大学物理力学题库及答案
《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析一、选择题1.刚体对轴的转动惯量,与哪个因素无关 [ C ](A)刚体的质量(B)刚体质量的空间分布(C)刚体的转动速度(D)刚体转轴的位置2.有两个力作用在一个有固定轴的刚体上. [ B ](1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A)只有(1)是正确的;(B) (1)、(2) 正确, (3)、(4)错误;(C) (1)、(2)、(3)都正确, (4)错误;(D) (1)、(2)、(3)、(4)都正确.3.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的[ A ](A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.4.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,小球和地球所组成的系统,下列哪些物理量守恒( C )(A)动量守恒,角动量守恒(B)动量和机械能守恒(C)角动量和机械能守恒(D)动量,角动量,机械能守恒5.一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同,速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L以及圆盘的角速度ω则有( B )(A)L不变,ω增大(B)L不变,ω减小(C)L变大,ω不变(D)两者均不变6.一花样滑冰者,开始自转时,其动能为20021ωJ E =。
然后他将手臂收回,转动惯量减少为原来的1/3,此时他的角速度变为ω,动能变为E ,则下列关系正确的是( D ) (A )00,3E E ==ωω (B )003,31E E ==ωω (C )00,3E E ==ωω (D )003,3E E ==ωω1C 2.B ,3.A ,4.C ,5.B ,6.D二、填空1.当刚体受到的合外力的力矩为零时,刚体具有将保持静止的状态或_____________状态,把刚体的这一性质叫刚体___________。
大学力学专业《大学物理(二)》期末考试试题 含答案

大学力学专业《大学物理(二)》期末考试试题含答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、一质点同时参与了两个同方向的简谐振动,它们的振动方程分别为(SI),(SI).其合振运动的振动方程为x=____________。
2、如图所示,一束自然光入射到折射率分别为n1和n2的两种介质的交界面上,发生反射和折射.已知反射光是完全偏振光,那么折射角r的值为_______________________。
3、两个相同的刚性容器,一个盛有氧气,一个盛氦气(均视为刚性分子理想气体)。
开始他们的压强和温度都相同,现将3J的热量传给氦气,使之升高一定的温度。
若使氧气也升高同样的温度,则应向氧气传递的热量为_________J。
4、反映电磁场基本性质和规律的积分形式的麦克斯韦方程组为:()。
①②③④试判断下列结论是包含于或等效于哪一个麦克斯韦方程式的.将你确定的方程式用代号填在相应结论后的空白处。
(1) 变化的磁场一定伴随有电场;__________________(2) 磁感线是无头无尾的;________________________(3) 电荷总伴随有电场.__________________________5、设描述微观粒子运动的波函数为,则表示_______________________;须满足的条件是_______________________;其归一化条件是_______________________。
6、在热力学中,“作功”和“传递热量”有着本质的区别,“作功”是通过__________来完成的; “传递热量”是通过___________来完成的。
7、一个半径为、面密度为的均匀带电圆盘,以角速度绕过圆心且垂直盘面的轴线旋转;今将其放入磁感应强度为的均匀外磁场中,的方向垂直于轴线。
大学物理力学题库及答案

一、选择题:(每题3分)1、某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作(A) 匀加速直线运动,加速度沿x 轴正方向.(B) 匀加速直线运动,加速度沿x 轴负方向.(C) 变加速直线运动,加速度沿x 轴正方向.(D) 变加速直线运动,加速度沿x 轴负方向. [ d ]2、一质点沿x 轴作直线运动,其v -t 曲线如图所示,如t =0时,质点位于坐标原点,则t =4、5 s 时,质点在x 轴上的位置为(A) 5m. (B) 2m.(C) 0. (D) -2 m. (E) -5 m 、 [ b ] 3、图中p 就是一圆的竖直直径pc 的上端点,一质点从p 开始分别沿不同的弦无摩擦下滑时,到达各弦的下端所用的时间相比较就是(A) 到a 用的时间最短. (B) 到b 用的时间最短. (C) 到c 用的时间最短. (D) 所用时间都一样. [ d ]4、 一质点作直线运动,某时刻的瞬时速度=v 2 m/s,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A) 等于零. (B) 等于-2 m/s.(C) 等于2 m/s. (D) 不能确定. [ d ] 5、 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b 为常量), 则该质点作(A) 匀速直线运动. (B) 变速直线运动.(C) 抛物线运动. (D)一般曲线运动. [ b ] 6、一运动质点在某瞬时位于矢径()y x r , 的端点处, 其速度大小为 (A) t r d d (B) t r d d (C) t r d d (D) 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x [ d ]7、 质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2πR /T , 2πR/T . (B) 0 , 2πR /T(C) 0 , 0. (D) 2πR /T , 0、 [ b ] 8、 以下五种运动形式中,a 保持不变的运动就是(A) 单摆的运动. (B) 匀速率圆周运动.(C) 行星的椭圆轨道运动. (D) 抛体运动.(E) 圆锥摆运动. [ d ]9、对于沿曲线运动的物体,以下几种说法中哪一种就是正确的:(A) 切向加速度必不为零.-12a p(B) 法向加速度必不为零(拐点处除外).(C) 由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零.(D) 若物体作匀速率运动,其总加速度必为零. (E) 若物体的加速度a 为恒矢量,它一定作匀变速率运动. [ b ] 10、 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,a 表示切向加速度,下列表达式中,(1) a t = d /d v , (2) v =t r d /d , (3) v =t S d /d , (4) t a t =d /d v .(A) 只有(1)、(4)就是对的.(B) 只有(2)、(4)就是对的.(C) 只有(2)就是对的.(D) 只有(3)就是对的.[ d ]11、 某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系就是(A) 0221v v +=kt , (B) 0221v v +-=kt , (C) 02121v v +=kt , (D) 02121v v +-=kt [ b c ] 12、 一物体从某一确定高度以0v 的速度水平抛出,已知它落地时的速度为t v ,那么它运动的时间就是(A) g t 0v v -. (B) gt 20v v - . (C) ()g t2/1202v v -. (D) ()g t 22/1202v v - 、 [ c ]13、一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一时间内的平均速度为v ,平均速率为v ,它们之间的关系必定有: (A)v v v,v == (B)v v v,v =≠ (C)v v v,v ≠≠ (D)v v v,v ≠= [ d ] 14、在相对地面静止的坐标系内,A 、B 二船都以2 m/s 速率匀速行驶,A 船沿x轴正向,B 船沿y 轴正向.今在A 船上设置与静止坐标系方向相同的坐标系(x 、y 方向单位矢用i 、j 表示),那么在A 船上的坐标系中,B 船的速度(以m/s 为单位)为 (A) 2i +2j . (B) -2i +2j . (C) -2i -2j . (D) 2i -2j . [ b ]15、一条河在某一段直线岸边同侧有A 、B 两个码头,相距1 km.甲、乙两人需要从码头A 到码头B ,再立即由B 返回.甲划船前去,船相对河水的速度为4 km/h;而乙沿岸步行,步行速度也为4 km/h.如河水流速为 2 km/h, 方向从A 到B ,则(A) 甲比乙晚10分钟回到A . (B) 甲与乙同时回到A .(C) 甲比乙早10分钟回到A . (D) 甲比乙早2分钟回到A .