醒人们采取相应的防护措施。
五、核辐射监测仪的使用注意事项1. 核辐射监测仪的探头需要定期校准和检测,以确保测量结果的准确性和可靠性。
核辐射探测仪器基本原理及及指标课件

这些仪器通过测量放射性药物的分布 和代谢,以及放射性粒子的释放,为 医生提供准确的诊断和治疗方案,提 高治疗效果。
核辐射探测仪器在安全检测领域的应用
核辐射探测仪器在安全检测领域主要用于检测放射性物质、爆炸物和毒品等违禁品,保障公共安全。
研究。
环境监测
用于检测核设施周围的 环境放射性水平,保障
公众健康和安全。
02
核辐射探测仪器基本原理
核辐射基本知识
核辐射定义
核辐射是指由原子核内部 释放出的射线,包括α射 线、β射线和γ射线等。
核辐射来源
核辐射主要来源于放射性 物质、核反应堆、核武器 等。
核辐射特性
核辐射具有穿透性强、能 量高、电离能力强等特点 。
按测量原理分类
可分为计数型和能量型两 类,计数型主要测量射线 的数量,能量型主要测量 射线的能量。
核辐射探测仪器应用领域
医学诊断和治疗
用于检测肿瘤、癌症和 其他疾病,以及放射治
疗中的剂量监测。
工业检测和控制
用于检测产品的放射性 污染、无损检测、工艺
控制等。
科研实验
用于物理、化学、生物 学和医学等领域的实验
核辐射探测仪器基本原理及指标课 件
目录
• 核辐射探测仪器概述 • 核辐射探测仪器基本原理 • 核辐射探测仪器性能指标 • 核辐射探测仪器发展现状与趋势 • 核辐射探测仪器实际应用案例
01
核辐射探测仪器概述
核辐射探测仪器定义
01
核辐射探测仪器是一种用于测量
核辐射的设备,能够检测和测量
放射性物质发出的各种射线,如α
05
核辐射测量方法实验报告

实验二 γ射线的吸收一、实验目的:1、了解γ射线在物质中的吸收规律;2、测量γ射线在不同介质中的吸收系数。
二、实验器材:1、KZG03C 辐射检测仪一台;2、Cs137点放射源一个;3、铅准直器一个;4、40×40×dcm3的水泥、铝、铁、铜、铅吸收屏若干块(附屏支架);5、手套、长钳夹子、尺子、绳子各一套。
三、实验原理:天然γ射线与物质相互作用的三种主要形式:光电效应、康普顿散射和形成电子对效应。
由于三种效应的结果,γ射线通过物质时发生衰减(吸收),其总衰减系数应为三者之和:实验证明,γ射线在介质中的衰减服从指数规律:de I I μ-=0,mm d e I I μ-=0μ=(- Ln(I/I O ))/d , μm =(- Ln(I/I O ))/d m式中:I 为射线经过某一介质厚度的仪器净读数(减去本底);I 0为起始射线未经过介质的仪器净读数(减去本底); d 为介质厚度,单位为cm; d m 为介质面密度,单位为g/cm 2 ;μ 为γ射线经过介质的线吸收系数,单位为cm -1;κστμ++=μm 为γ射线经过介质的质量吸收系数,单位为g/cm 2 ; 半吸收厚度:为使射线强度减少一半时物质的厚度,即021I I =时,μ2ln 21=d 或 212ln d =μ四、实验内容:1. 选择良好的测量条件(窄束),测量 Cs 137源的γ射线在同一组吸收屏(水泥、铝、铁、铜、铅)中的吸收曲线,并由半厚度定出吸收系数;2. 用最小二乘拟合的方法计算出吸收系数与1中的结果进行比较;3. 测量不同散射介质时(同一角度,同一厚度)γ射线的强度。
五、实验步骤: 1. 吸收实验1) 调整装置,使放射源、准直孔、探测器的中心在一条直线上; 2) 测量本底I 0’;3) 将源放入准直器中,测量无吸收屏时γ射线强度I 0”;4) 逐渐增加吸收屏,并按相对误差在N ±δ的要求测出对应厚度计数I d ’,每个点测三次取平均植;5) 更换一种吸收屏,重复步骤4,测量时注意测量条件不变。
核辐射探测仪器基本原理及及指标

核辐射探测仪器基本原理及及指标1.光电效应探测:当γ射线入射到闪烁晶体或闪烁闪耀液体中时,会产生光电效应,即γ射线与物质相互作用,产生能量沉积,并使物质中的电子跃迁到高能级。
高能级的电子会向下跃迁,释放出能量,产生光子。
通过光电倍增管放大光信号,可以得到γ射线的能量和强度信息。
2.离子化室探测:当粒子入射到离子化室中时,会引起气体分子的电离,产生正离子和电子。
正离子在电场的作用下向阳极漂移,电子则向阴极漂移。
通过测量电离室中的电荷量,可以得到电离室中的粒子辐射强度。
3.闪烁探测:当粒子入射到闪烁晶体或液体中时,会产生能量沉积,激发晶体中的原子或分子。
激发态的原子或分子会向基态跃迁,释放出能量,产生光子。
通过光电倍增管或光电乘成功能,可以放大闪烁光信号,得到探测粒子的能量和强度信息。
1.探测效率:指探测器对入射辐射的探测能力。
即单位时间内探测器能探测到的辐射事件数与实际入射辐射事件数的比值。
探测效率高表示探测器对辐射事件的敏感度高。
2.清除时间:指探测器上的靶核或电子由高激发态跃迁回稳定态的时间,也即探测器释放出的光子停止闪烁的时间。
清除时间短表示探测器能快速恢复可探测状态。
3.能量分辨率:指探测器对不同能量辐射的分辨能力。
当辐射能量变化时,能量分辨率低会导致探测器无法准确测量。
4.阈值:指探测器开始探测辐射的最小能量。
低阈值可使探测器对低能辐射更敏感。
5.线性范围:指探测器能够准确测量的辐射强度范围。
超出线性范围可能导致读数不准确。
6.响应时间:指探测器从辐射入射到输出响应的时间。
响应时间短表示探测器对短脉冲辐射的探测能力强。
7.选择性:指探测器对不同类型辐射的选择能力。
选择性好意味着探测器能够区分不同类型的辐射。
综上所述,核辐射探测仪器的基本原理是根据辐射粒子与物质相互作用的方式来进行探测和测量,主要包括光电效应、离子化室和闪烁探测。
其指标主要有探测效率、清除时间、能量分辨率、阈值、线性范围、响应时间和选择性。
《核辐射测量方法》课件

《核辐射测量方法》课件一、课件概述本课件旨在介绍核辐射的基本概念、测量方法及其应用。
通过本课件的学习,使学员掌握核辐射的性质、测量原理和常用的测量方法,为核辐射防护和核事故应急处理提供技术支持。
二、课件内容1. 核辐射的基本概念1.1 辐射1.2 核辐射1.3 辐射剂量2. 核辐射的性质2.1 辐射类型2.2 辐射能量2.3 辐射穿透性3. 核辐射测量原理3.1 辐射与物质的相互作用3.2 辐射探测原理3.3 辐射测量仪器4. 核辐射测量方法4.1 放射性核素测量4.1.1 活度测量4.1.2 核素识别4.2 射线辐射测量4.2.1 剂量率测量4.2.2 射线成像4.3 辐射环境监测4.3.1 环境辐射水平监测4.3.2 放射性废物监测5. 核辐射测量技术应用5.1 核能利用5.2 医学诊断与治疗5.3 地质勘探5.4 生物示踪6. 核辐射防护与应急处理6.1 辐射防护原则6.2 辐射防护措施6.3 核事故应急处理三、课件结构1. 课件首页:核辐射测量方法简介2. 章节页面:核辐射的基本概念、性质、测量原理、测量方法、应用、防护与应急处理3. 图片及动画:生动展示核辐射测量过程和防护措施4. 练习题:巩固所学知识四、课件制作要求1. 文字:清晰、简洁、易懂,符合学员阅读习惯2. 图片:选用高质量的图片,具有代表性,便于学员理解3. 动画:生动形象,展示核辐射测量过程和防护措施4. 练习题:具有针对性,帮助学员巩固所学知识五、课件使用建议1. 结合课程安排,合理安排课件内容的学习顺序2. 充分利用课件中的图片、动画等多媒体元素,提高学习兴趣3. 针对课件中的练习题,进行自我测试,巩固所学知识4. 如有疑问,及时与讲师或其他学员沟通交流,提高学习效果核辐射测量方法是核能利用、医学诊断与治疗、地质勘探等领域的重要技术手段。