[ a ]16、一飞机相对空气的速度大小为 200 km/h, 风速为56 km/h,方向从西向东.地面雷达站测得飞机速度大小为 192 km/h,方向就是(A) 南偏西16、3°. (B) 北偏东16、3°.(C) 向正南或向正北. (D) 西偏北16、3°.(E) 东偏南16、3°. [ e c ]17、 下列说法哪一条正确?(A) 加速度恒定不变时,物体运动方向也不变.(B) 平均速率等于平均速度的大小.(C) 不管加速度如何,平均速率表达式总可以写成(v 1、v 2 分别为初、末速率) ()2/21v v v +=.(D) 运动物体速率不变时,速度可以变化. [ d ]18、 下列说法中,哪一个就是正确的?(A) 一质点在某时刻的瞬时速度就是2 m/s,说明它在此后1 s 内一定要经过2m 的路程.(B) 斜向上抛的物体,在最高点处的速度最小,加速度最大.(C) 物体作曲线运动时,有可能在某时刻的法向加速度为零.(D) 物体加速度越大,则速度越大. [ c ]19、 某人骑自行车以速率v 向西行驶,今有风以相同速率从北偏东30°方向吹来,试问人感到风从哪个方向吹来?(A) 北偏东30°. (B) 南偏东30°.(C) 北偏西30°. (D) 西偏南30°.c ]20、在升降机天花板上拴有轻绳,其下端系一重物,当升降机以加速度a 1上升时,绳中的张力正好等于绳子所能承受的最大张力的一半,问升降机以多大加速度上升时,绳子刚好被拉断?(A) 2a 1. (B) 2(a 1+g ).(C) 2a 1+g. (D) a 1+g. [ c ]21、 水平地面上放一物体A ,它与地面间的滑动摩擦系数为μ.现加一恒力F 如图所示.欲使物体A 有最大加速度,则恒力F 与水平方向夹角θ 应满足(A) sin θ =μ. (B) cos θ =μ. (C) tg θ =μ. (D) ctg θ =μ. [ d c ]22、 一只质量为m 的猴,原来抓住一根用绳吊在天花板上的质量为M 的直杆,悬线突然断开,小猴则沿杆子竖直向上爬以保持它离地面的高度不变,此时直杆下落的加速度为 (A) g 、 (B) g M m 、 (C) g M m M +、 (D) g mM m M -+ 、 (E) g M m M -、 [ c ] 23、如图所示,质量为m 的物体A 用平行于斜面的细线连结置于光滑的斜面上,若斜面向左方作加速运动,当物体开始脱离斜面时,它的加速度的大小为a 1(A) g sin θ. (B) g cos θ.(C) g ctg θ. (D) g tg θ. [ c ]24、如图所示,一轻绳跨过一个定滑轮,两端各系一质量分别为m 1与m 2的重物,且m 1>m 2.滑轮质量及轴上摩擦均不计,此时重物的加速度的大小为a .今用一竖直向下的恒力g m F 1=代替质量为m 1的物体,可得质量为m 2的重物的加速度为的大小a ′,则(A) a ′= a (B) a ′> a(C) a ′< a (D) 不能确定、[ b ]25、升降机内地板上放有物体A ,其上再放另一物体B ,二者的质量分别为M A、M B .当升降机以加速度a 向下加速运动时(a <g ),物体A 对升降机地板的压力在数值上等于(A) M A g 、(B) (M A +M B )g 、(C) (M A +M B )(g +a )、 (D) (M A +M B )(g -a )、 d ]26、如图,滑轮、绳子质量及运动中的摩擦阻力都忽略不计,物体A 的质量m 1大于物体B 的质量m 2.在A 、B 运动过程中弹簧秤S 的读数就是(A) .)(21g m m + (B) .)(21g m m - (C) .22121g m m m m + (D) .42121g m m m m + [ a d ] 27、如图所示,质量为m 的物体用细绳水平拉住,静止在倾角为θ的固定的光滑斜面上,则斜面给物体的支持力为(A) θcos mg 、 (B) θsin mg 、(C) θcos mg 、 (D) θsin mg 、 [ c ] 28、光滑的水平桌面上放有两块相互接触的滑块,质量分别为m 1与m 2,且m 1<m 2.今对两滑块施加相同的水平作用力,如图所示.设在运动过程中,两滑块不离开,则两滑块之间的相互作用力N 应有(A) N =0、 (B) 0 < N < F 、(C) F < N <2F 、 (D) N > 2F 、 [ b ] 29、 用水平压力F 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F 逐渐增大时,物体所受的静摩擦力f(A) 恒为零.(B) 不为零,但保持不变.(C) 随F 成正比地增大.(D) 开始随F 增大,达到某一最大值后,就保持不变 [30、两个质量相等的小球由一轻弹簧相连接,再用一细绳悬挂于天花板上,处于静止状态,如图所示.将绳子剪断的瞬间,球1与球2的加速度分别为(A) a 1=g,a 2=g. (B) a 1=0,a 2=g. (C) a 1=g,a 2=0. (D) a 1=2g,a 2=0.[ b d ] 31、竖立的圆筒形转笼,半径为R ,绕中心轴OO '转动,物块A 1紧靠在圆筒的内壁上,物块与圆筒间的摩擦系数为μ,要使物块A 不下落,圆筒转动的角速度ω至少应为(A) R g μ (B)g μ(C) Rg μ (D)R g [ a c ] 32、 一个圆锥摆的摆线长为l ,摆线与竖直方向的夹角恒为θ,如图所示.则摆锤转动的周期为(A) g l 、 (B) gl θcos 、 (C) g l π2、 (D) gl θπcos 2 、 [ d ] 33、一公路的水平弯道半径为R ,路面的外侧高出内侧,并与水平面夹角为θ.要使汽车通过该段路面时不引起侧向摩擦力,则汽车的速率为(A) Rg 、 (B) θtg Rg 、(C) θθ2sin cos Rg 、 (D) θctg Rg[ b ]34、 一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦系数为μ,要使汽车不致于发生侧向打滑,汽车在该处的行驶速率(A) 不得小于gR μ. (B) 不得大于gR μ.(C) 必须等于gR 2. (D) 还应由汽车的质量M 决定. [ b ]35、 在作匀速转动的水平转台上,与转轴相距R 处有一体积很小的工件A ,如图所示.设工件与转台间静摩擦系数为μs ,若使工件在转台上无滑动,则转台的角速度ω应满足(A) Rg s μω≤、 (B) R g s 23μω≤、 (C) R g s μω3≤、 (D) Rg s μω2≤、 [ a ] 36、质量为m 的质点,以不变速率v 沿图中正三角形ABC的水平光滑轨道运动.质点越过A 角时,轨道作用于质点的冲量的大小为 (A) m v . (B) m v .(C) m v . (D) 2m v . [ a c ]37、一炮弹由于特殊原因在水平飞行过程中,突然炸裂成两块,其中一块作自由下落,则另一块着地点(飞行过程中阻力不计)(A) 比原来更远. (B) 比原来更近.(C) 仍与原来一样远. (D) 条件不足,不能判定. 38、 如图所示,砂子从h =0.8 m 高处下落到以3 m /s的速率水平向右运动的传送带上.取重力加速度g =10 m /s 2.传送带给予刚落到传送带上的砂子的作用力的方向为(A) 与水平夹角53°向下. (B) 与水平夹角53°向上.(C) 与水平夹角37°向上.θ l ωO R A Ah 1v v 23(D) 与水平夹角37°向下. [ b ]39、 质量为20 g 的子弹沿X 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿X 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为(A) 9 N·s 、 (B) -9 N·s .(C)10 N·s . (D) -10 N·s . [ a ] 40、质量分别为m A 与m B (m A >m B )、速度分别为A v 与B v (v A > v B )的两质点A 与B ,受到相同的冲量作用,则(A) A 的动量增量的绝对值比B 的小.(B) A 的动量增量的绝对值比B 的大.(C) A 、B 的动量增量相等.(D) A 、B 的速度增量相等. [ c ]41、在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车与炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力)(A) 总动量守恒.(B) 总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒.(C) 总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒.(D) 总动量在任何方向的分量均不守恒.42、 质量为20 g 的子弹,以400 m/s 的速率沿图示方向射入一原来静止的质量为980 g 的摆球中,摆线长度不可伸缩.子弹射入后开始与摆球一起运动的速率为(A) 2 m/s. (B) 4 m/s.(C) 7 m/s . (D) 8 m/s. [ b ] 43、A 、B 两木块质量分别为m A 与m B ,且m B =2m A ,两者用一轻弹簧连接后静止于光滑水平桌面上,如图所示.若用外力将两木块压近使弹簧被压缩,然后将外力撤去,则此后两木块运动动能之比E KA /E KB 为(A) 21. (B) 2/2. (C) 2. (D) 2. [ d ]44、质量为m 的小球,沿水平方向以速率v 与固定的竖直壁作弹性碰撞,设指向壁内的方向为正方向,则由于此碰撞,小球的动量增量为(A) m v . (B) 0.(C) 2m v . (D) –2m v . [ d45、机枪每分钟可射出质量为20 g 的子弹900颗,子弹射出的速率为800 m/s,则射击时的平均反冲力大小为(A) 0、267 N. (B) 16 N.(C)240 N. (D) 14400 N. [ d c ]46、人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的(A)动量不守恒,动能守恒.(B)动量守恒,动能不守恒.(C)对地心的角动量守恒,动能不守恒.(D)对地心的角动量不守恒,动能守恒. [ c ]47、一质点作匀速率圆周运动时,(A) 它的动量不变,对圆心的角动量也不变.(B) 它的动量不变,对圆心的角动量不断改变.(C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变. [ c ]48、一个质点同时在几个力作用下的位移为: k j i r 654+-=∆ (SI)其中一个力为恒力k j i F 953+--= (SI),则此力在该位移过程中所作的功为(A) -67 J. (B) 17 J.(C) 67 J. (D) 91 J. [ c ]49、质量分别为m 与4m 的两个质点分别以动能E 与4E 沿一直线相向运动,它们的总动量大小为 (A) 2mE 2 (B) mE 23. (C) mE 25. (D) mE 2)122(- [ b ]50、如图所示,木块m 沿固定的光滑斜面下滑,当下降h 高度时,重力作功的瞬时功率就是: (A)21)2(gh mg . (B)21)2(cos gh mg θ. (C)21)21(sin gh mg θ. (D)21)2(sin gh mg θ. [ d ]51、已知两个物体A 与B 的质量以及它们的速率都不相同,若物体A 的动量在数值上比物体B 的大,则A 的动能E KA 与B 的动能E KB 之间(A) E KB 一定大于E KA . (B) E KB 一定小于E KA .(C) E KB =E KA . (D) 不能判定谁大谁小. [ d ]52、对于一个物体系来说,在下列的哪种情况下系统的机械能守恒?(A) 合外力为0.(B) 合外力不作功.(C) 外力与非保守内力都不作功.(D) 外力与保守内力都不作功. [ d ]53、下列叙述中正确的就是(A)物体的动量不变,动能也不变.(B)物体的动能不变,动量也不变.(C)物体的动量变化,动能也一定变化.(D)物体的动能变化,动量却不一定变化. [ d ]54、作直线运动的甲、乙、丙三物体,质量之比就是 1∶2∶3.若它们的动能相等,并且作用于每一个物体上的制动力的大小都相同,方向与各自的速度方向相反,则它们制动距离之比就是(A) 1∶2∶3. (B) 1∶4∶9.(C) 1∶1∶1. (D) 3∶2∶1.(E) 3∶2∶1. [ d ]55、 速度为v 的子弹,打穿一块不动的木板后速度变为零,设木板对子弹的阻力就是恒定的.那么,当子弹射入木板的深度等于其厚度的一半时,子弹的速度就是(A) v 41. (B) v 31. θ h m(C) v 21. (D) v 21. [ d ] 56、 考虑下列四个实例.您认为哪一个实例中物体与地球构成的系统的机械能不守恒?(A) 物体作圆锥摆运动.(B) 抛出的铁饼作斜抛运动(不计空气阻力).(C) 物体在拉力作用下沿光滑斜面匀速上升.(D) 物体在光滑斜面上自由滑下. [ c ]57、一竖直悬挂的轻弹簧下系一小球,平衡时弹簧伸长量为d .现用手将小球托住,使弹簧不伸长,然后将其释放,不计一切摩擦,则弹簧的最大伸长量(A) 为d . (B) 为d 2.(C) 为2d . (D) 条件不足无法判定. [ c ]58、A 、B 两物体的动量相等,而m A <m B ,则A 、B 两物体的动能(A) E KA <E K B . (B) E KA >E KB .(C) E KA =E K B . (D) 孰大孰小无法确定. [ b ]59、如图所示,一个小球先后两次从P 点由静止开始,分别沿着光滑的固定斜面l 1与圆弧面l 2下滑.则小球滑到两面的底端Q 时的(A) 动量相同,动能也相同. (B) 动量相同,动能不同.(C) 动量不同,动能也不同.(D) 动量不同,动能相同. [ a ]60、一物体挂在一弹簧下面,平衡位置在O 点,现用手向下拉物体,第一次把物体由O 点拉到M 点,第二次由O 点拉到N 点,再由N 点送回M 点.则在这两个过程中(A) 弹性力作的功相等,重力作的功不相等. (B) 弹性力作的功相等,重力作的功也相等. (C) 弹性力作的功不相等,重力作的功相等. (D) 弹性力作的功不相等,重力作的功也不相等. [ b ]61、物体在恒力F 作用下作直线运动,在时间∆t 1内速度由0增加到v ,在时间∆t 2内速度由v 增加到2 v ,设F 在∆t 1内作的功就是W 1,冲量就是I 1,在∆t 2内作的功就是W 2,冲量就是I 2.那么,(A) W 1 = W 2,I 2 > I 1. (B) W 1 = W 2,I 2 < I 1.(C) W 1 < W 2,I 2 = I 1. (D) W 1 > W 2,I 2 = I 1. [ c ]62、两个质量相等、速率也相等的粘土球相向碰撞后粘在一起而停止运动、 在此过程中,由这两个粘土球组成的系统,(A) 动量守恒,动能也守恒.(B) 动量守恒,动能不守恒.(C) 动量不守恒,动能守恒.(D) 动量不守恒,动能也不守恒. [ c ]63、 一子弹以水平速度v 0射入一静止于光滑水平面上的木块后,随木块一起运动.对于这一过程正确的分析就是(A) 子弹、木块组成的系统机械能守恒.(B) 子弹、木块组成的系统水平方向的动量守恒.(C) 子弹所受的冲量等于木块所受的冲量.(D) 子弹动能的减少等于木块动能的增加. [ b ]64、一光滑的圆弧形槽M 置于光滑水平面上,一滑块m 自槽的顶部由静止释放后沿槽滑下,不计空气阻力.对于这一过程,以下哪种分析就是对的?(A) 由m 与M 组成的系统动量守恒.(B) 由m 与M 组成的系统机械能守恒.(C) 由m 、M 与地球组成的系统机械能守恒.(D) M 对m 的正压力恒不作功.65、两木块A 、B 的质量分别为m 1与m 2,用一个质量不计、劲度系数为k 的弹簧连接起来.把弹簧压缩x 0并用线扎住,放在光滑水平面上,A 紧靠墙壁,如图所示,然后烧断扎线.判断下列说法哪个正确.(A) 弹簧由初态恢复为原长的过程中,以A 、B 、弹簧为系统,动量守恒.(B) 在上述过程中,系统机械能守恒.(C) 当A 离开墙后,整个系统动量守恒,机械能不守恒.(D) A 离开墙后,整个系统的总机械能为2021kx ,总动量为零. [ c ] 66、两个匀质圆盘A 与B 的密度分别为A ρ与B ρ,若ρA >ρB ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A 与J B ,则(A) J A >J B . (B) J B >J A .(C) J A =J B . (D) J A 、J B 哪个大,不能确定. [ b ]67、 关于刚体对轴的转动惯量,下列说法中正确的就是(A)只取决于刚体的质量,与质量的空间分布与轴的位置无关.(B)取决于刚体的质量与质量的空间分布,与轴的位置无关.(C)取决于刚体的质量、质量的空间分布与轴的位置.(D)只取决于转轴的位置,与刚体的质量与质量的空间分布无关.[ c ]68、 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种就是正确的? (A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ b ]69、 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω按图示方向转动、若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度ω (A) 必然增大. (B) 必然减少. 6568、69、(C) 不会改变. (D) 如何变化,不能确定. [ b ]70、 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心.随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A) 02ωmRJ J +. (B) ()02ωR m J J +. (C) 02ωmRJ . (D) 0ω. [ a ] 71、 如图所示,一水平刚性轻杆,质量不计,杆长l =20cm ,其上穿有两个小球.初始时,两小球相对杆中心O 对称放置,与O 的距离d =5 cm ,二者之间用细线拉紧.现在让细杆绕通过中心O 的竖直固定轴作匀角速的转动,转速为ω0,再烧断细线让两球向杆的两端滑动.不考虑转轴的与空气的摩擦,当两球都滑至杆端时,杆的角速度为(A) 2ω0. (B)ω 0.(C) 21 ω 0. (D)041ω. [ ] 72、 刚体角动量守恒的充分而必要的条件就是(A) 刚体不受外力矩的作用.