通过本课件的学习,希望学员能够掌握核辐射的基本概念、性质、测量原理和应用,提高核辐射防护和应急处理能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m较大时,m与有限次测量的平均值 N 和任一次测 量值 N 相差不大。
σN = m = N = N
表明:对放射性计数的标准误差只需用一次计
数N 或有限次计数的平均值 N 开方即可得到。
29
计数测量结果的表示: N N N N
表示一个置信区间,该区间包含真平均值的概率为 68.3%(置信度)。
EX1 X2 EX1 EX2 E X1 X2 E X1 E X2
14
(C) 相互独立的随机变量的“和”与“差”的 方差,是各随机变量方差的“和” ,即:
DX1 X2 DX1 DX2
(D) 相互独立的遵守泊松分布的随机变量之“和” 仍服从泊松分布。
要注意的是相互独立的遵守泊松分布的随机 变量之“差”,不服从泊松分布。
z2 Z
e 2 dz 2
1
z2 Z
e 2 dz
2 Z
2 0
(Z ) 可由高斯函数数值积分表查得。11
[m Z , m Z ] 表示置信区间为 Z 该置信区间的置信度为:2(Z )
例如:
当Z=1时,置信区间为
该置信区间的置信度为 2(1) 68.3%
当Z=2时,置信区间为 2
该置信区间的置信度为 2(2) 95.5%
取0的概率为 q 1 p e t 22
则总的衰变数N就是上述伯努利事件重复N0 次,发生正结果的事件之和。
对于一个具有N0个放射性核的放射源,在t 时 间内发生核衰变数为N,是一个遵守二项式分布 的随机变量。
概率函数
P N
PN0
N
N0!
1 e t N e t N0 N
变量,其概率函数为:
P n m n e m
n!
泊松分布随机变量的数学期望和方差
数学期望 方差
E n Pn m
0
2
D n E Pn m
0
8
泊松分布随机变量的特点
(A)的取值为全部正整数。
(B) E D m
(C)当m较小时其概率函数非对称,当m 较大时其概率函数趋于对称。 (D)相互独立的服从泊松分布的随机变量 之和,仍遵守泊松分布。
设一随机试验条件组为:作N 0次独立试验,每
次试验中要么发生 A事件,要么不发生,且 A
事件发生的概率为 p,不发生的概率为 1 p。
定义随机变量 为按上述条件组试验后,A事件
总共发生的次数。 可取值为0,1,2,...N0, 是离散型随机变量。
4
二项式分布的概率函数:
在一组N0个独立试验中,事件A成功n次的 概率为:
第三章 放射性测量中的统计学
1
统计性是微观世界的属性之一。放射 性原子核的衰变、辐射微观粒子的探测、 辐射探测器接收入射粒子并产生输出信号 等都是一个随机过程。
这些粒子数、输出信号的电荷量、信 号出现的时刻等是一个涨落的随机变量, 这样辐射测量所得到的数据也都是涨落的, 要从这些数据推导出结论,就必须用概率 论与数理统计的方法处理。
n=0N0 pq E Fra bibliotek p6
(2) 泊松分布
泊松分布是在N0很大、概率p很小的条件下, 二项式分布在数学上的直接简化,是二项式分布 的一种极限情况。
对二项式分布,当 N0 很大,但 p<<1,即 m =N0p 为不大的常数时,服从二项式分布的随 机变量就可服从泊松分布。
7
此时,随机变量可取全部正整数,为离散型随机
的贡献。可用于数据的检验.