(B) 刚体所受合外力矩为零.(C) 刚体所受的合外力与合外力矩均为零.(D) 刚体的转动惯量与角速度均保持不变. [ ]73、 一块方板,可以绕通过其一个水平边的光滑固定轴自由转动.最初板自由下垂.今有一小团粘土,垂直板面撞击方板,并粘在板上.对粘土与方板系统,如果忽略空气阻力,在碰撞中守恒的量就是(A) 动能. (B) 绕木板转轴的角动量.(C) 机械能. (D) 动量. [ ]74、如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 只有机械能守恒.(B) 只有动量守恒.(C) 只有对转轴O 的角动量守恒.(D) 机械能、动量与角动量均守恒. [ ]75、质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台与小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度与旋转方向分别为(A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,逆时针.大学物理力学题库及答案[ ]76、 一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人、把人与圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统(A) 动量守恒.(B) 机械能守恒.(C) 对转轴的角动量守恒.(D) 动量、机械能与角动量都守恒.(E) 动量、机械能与角动量都不守恒. [ ]77、光滑的水平桌面上有长为2l 、质量为m 的匀质细杆,可绕通过其中点O 且垂直于桌面的竖直固定轴自由转动,转动惯量为231ml ,起初杆静止.有一质量为m 的小球在桌面上正对着杆的一端,在垂直于杆长的方向上,以速率v 运动,如图所示.当小球与杆端发生碰撞后,就与杆粘在一起随杆转动.则这一系统碰撞后的转动角速度就是(A) 12v l . (B) l32v . (C) l 43v . (D) lv 3. [ ] 78、如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为 (A) ML m v . (B) MLm 23v . (C) ML m 35v . (D) MLm 47v . [ ] 79、光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为31mL 2,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v 相向运动,如图所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为 (A) L 32v . (B) L54v . (C) L 76v . (D) L98v . (E) L712v . [ ] 80、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为 (A) 31ω0. (B) ()3/1 ω0.78、v 俯视图79、O v俯视图大学物理力学题库及答案 (C) 3 ω0. (D) 3 ω0.[ ]二、填空题: 81、一物体质量为M ,置于光滑水平地板上.今用一水平力F 通过一质量为m 的绳拉动物体前进,则物体的加速度a =______________,绳作用于物体上的力T =_________________.82、图所示装置中,若两个滑轮与绳子的质量以及滑轮与其轴之间的摩擦都忽略不计,绳子不可伸长,则在外力F 的作用下,物体m 1与m 2的加速度为a =______________________,m 1与m 2间绳子的张力T=________________________.83、在如图所示的装置中,两个定滑轮与绳的质量以及滑轮与其轴之间的摩擦都可忽略不计,绳子不可伸长,m 1与平面之间的摩擦也可不计,在水平外力F 的作用 下,物体m 1与m 2的加速度a =______________,绳中的张力T =_________________. 84、如果一个箱子与货车底板之间的静摩擦系数为μ,当这货车爬一与水平方向成θ角的平缓山坡时,要不使箱子在车底板上滑动,车的最大加速度a max =_______________________________________. 85、一物体质量M =2 kg,在合外力i t F )23(+= (SI )的作用下,从静止开始运动,式中i 为方向一定的单位矢量, 则当t=1 s 时物体的速度1v =__________.86、设作用在质量为1 kg 的物体上的力F =6t +3(SI).如果物体在这一力的作用下,由静止开始沿直线运动,在0到2、0 s 的时间间隔内,这个力作用在物 体上的冲量大小I=__________________.87、一质量为m 的小球A ,在距离地面某一高度处以速度v 水平抛出,触地后反跳.在抛出t 秒后小球A 跳回原高度,速度仍沿水平方向,速度大小也与抛出时相同,如图.则小球A 与地面碰撞过程中,地面给它的冲量的方向为 ________________,冲量的大小为____________________.88、两个相互作用的物体A 与B ,无摩擦地在一条水平直线上运动.物体A 的动量就是时间的函数,表达式为 P A = P 0 – b t ,式中P 0 、b 分别为正值常量,t 就是时间.在下列两种情况下,写出物体B 的动量作为时间函数的表达式:(1) 开始时,若B 静止,则 P B 1=______________________;(2) 开始时,若B的动量为 – P 0,则P B 2 = _____________.89、有两艘停在湖上的船,它们之间用一根很轻的绳子连接.设第一艘船与人的总质量为250 kg , 第二艘船的总质量为500 kg,水的阻力不计.现在站在第一艘船上的人用F = 50 N 的水平力来拉绳子,则5 s 后第一艘船的速度大小为_________;第二艘船的速度大小为______. 81 83、87 2大学物理力学题库及答案90、质量为m 的小球自高为y 0处沿水平方向以速率v 0抛出,与地面碰撞后跳起的最大高度为21y 0,水平速率为21v 0,则碰撞过程中 (1) 地面对小球的竖直冲量的大小为 ________________________; (2) 地面对小球的水平冲量的大小为________________________. 91、质量为M 的平板车,以速度v 在光滑的水平面上滑行,一质量为m 的物 体从h 高处竖直落到车子里.两者一起运动时的速度大小为_______________.92、如图所示,质量为M 的小球,自距离斜面高度为h 处自由下落到倾角为30°的光滑固定斜面上.设碰撞就是完全弹性的,则小球对斜面的冲量的大小为________,方向为____________________________. 93、一质量为m 的物体,以初速0v 从地面抛出,抛射角θ=30°,如忽略空气阻力,则从抛出到刚要接触地面的过程中(1) 物体动量增量的大小为________________,(3) 物体动量增量的方向为________________. 94、如图所示,流水以初速度1v 进入弯管,流出时的速度为2v ,且v 1=v 2=v .设每秒流入的水质量为q ,则在管子转弯处,水对管壁的平均冲力大小就是______________,方向__________________.(管内水受到的重力不考虑)95、质量为m 的质点,以不变的速率v 经过一水平光滑轨道的︒60弯角时,轨道作用于质点的冲量大小I=________________.96、质量为m 的质点,以不变的速率v 经过一水平光滑轨道的︒60弯角时,轨道作用于质点的冲量大小I=________________.97、质量为M 的车以速度v 0沿光滑水平地面直线前进,车上的人将一质量为m 的物体相对于车以速度u 竖直上抛,则此时车的速度v =______.98、一质量为30 kg 的物体以10 m·s -1的速率水平向东运动,另一质量为20 kg 的物体以20 m·s -1的速率水平向北运动。
大学物理分章节题库-有答案

大学物理力学部分:1.一个质点在做圆周运动时,则有(B )。
A .切向加速度一定改变,法向加速度也改变B .切向加速度可能不变,法向加速度一定改变C .切向加速度可能不变,法向加速度不变D .切向加速度一定改变,法向加速度不变2. 对功的概念有以下几种说法:(1)保守力作正功时,系统内相应的势能增加;(2)质点运动经一闭合路径,保守力对质点作的功为零;(3)作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零。
下列说法正确的是(C )。
A .(1)(2)是正确的B .(2)(3)是正确的C .只有(2)是正确的D .只有(3)是正确的3. 下列情况不可能出现的是(D )。
A. 物体具有加速度而速度为零B. 物体速率恒定,但速度仍发生改变C. 物体速率恒定,但加速度却在变化D. 物体速度恒定,但速率却在变化4. 如图所示,在边长为a 的四边形顶点上,分别固定着质量为m 的四个质点,以 OZ 为转轴(转轴到四边形近边的距离为a ,且与四边形平面平行),该系统的转动惯量为:(D )。
A. 4ma 2B. 6ma 2C. 8ma 2D. 10ma 25. 质量为m 的质点在oxy 平面内运动,运动方程为cos()sin()r a t i b t j ωω=+,其中ω、、b a 为常数,则(C )。
A. 质点所受合力方向保持不变B. 质点所受到的合力始终背离原点C. 质点所受到的合力始终指向原点D. 无法确定质点所受合力的方向6. 对质点系中的内力以下说法正确的是(D )。
A. 任何性质的内力均会引起质点系机械能的改变B. 内力不引起质点系总动能的改变C. 内力成对出现、大小相等,故内力对质点系不作功D. 内力不引起质点系总动量的改变7. 飞轮作匀变速转动时,其边缘上的一点(D )。
A. 不具有向心加速度B. 不具有切向加速度C. 其加速度是个恒矢量D. 加速度随时间不断变化8. 一人手握哑铃坐在无摩擦的转台上,以一定的角速度转动。
大学物理试题题库及答案

大学物理试题题库及答案一、选择题(每题2分,共20分)1. 光在真空中的传播速度是()。
A. 299792458 m/sB. 300000000 m/sC. 299792458 km/sD. 300000000 km/s2. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。
那么,当作用力增加一倍时,物体的加速度()。
A. 增加一倍B. 减少一半C. 保持不变D. 无法确定3. 一个物体从静止开始自由下落,其下落过程中,重力做功的功率与时间的关系是()。
A. 线性增加B. 指数增加C. 先增加后减少D. 保持不变4. 根据热力学第一定律,一个封闭系统的内能变化等于系统与外界交换的热量与系统对外做的功之和。
如果一个系统既没有热量交换也没有做功,那么它的内能()。
A. 增加B. 减少C. 保持不变5. 电磁波谱中,波长最短的是()。
A. 无线电波B. 微波C. 红外线D. 伽马射线6. 根据麦克斯韦方程组,变化的磁场会产生()。
A. 电场B. 磁场C. 重力场D. 温度场7. 一个理想的弹簧振子,其振动周期与振幅无关,与()有关。
A. 弹簧的劲度系数B. 振子的质量C. 弹簧的劲度系数和振子的质量D. 振子的质量与重力加速度8. 根据量子力学,一个粒子的波函数可以描述粒子的()。
A. 位置B. 动量C. 能量D. 位置和动量的概率分布9. 根据狭义相对论,当一个物体以接近光速的速度运动时,其质量会()。
A. 增加B. 减少C. 保持不变10. 在理想气体状态方程PV=nRT中,R代表的是()。
A. 气体常数B. 温度C. 压力D. 体积二、填空题(每题2分,共20分)1. 根据库仑定律,两个点电荷之间的力与它们的电荷量乘积成正比,与它们之间距离的平方成反比,其比例系数是______。
2. 欧姆定律表明,导体中的电流与两端电压成正比,与导体的电阻成反比,其数学表达式为______。
3. 一个物体在水平面上以恒定加速度运动,其位移与时间的关系可以表示为s = __________。
大学力学专业《大学物理(下册)》期末考试试题 含答案

大学力学专业《大学物理(下册)》期末考试试题含答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、一质点的加速度和位移的关系为且,则速度的最大值为_______________ 。
2、均匀细棒质量为,长度为,则对于通过棒的一端与棒垂直的轴的转动惯量为_____,对于通过棒的中点与棒垂直的轴的转动惯量_____。
3、两列简谐波发生干涉的条件是_______________,_______________,_______________。
4、某人站在匀速旋转的圆台中央,两手各握一个哑铃,双臂向两侧平伸与平台一起旋转。
当他把哑铃收到胸前时,人、哑铃和平台组成的系统转动角速度应变_____;转动惯量变_____。
5、一圆盘正绕垂直于盘面的水平光滑固定轴O转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并留在盘内,则子弹射入后的瞬间,圆盘的角速度_____。
6、二质点的质量分别为、. 当它们之间的距离由a缩短到b时,万有引力所做的功为____________。
7、一长直导线旁有一长为,宽为的矩形线圈,线圈与导线共面,如图所示. 长直导线通有稳恒电流,则距长直导线为处的点的磁感应强度为___________;线圈与导线的互感系数为___________。
8、一束光线入射到单轴晶体后,成为两束光线,沿着不同方向折射.这样的现象称为双折射现象.其中一束折射光称为寻常光,它______________定律;另一束光线称为非常光,它___________定律。
9、一维保守力的势能曲线如图所示,则总能量为的粒子的运动范围为________;在________时,粒子的动能最大;________时,粒子的动能最小。
大学物理力学练习题及答案

大学物理力学练习题及答案一、选择题(每题2分,共20分)1. 一个物体质量为2kg,受到的力是3N,该物体的加速度大小为多少?A. 0.3 m/s^2B. 1.5 m/s^2C. 6 m/s^2D. 1 N/kg答案:B2. 假设一个物体在重力作用下自由下落,那么它的重力势能和动能之间的关系是?A. 重力势能和动能相等B. 重力势能大于动能C. 重力势能小于动能D. 重力势能减少,动能增加答案:A3. 力的合成是指两个或多个力合并后的结果。
如果两个力大小相等并且方向相反,则它们的合力为A. 0B. 1C. 2D. 无法确定答案:A4. 在一个力的作用下,一个物体做匀速直线运动。
可以推断出物体的状态是A. 静止状态B. 匀速运动状态C. 加速运动状态D. 不能判断答案:B5. 牛顿运动定律中,质量的作用是用来描述物体对力的抵抗程度,质量越大,则物体对力的抵抗越小。
A. 对B. 错答案:B6. 一个物体以20 m/s的速度做匀速圆周运动,周长为40π m,物体的摩擦力大小为F,那么物体受到的拉力大小为多少?A. 0B. FC. 2FD. 4F答案:C7. 一个质量为1 kg的物体向左受到3 N的力,向右受到2 N的力,则该物体的加速度大小为多少?A. 1 m/s^2B. 2 m/s^2C. 3 m/s^2D. 5 m/s^2答案:A8. 弹力是一种常见的力,它的特点是随着物体变形而产生,并且与物体的形状无关。
A. 对B. 错答案:A9. 一个物体受到两个力,力的合力为2 N,其中一个力的大小为1 N,则另一个力的大小为多少?A. 1 NB. 0 NC. -1 ND. 无法确定答案:A10. 在竖直抛体运动过程中,物体的速度在上升过程中逐渐减小,直到达到峰值后开始增大。
A. 对B. 错答案:B二、计算题(每题10分,共40分)1. 一个物体以5 m/s的初速度被一个10 N的力加速,物体质量为2 kg,求物体在2秒后的速度。
大学力学专业《大学物理(下册)》期末考试试题 含答案

大学力学专业《大学物理(下册)》期末考试试题含答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、设作用在质量为1kg的物体上的力F=6t+3(SI).如果物体在这一力的作用下,由静止开始沿直线运动,在0到 2.0 s的时间间隔内,这个力作用在物体上的冲量大小I=__________________。
2、图示曲线为处于同一温度T时氦(原子量4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线。
其中曲线(a)是________气分子的速率分布曲线;曲线(c)是________气分子的速率分布曲线。
3、已知质点的运动方程为,式中r的单位为m,t的单位为s。
则质点的运动轨迹方程,由t=0到t=2s内质点的位移矢量______m。
4、在主量子数n=2,自旋磁量子数的量子态中,能够填充的最大电子数是______________。
5、质点在平面内运动,其运动方程为,质点在任意时刻的位置矢量为________;质点在任意时刻的速度矢量为________;加速度矢量为________。
6、质量为M的物体A静止于水平面上,它与平面之间的滑动摩擦系数为μ,另一质量为的小球B以沿水平方向向右的速度与物体A发生完全非弹性碰撞.则碰后它们在水平方向滑过的距离L=__________。
7、一根无限长直导线通有电流I,在P点处被弯成了一个半径为R的圆,且P点处无交叉和接触,则圆心O处的磁感强度大小为_______________,方向为_________________。
8、气体分子的最可几速率的物理意义是__________________。