s N
31
3.3 计数统计误差的传递
在一般的核测量中,常涉及函数的统计误差 的计算,也就是误差传递(Error Propagation)。
若 x1, x2,, xn 是相互独立的随机变量,其标 准误差相应为 x1 , x2 ,, xn ,由这些随机变 量导出的任何量 y f ( x1, x2 ,, xn ) 的标准误 差可以用下面公式求出:
泊松分布
n1 N0t
26
②、n2为进入探测器表面,即进入立体角Ω的粒 子数。 n2仍为遵守泊松分布的随机变量:
n2 n1 p 4 N0t
③、n3为探测器输出脉冲数。遵守泊松分布。
平均值
n3
n2
4
N0t
方差
2 n3
n3
4
N
0t
n3实际上是一个三级的串级型随机变量。
27
放射源在t 时间内发射的粒子数n1 遵 守泊松分布,探测器相应的输出脉冲数n3 也遵守泊松分布,探测器输出脉冲数的平
σ y = Aσ x
vy
=
y
y
σy
=
σx B
= x
x
例如:计数率的误差:
设在 t 时间内记录了N个计数,则计数率为
n=N/t,计数率的标准误差为:
n
N
t
N t
N t2
n t
其相对标准误差为:
vn N / N 1/ N
35
例如:存在本底时计数率的误差: 第一次,没有样品,在时间tb内测得本底 的计数为Nb; 第二次,放上样品,在ts时间内测得样品 和本底的总计数为Ns。
方差
Dx x Ex2 f xdx 2 10
高斯分布连续对称,可以方便的计算测
量值出现在 m Z 区间内的概率,即:
Pm Z X m Z
P m Z X m Z 1
( xm)2
m Z
e
2 2
dx
2 mZ
令: z x m
dz 1 dx
P m Z X m Z 1
脉冲探测器的特点:它的输出脉冲数
就反映了t时间内射入探测器的粒子数,
也就代表了放射源在t时间内发射出的总
粒子数。
25
脉冲计数器的测量过程可以概括为三个基本 过程,其计数值为一个三级串级型随机变量。
源发射粒子数n1
射入探测器 粒子数n2
探测器输 出脉冲数n3
Ω
①、n1为t 时间内放射源发出的粒子数,服从
律为:
N t N 0e t
在0~t 时间内,原来N0个放射性核中,发生
了衰变的核的平均数为 n N N 0 N t N 0 1 e t
当N0很大时,对一个核而言,一个核在0~t 时间内 发生衰变的概率为: p N 1 et
N0
每一个放射性核在t 时间内发生衰变是什么事件?
是伯努利事件 随机变量取1的正事件发生的概率 p 1 et
标准误差 随计数N增大而增大,因此用相对标准误 差来表示测量值的精确程度:
N
N N
N N
1 N
【注意】这种表示的标准误差仅适用于误差仅 仅由统计涨落引起的情况。
30
样本方差是总体方差的无偏估计,可以由样本
方差来估计有限次测量的方差称为标准偏差 s:
s
k
1 1
k i 1
(Ni
N
)2
s不仅包括统计误差,还反映了其他偶然误差
36
样品的净计数率为:
其标准误差为:
n0
=
ns
- nb
=
Ns ts
-
Nb tb
σN0 =
(σ
2 N
b
+
σ
2 N
s
)
=
Nb tb2
+
Ns ts2
=
nb + ns tb ts
级而成的N级串级随机变量,有:
E E1 E2 E N
2
2
,1
2
,
2
E
1
2
,
3
E
1
E 2
2
,
N
E1
E2 E N 1
19
(D) 由两个伯努利型随机变量1和2串级而成的 随机变量 仍是伯努利型随机变量。即 仍
是只有两个可取值(0,1)的伯努利型随机变量。
若伯努利型随机变量 1 的正结果发生概率 为 p1, 2 的正结果发生概率为 p2,则 正结果
均值为源发射的平均粒子数与几何因子及
探测器效率之积。
如果放射源发射粒子不是各向均匀的,上 述结论是否成立?
仍然成立,只要粒子落在Ω内的概率是不变
的——某一常数 f
几何因子不再是
4
,而是 f
28
(2). 探测计数的统计误差
粒子计数——探测器输出脉冲数服从统计分布 规律,当计数的数学期望值
m较小时,服从泊松分布。 m较大时,服从高斯分布。
2
计数统计学的意义可归结为两个方面: 1、可用于检验一台核计数装置的功能和
状态是否正常; 2、在处理只有一次或极为有限的测量中,
可用计数统计学来预测其固有的统计不确定 性,从而估计该单次测量应有的精密度。
3
3.1 概率论基础知识 3.1.1 几种常用的统计模型 (1) 二项式分布
二项式分布是支配偶然事件的最通用的概率 分布,广泛应用于所有概率p恒定的过程。
机变量1的一个可取值1i;
(机B变) 量再按2的条件1i个组可B作取值1i次试21,验22,, 实2现1i;了随
(C) 将这些可取值加起来得到一个值i, 并将此值定义为一个新的随机变量的一
个可取值; 1i
i 21 22 ... 21i
2 j
j 1
这里,随机变量为随机变量1与2的 “串级”随机变量。而且按顺序分别称1和 2为此串级随机变量的第一级和第二级。 17
方差 2 N0 1 e t e t N 0t
在核衰变过程中核衰变数的方差与其平均
值相等。
2 m
24
3.2.2、探测器计数的涨落分布
由于放射性核衰变具有统计分布,测量 过程中射线与物质相互作用过程也具有随 机性,因此在某个测量时间内对样品进行 测量得到的计数值同样是一个随机变量。