9、若静电场的某个区域电势等于恒量,则该区域的电场强度为_______________,若电势随空间坐标作线性变化,则该区域的电场强度分布为 _______________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题:(每题3分)1、某质点作直线运动的运动学方程为 x = 3t-5t 3 + 6 (SI),则该质点作2、一质点沿x 轴作直线运动,其v t 曲 线如图所示,如t=0时,质点位于坐标原点, 则t=4.5 s 时,质点在x 轴上的位置为(A) 5m . (B) 2m . (C) 0. (D) 2 m .(E) 5 m.[ b ]pc 的上端点,一质点从p 开始分 到达各弦的下端所用的时间相比6、一运动质点在某瞬时位于矢径 r x, y 的端点处,其速度大小为7、 质点沿半径为R 的圆周作匀速率运动,每 T 秒转一圈.在2T 时间间隔中, 其平均速度大小与平均速率大小分别为(A) 2 R/T , 2 R/T . (B) 0,2 R/T (C) 0,0. (D) 2 R/T , 0.[ b ]4、一质点作直线运动,某时刻的瞬时速度 v 2 m/s ,瞬时加速度a 2m/s ,则一秒钟后质点的速度(B)等于 2 m/s . (D)不能确定.[d ](A)等于零.(C)等于 2 m/s . 5、 一质点在平面上运动, 已知质点位置矢量的表示式为 r at ibt 2j (其中a 、b 为常量),则该质点作 (A)匀速直线运动.(B)变速直线运动.(C)抛物线运动. (D) 一般曲线运动.[ b ][d ](A) 匀加速直线运动,加速度沿 x 轴正方向. (B) 匀加速直线运动,加速度沿 x 轴负方向. (C) 变加速直线运动,加速度沿 x 轴正方向. (D) 变加速直线运动,加速度沿 x 轴负方向. 3、图中p 是一圆的竖直直径 别沿不同的弦无摩擦下滑时, 较是(A) 到a 用的时间最短. (B) 到b 用的时间最短. (C) 到c 用的时间最短. (D) 所用时间都一样. (A) d r dt (C)d r dt(B) (D)d r dt dx 2 .dt2d y dt[d ]a(A) 单摆的运动. (C)行星的椭圆轨道运动. (E)圆锥摆运动.9、对于沿曲线运动的物体,以下几种说法中哪一种是正确的:(A) 切向加速度必不为零.(B) 法向加速度必不为零(拐点处除外).(C) 由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零. (D) 若物体作匀速率运动,其总加速度必为零.(E) 若物体的加速度a 为恒矢量,它一定作匀变速率运动.[b ]10、 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,S 表示路 程,a 表示切向加速度,下列表达式中,(1) dv /dt a , (3) dS/dt v ,(A) 只有(1)、(4)是对的. (B) 只有(2)、(4)是对的. (C) 只有(2)是对的. (D) 只有(3)是对的.时,初速为V 0,则速度v 与时间t 的函数关系是 (A) v -kt 2v o ,(B) v ikt 2 v221 kt 211 kt2 1 (C)J(D)-v 2 v ov2v o12、 一物体从某一确定高度以 v o 的速度水平抛出,已知它落地时的速度为v那么它运动的时间是(A) vt v0 .(B) vt vo .g2g2 21/22 21/2(C) M(D) v t v o[e ]g2g13、一质点在平面上作一般曲线运动,其瞬时速度为 某一时间内的平均速度为(A ) vf v,v (B ) 'f v, v (C ) v / v, vv(D ) \ f v, v (B)匀速率圆周运动. (D)抛体运动.(2) dr/dt v , (4) dv / dt a t .11、 某物体的运动规律为dv/dt kv 2t ,式中的k 为大于零的常量.当t 0 v ,瞬时速率为v ,,它们之间的关系必定有:,平均速率为v v v v14、在相对地面静止的坐标系内, A 、B 二船都以2 m/s 速率匀速行驶,A 船 沿x 轴正向,B 船沿y 轴正向•今在A 船上设置与静止坐标系方向相同的坐标系 (x 、y 方向单位矢用i 、j 表示),那么在A 船上的坐标系中,B 船的速度(以m/s 为单位)为(A) 2i + 2j . (B) 2i + 2j . (C) — 2i — 2j .(D) 2i — 2j .[ b ]15、一条河在某一段直线岸边同侧有 A 、B 两个码头,相距1 km •甲、乙两 人需要从码头A 到码头B ,再立即由B 返回•甲划船前去,船相对河水的速度为200 km/h,风速为56 km/h ,方向从西向东.地面雷达站测得飞机速度大小为 192 km/h ,方向是(A) 南偏西16.3°. (B)北偏东16.3 (C)向正南或向正北. (D)西偏北16.3(E) 东偏南16.3°. 17、 下列说法哪一条正确?(A) 加速度恒定不变时,物体运动方向也不变. (B) 平均速率等于平均速度的大小.(C) 不管加速度如何,平均速率表达式总可以写成(V 1、V 2分别为初、末速率)v v 1 v 2 /2 .(D) 运动物体速率不变时,速度可以变化. [ d ]18、 下列说法中,哪一个是正确的?(A) 一质点在某时刻的瞬时速度是 2 m/s,说明它在此后1 s 内一定要经过2 m 的路程.(B) 斜向上抛的物体,在最高点处的速度最小,加速度最大. (C) 物体作曲线运动时,有可能在某时刻的法向加速度为零. (D) 物体加速度越大,则速度越大.[c ] 19、 某人骑自行车以速率v 向西行驶,今有风以相同速率从北偏东 30°方向吹来,试问人感到风从哪个方向吹来?(A)北偏东30°. (B)南偏东30°.4 km/h ;而乙沿岸步行,步行速度也为 到B ,则(A) 甲比乙晚10分钟回到A . (C)甲比乙早10分钟回到A .4 km/h .如河水流速为 2 km/h,方向从A (B) 甲和乙同时回到A . (D) 甲比乙早2分钟回到A .16、一飞机相对空气的速度大小为(C)北偏西30(D)西偏南3020、在升降机天花板上拴有轻绳,其下端系一重物,当升 降机以加速度a i 上升时,绳中的张力正好等于绳子所能承受的 最大张力的一半,问升降机以多大加速度上升时,绳子刚好被 拉断?(C) 2a i + g . (D) a i + g .21、 水平地面上放一物体A ,它与地面间的滑动摩擦系数为.现加一恒力F 如图所示.欲使物体 A 有最大 加速度,则恒力F 与水平方向夹角应满足(A) sin = .(B) cos = .(C) tg = . (D) ctg = . [ de ](A) 2 a i .(B) 2(a i +g).『a 1F 落的加速度为(A) g. (B) m g . M (C) M m g . M(D)M m g .M m(E)M m[c ]g. M23、如图所示,质量为 m 的物体A 用平行于斜面的细线连结置于光滑的斜面上, 若斜面向左方作加速运动,当物体开始脱离斜面时,它的加速度的大小为(A) gsin . (B) gcos . (C) gctg .(D) gtg .[ c ]24、如图所示,一轻绳跨过一个定滑轮,两端各系一质量分别为 m 1和m 2的重物,且mem ?.滑轮质量及轴上摩擦均不计,此时重 物的加速度的大小为a .今用一竖直向下的恒力F me 代替质量 为m i 的物体,可得质量为 m 2的重物的加速度为的大小 a ',则(A)a ' = a(B) a ' > a (C) a ' < a(D)不能确定.m i25、升降机内地板上放有物体 A ,其上再放另一物体B ,二者的质量分别为 M A 、 M B .当升降机以加速度a 向下加速运动时(a<g),物体A 对升降机地板的压力在数 值上等于欢迎下载422、 一只质量为m 的猴,原来抓住一根用绳吊在天花板上的质量为 M 的直杆, 悬线突然断开,小猴则沿杆子竖直向上爬以保持它离地面的高度不变,此时直杆 IOm 226、如图,滑轮、绳子质量及运动中的摩擦阻力都忽略不计, 物体A 的质量m 1大于物体B 的质量m 2.在A 、B 运动过程 中弹簧秤S 的读数是(A) (g m 2)g. (B) (g m 2)g.2m 1m 2 4m 1m 2 (C)- -g. (D) ——g. [ a d ]m 1 m 2m 1 m 227、如图所示,质量为 m 的物体用细绳水平拉住,静止在倾角为 斜面上, 则斜面给物体的支持力为 (A )mg cos . (B) mg sin .(C) mg(D)吨cossin[c ]28、光滑的水平桌面上放有两块相互接触的滑块,质量分 别为m 1和m 2,且m 1<m 2.今对两滑块施加相同的水平作用 力,如图所示.设在运动过程中,两滑块不离开,则两滑块之间的相互作用力 N应有(A) N =0.(C) F < N <2F.(B) 0< N < F. (D) N > 2F.29、 用水平压力F 把一个物体压着靠在粗糙的竖直墙面上保持静止.当 F 逐渐增大时,物体所受的静摩擦力f(A) 恒为零.(B) 不为零,但保持不变. (C) 随F 成正比地增大. (D) 开始随F 增大,达到某一最大值后,就保持不变[ab ]30、两个质量相等的小球由一轻弹簧相连接,再用一细绳悬挂于 天花板上,处于静止状态,如图所示•将绳子剪断的瞬间,球 1和球2的加速度分别为(A) a i =g ,a2 =g. (B)a 匸 0,a2 = g •(C)a i =g ,a 2 = 0. (D) a i = 2g , a 2 = 0.[b d ](A)M A g.(C) (M A +M B )( g +a).(B) M+M B )g. (D) (M A +M B )( g-a).的固定的光滑转动,物 卩,要使1 2球 球AYS?B L_Jm2广1 Am 131、竖立的圆筒形转笼,半径为R,绕中心轴00/ 块A紧靠在圆筒的内壁上,物块与圆筒间的摩擦系数为物块A不下落,圆筒转动的角速度3至少应为欢迎下载ABC 的水平光滑轨道运动.质点越过A 角时,轨道作用 于质点的冲量的大小为(A) mv • (B) 2mv • (C)、3mv .(D) 2mv .37、一炮弹由于特殊原因在水平飞行过程中,突然炸裂成两块,其中一块作 自由下落,则另一块着地点(飞行过程中阻力不计)gR32、 一个圆锥摆的摆线长为I ,摆线与竖直方向的夹角恒为 如图所示•则摆锤转动的周期为(A)1. (B) IC0S .\ gX g (C) 2 / .(D) 2 严S.[ d ]\gV g(A) , Rg. (B) . Rgtg .(C)驚-(D) . Rgctg[b ](A)不得小于..gR .(C)必须等于 2gR . (B)不得大于•;;: gR . (D)还应由汽车的质量 M 决定.[ b ]35、 在作匀速转动的水平转台上,与转轴相距 R 处有一体积很小的工件A ,如图所示•设工件与转台间静摩擦系数为若使工件在转台上无滑动, 则转台的角速度应满足(A) (B) (C)3 s g(D)sg36、质量为m 的质点,以不变速率 v 沿图中正三角形(B) g (C)33、一公路的水平弯道半径为 R ,路面的外侧高出内侧,并与水平面夹角为 •要使汽车通过该段路面时不引起侧向摩擦力,则汽车的速率为34、 一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦系数为,要使汽车不致于发生侧向打滑,汽车在该处的行驶速率2S,38、 如图所示,砂子从h = 0.8 m 高处下落到以3 m /s 的速率水平向右运动的传送带上.取重力加速度g = 10 m/ s 2 .传送带给予刚落到传送带上的砂子的作用力的方向为(A) 与水平夹角53°向下. (B) 与水平夹角53°向上. (C) 与水平夹角37°向上. (D) 与水平夹角37°向下.39、 质量为20 g 的子弹沿X 轴正向以500 m/s 的速率射入一木块后,与木块一 起仍沿X 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为(A) 9 N s ・. (B) -9 N s • (C)10 N • .(D) -10 N s-.[ a ]40、 质量分别为m A 和m B (m A >m B )、速度分别为v A 和v B (V A > V B )的两质点A 和B , 受到相同的冲量作用,则(A) A 的动量增量的绝对值比B 的小. (B) A 的动量增量的绝对值比 B 的大. (C) A 、B 的动量增量相等. (D) A 、B 的速度增量相等.[ c ]41、在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮 弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力)(A) 总动量守恒.(B) 总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒. (C) 总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒. (D) 总动量在任何方向的分量均不守恒.[ a c ]42、 质量为20 g 的子弹,以400 m/s 的速率沿图示方向射入一原来静止的质量为980 g 的摆球中,摆线长度不可伸 缩.子弹射入后开始与摆球一起运动的速率为(A) 2 m/s . (B) 4 m/s . (C) 7 m/s .(D) 8 m/s .[ b ]43、A 、B 两木块质量分别为m A 和m B ,且m B = 2m A ,两者用一轻弹簧连接后静止 于光滑水平桌面上,如图所示.若用外力将两木块压近使弹簧被压缩,然后将外 力撤去,则此后两木块运动动能之比E KA /E KB 为欢迎下载(A)比原来更远. (C)仍和原来一样远. (B)比原来更近.(D)条件不足,不能判定. 30[a1(A) 丄•(B) .2/2 .2(C) 2 . (D) 2.44、质量为m的小球,沿水平方向以速率v与固定的竖直壁作弹性碰撞,设指向壁内的方向为正方向,则由于此碰撞,小球的动量增量为(C) 2mv.(D) -mv.(A) mv. (B) 0 .45、机枪每分钟可射出质量为20 g的子弹900颗,子弹射出的速率为800 m/s, 则射击时的平均反冲力大小为(A) 0.267 N . (B) 16 N .(C)240 N . (D) 14400 N .46、人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的(A) 动量不守恒,动能守恒.(B) 动量守恒,动能不守恒.(C) 对地心的角动量守恒,动能不守恒.(D) 对地心的角动量不守恒,动能守恒. [e ]47、一质点作匀速率圆周运动时,(A) 它的动量不变,对圆心的角动量也不变.(B) 它的动量不变,对圆心的角动量不断改变.(C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变.48、一个质点同时在几个力作用下的位移为:r 4i 5j 6k (SI)其中一个力为恒力F3i 5j 9k (SI),则此力在该位移过程中所作的功为(A) 67 J . (B) 17 J .(C) 67 J . (D) 91 J.[e ]49、质量分别为m和4m的两个质点分别以动能E和4E沿一直线相向运动, 它们的总动量大小为(A) 2 -2mE (B) 3 -2mE .(C) 5、2mE . (D) (22 1)、2mE50、如图所示,木块m沿固定的光滑斜面下滑,当下降度时,重力作功的瞬时功率是:1 -2 _________________ 1. 2(A)mg(2gh) . (B) mg cos (2gh);.(C) mg sin (-gh)12. (D) mg sin (2gh)12.251、已知两个物体A和B的质量以及它们的速率都不相同,若物体A的动量在数值上比物体B的大,贝U A的动能E KA与B的动能E KB之间(A) E KB—定大于E KA . (B) E KB—定小于E KA .(C) E KB = E KA . (D)不能判定谁大谁小. [ d ]52、对于一个物体系来说,在下列的哪种情况下系统的机械能守恒?(A) 合外力为0.(B) 合外力不作功.(C) 外力和非保守内力都不作功.(D) 外力和保守内力都不作功. [d ]53、下列叙述中正确的是(A) 物体的动量不变,动能也不变.(B) 物体的动能不变,动量也不变.(C) 物体的动量变化,动能也一定变化.(D) 物体的动能变化,动量却不一定变化.54、作直线运动的甲、乙、丙三物体,质量之比是 1 : 2 : 3 .若它们的动能相等,并且作用于每一个物体上的制动力的大小都相同,方向与各自的速度方向相反,则它们制动距离之比是(A) 1 : 2 : 3. (B) 1 : 4 : 9.(C) 1 : 1 : 1. (D) 3 : 2 :1.(E) . 3 : .2 : 1. [ d ]55、速度为v的子弹,打穿一块不动的木板后速度变为零,设木板对子弹的阻力是恒定的.那么,当子弹射入木板的深度等于其厚度的一半时,子弹的速度是1 1(A) -v . (B) -v .4 31 1(C) -v . (D) v . [ d ]2 v 256、考虑下列四个实例.你认为哪一个实例中物体和地球构成的系统的机械能不守恒?(A) 物体作圆锥摆运动.(B) 抛出的铁饼作斜抛运动(不计空气阻力). (C) 物体在拉力作用下沿光滑斜面匀速上升. (D) 物体在光滑斜面上自由滑下.[c ]57、 一竖直悬挂的轻弹簧下系一小球,平衡时弹簧伸长量为d •现用手将小球托住,使弹簧不伸长,然后将其释放,不计一切摩擦,则弹簧的最大伸长量(A)为 d . (B)为.2d .(C)为2d .(D)条件不足无法判定.[ c ] 58、 A 、B 两物体的动量相等,而 m A V m B ,则A 、B 两物体的动能(A) E KA V E KB . (B) E KA > E KB . (C) E KA = E KB .(D)孰大孰小无法确定.[ b ]59、如图所示,一个小球先后两次从 P 点由静止开始, 分别沿着光滑的固定斜面l i 和圆弧面12下滑.则小球滑 到两面的底端Q 时的(A) 动量相同,动能也相同. (B) 动量相同,动能不同. (C) 动量不同,动能也不同. (D) 动量不同,动能相同.60、一物体挂在一弹簧下面,平衡位置在 O 点,现用手向 下拉物体,第一次把物体由 O 点拉到M 点,第二次由O 点拉到N 点,再由N 点送回M 点.则在这两个过程中(A) 弹性力作的功相等,重力作的功不相等. (B) 弹性力作的功相等,重力作的功也相等. (C) 弹性力作的功不相等,重力作的功相等. (D) 弹性力作的功不相等,重力作的功也不相等.[b ]61、物体在恒力F 作用下作直线运动,在时间t 1内速度由0增加到V ,在时间t 2 内速度由v 增加到2 v ,设F 在t 1内作的功是 W 1,冲量是11,在t 2内作的功是 W 2,冲量是12.那么,(A) W 1 = W 2,I 2 > |1. (B) W 1 = W 2,I 2 < |1. (C) W 1 < W 2,I 2 = |1.(D)W > W 2, I 2 = |1.[ c ]62、两个质量相等、速率也相等的粘土球相向碰撞后粘在一起而停止运动 .在此过程中,由这两个粘土球组成的系统,(A)动量守恒,动能也守恒.__ Mlil 2_o(B) 动量守恒,动能不守恒.(C) 动量不守恒,动能守恒. (D) 动量不守恒,动能也不守恒.63、 一子弹以水平速度v o 射入一静止于光滑水平面上的木块后, 随木块一起运动.对于这一过程正确的分析是(A) 子弹、木块组成的系统机械能守恒. (B)子弹、木块组成的系统水平方向的动量守恒.(C) 子弹所受的冲量等于木块所受的冲量. (D) 子弹动能的减少等于木块动能的增加.[b ] 64、一光滑的圆弧形槽 M 置于光滑水平面上,一滑块 m 自槽 的顶部由静止释放后沿槽滑下,不计空气阻力.对于这一过程, 以下哪种分析是对的?(B) 由m 和M 组成的系统机械能守恒. (C) 由m 、M 和地球组成的系统机械能守恒. (D) M 对m 的正压力恒不作功.65、两木块A 、B 的质量分别为 m i 和m 2,用一个质量不 计、劲度系数为k 的弹簧连接起来.把弹簧压缩x o 并用线 扎住,放在光滑水平面上,A 紧靠墙壁,如图所示,然后 烧断扎线.判断下列说法哪个正确.(A) 弹簧由初态恢复为原长的过程中,以 A 、B 、弹簧为系统,动量守恒. (B)在上述过程中,系统机械能守恒.(C) 当A 离开墙后,整个系统动量守恒,机械能不守恒. (D) A 离开墙后,整个系统的总机械能为 舟kx 2,总动量为零. [c ] 66、 两个匀质圆盘A 和B 的密度分别为 A 和B ,若A > B ,但两圆盘的质量与 厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A 和J B ,则(A) J A > J B . (B) J B > J A .(C) J A = J B .(D) J A 、J B 哪个大,不能确定.[b ]67、 关于刚体对轴的转动惯量,下列说法中正确的是(A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关. (B) 取决于刚体的质量和质量的空间分布,与轴的位置无关. (C) 取决于刚体的质量、质量的空间分布和轴的位置.(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[c ](A)由m 和M 组成的系统动量守恒.[ b ](A)动能. (B)绕木板转轴的角动量.68、均匀细棒0A 可绕通过其一端 0而与棒垂直的水平固定 光滑轴转动,如图所示•今使棒从水平位置由静止开始自由 下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正 确的?(A) 角速度从小到大,角加速度从大到小. (B) 角速度从小到大,角加速度从小到大. (C) 角速度从大到小,角加速度从大到小. (D) 角速度从大到小,角加速度从小到大. 69、一圆盘绕过盘心且与盘面垂直的光滑固定轴0以角速度按图示方向转动•若如图所示的情况那样,将两个大小相 等方向相反但不在同一条直线的力 F 沿盘面同时作用到圆盘 上,则圆盘的角速度(A)必然增大. (B)必然减少.(C)不会改变. (D)如何变化,不能确定.70、 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度 o 转动,此时有一质量为 m 的人站在转台中 心.随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为71、如图所示,一水平刚性轻杆,质量不计,杆长 I=20 cm ,其上穿有两个小球.初始时,两小球相对杆中 心O 对称放置,与O 的距离d = 5 cm ,二者之间用细线拉 紧.现在让细杆绕通过中心 O 的竖直固定轴作匀角速的转 动,转速为0,再烧断细线让两球向杆的两端滑动.不考 虑转轴的和空气的摩擦,当两球都滑至杆端时,杆的角速 度为(A) 2 0.(B) 0.1 1(C) -. (D)—. []2472、 刚体角动量守恒的充分而必要的条件是(A) 刚体不受外力矩的作用. (B) 刚体所受合外力矩为零.(C) 刚体所受的合外力和合外力矩均为零. (D) 刚体的转动惯量和角速度均保持不变.[]73、 一块方板,可以绕通过其一个水平边的光滑固定轴自由转动.最初板自由 下垂.今有一小团粘土,垂直板面撞击方板,并粘在板上.对粘土和方板系统, 如果忽略空气阻力,在碰撞中守恒的量是(A)JJ mR 2(B) 2 0J m R 2(C)JmR 2(D)[ b ](C)机械能. (D)动量. [ ]74、如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴0旋转,初始状态为静止悬挂•现有一个小球自左方水平打击细0杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 只有机械能守恒.(B) 只有动量守恒.(C) 只有对转轴0的角动量守恒.(D) 机械能、动量和角动量均守恒. [ ]75、质量为m的小孩站在半径为R的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为丄平台和小孩开始时均静止.当小孩突然以相对于地面为v的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为[ ]76、一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统(A) 动量守恒.(B) 机械能守恒.(C) 对转轴的角动量守恒.(D) 动量、机械能和角动量都守恒.(E) 动量、机械能和角动量都不守恒. [ ]77、光滑的水平桌面上有长为21、质量为m的匀质细杆,可v ------- -绕通过其中点0且垂直于桌面的竖直固定轴自由转动,转动1惯量为-ml2,起初杆静止.有一质量为m的小球在桌面上正对着杆的一端,在3垂直于杆长的方向上,以速率v运动,如图所示.当小球与杆端发生碰撞后,就与杆粘在一起随杆转动.则这一系统碰撞后的转动角速度是(A) (C) lv123v4l(B)2v3l(A) mR2 vJ R,顺时针. (B)mR2 vJ R,逆时针.(C)2mR vJ mR2 R,顺时针. (D)2mR vJ mR2R,逆时针.78、如图所示,一静止的均匀细棒,长为 L 、质量为 M ,可绕通过棒的端点且垂直于棒长的光滑固定轴 O 在水 平面内转动,转动惯量为—ML 2 .—质量为m 、速率为v3 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由 —v ,则此时棒的角速度应为 2 3mv 2ML . 7mv 4ML '端,设穿过棒后子弹的速率为 (A) ML (C) 5mv 3ML (B) (D) 78 O 俯视图 79、光滑的水平桌面上,有一长为 2L 、质量为m 的匀质细杆,可绕过其中 点且垂直于杆的竖直光滑固定轴 0自由转动,其转动惯量为 R L 2,起初杆静止.Jv面上有两个质量均为m 的小球,各自在垂直于杆的方向上, 正对着杆的一端,以相同速率 v 相向运动,如图所示.当 两小球同时与杆的两个端点发生完全非弹性碰撞后,就与 杆粘在一起转动, 则这一系统碰撞后的转动角速度应为 O俯视图(E)2v (B) 4v3L 5L 6v (D) 8v 7L9L 12v (A)(C) 79、7L80、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开, 角速度为 变为 (A) (C) 0 •然后她将两臂收回,使转动惯量减少为 转动惯量为J o ,1J o •这时她转动的角速度31— 0 3 3 o (B) 1^3 o (D) 3 o 、填空题: 81、一物体质量为M ,置于光滑水平地板 上 .今用一水平力F 通过一质量为m 的绳拉 动物体前进,则物体的加速度 a=_______________ ,绳作用于物体上的力T = 82、图所示装置中,若两个滑轮与绳子的质量以及滑轮与其轴之间的摩擦都 忽略不计,绳子不可伸长,则在外力 F 的作用下,物体 m 1和m 2的加速83、在如图所示的装置中,两个定滑轮与绳的质量 以及滑轮与其轴之间的摩擦都可忽略不计,绳子不可伸 长,m i 与平面之间的摩擦也可不计,在水平外力 F 的作 用下,物体m i 与m 2的加速度a= ________________ 绳中 的张力T= ________________ .84、如果一个箱子与货车底板之间的静摩擦系数为 ,当这货车爬一与水平方向成 角的平缓山坡时,要不使箱子在车底板上滑动,车的最大加速度a max.85、一物体质量M = 2 kg ,在合外力F (3 2t)i (SI)的作用下,从静止开 始运动,式中i 为方向一定的单位矢量,则当t = 1 s 时物体的速度v 1 =86、设作用在质量为1 kg 的物体上的力F = 6t + 3 (SI ).如果物体在这一力 的作用下,由静止开始沿直线运动,在0到2.0 s 的时间间隔内,这个力作用在物体上的冲量大小[= ______________________ .87、一质量为m 的小球A ,在距离地面某一高度处以速 度v 水平抛出,触地后反跳.在抛出 t 秒后小球A 跳回原高 度,速度仍沿水平方向,速度大小也与抛出时相同,如图.则 小球A 与地面碰撞过程中,地面给它的冲量的方向为_________________ 冲量的大小为 _______________________ .88、两个相互作用的物体 A 和B ,无摩擦地在一条水平直线上运动.物体 A 的动量是时间的函数,表达式为 P A = P 0 -b t ,式中P 。