大学物理 第17章 习题
大学物理习题及答案

(2)自行车所经历的路程等于多少?
(3)自行车的位移等于多少?
第2章牛顿运动定律
1.两个质量相等的小球由一轻弹簧相连接,再用一细绳悬挂于天花板上,处于静止状态,如图所示。将绳子剪断的瞬间,球1和球2的加速度分别为
(A) (B)
(C) (D)
2.质量分别为 和 的两滑块A和B通过一轻弹簧水平连接后置于水平桌面上,
6.三个物体A、B、C每个质量都是 ,B、C靠在一起,置于一光滑水平桌面上,两者间连有一段长0.4m的细绳,原先放松着。B的另一端用一跨过桌边的定滑轮的细绳与A相连,如图,滑轮与绳子的质量及轮轴的摩擦不计,绳子不可伸长。问:
(1)A、B起动后,经多长时间C也开始运动?
(2)C开始运动时速度是多大?
7.判断正误
10.一质点沿半径为R的圆周运动。质点所经过的弧长与时间的关系为 其中b、c是大于零的常量,求从t=0开始到达切向加速度与法向加速度大小相等时所经历的时间。
11.如图所示,质点P在水平面内沿一半径
为R=2m的圆轨道转动。转动的角速度 与
时间t的函数关系为 (k为常量)。
已知t=2s时,质点P的速度值为32m.s-1试
11.一个绳子悬挂着的物体在水平面内做匀速圆周运动(称为圆锥摆),有人在重力的方向上求合力,写出 。另有人沿绳子拉力 的方向求合力,写出 。显然两者不能同时成立,指出哪一个式子是错误的,为什么?
12.已知一质量为 的质点在 轴上运动,质点只受到指向原点的引力的作用,引力大小与质点离原点的距离 的平方成反比,即 ,k是比例常数。设质点在 时的速度为零,求 处的速度的大小。
11.我国的第一颗人造地球卫星绕地球作椭圆轨道运动,地球的中心O为该椭圆的一个焦点。已知地球的平均半径 km,卫星距地面最近距离 km,最远距离 km。若卫星在近地点速率 kms-1,求远地点速率 。
大学物理第十七章波动光学(二)双缝干涉

3. 菲涅耳双棱镜干涉实验
pM
E
s1
ds
s2
N E`
B
C
4. 菲涅耳双面镜干涉实验
点光源 s
屏
平面镜
M1
A
C
M2
B
4. 菲涅耳双面镜干涉实验
点光源 s
屏
平面镜
s1
M1
A
虚光源
s2
C
M2
B
4. 菲涅耳双面镜干涉实验
xk红
k
D d
红
x(k 1)紫
(k
1)
D d
紫
干涉明暗条纹的位置
由 xk红 = x(k+1)紫 的临界情况可得
k红 (k 1)紫
将 红 = 7600Å, 紫 = 4000Å代入得 k=1.1
因为 k只能取整数,所以应取 k=2
这一结果表明:在中央白色明纹两侧, 只有第一级彩色光谱是清晰可辨的。
当容器未充气时,
测量装置实际上是杨氏
l
·P`
双缝干涉实验装置。其
s1
零级亮纹出现在屏上与 s
p0
S1 、S2 对称的P0点.从
s2
S1 、S2射出的光在此处
相遇时光程差为零。
容器充气后,S1射出的光线经容器时光程要增加, 零级亮纹应在 P0的上方某处P出现,因而整个条纹要向 上移动。
干涉明暗条纹的位置
高等教育大学教学课件 大学物理-波动光学
§17-2 双缝干涉 1. 杨氏双缝实验
托马斯• 杨
杨氏双缝实验
相干光的获得:分波阵面法
大学物理学(第三版)上课后习题答案

第一章运动的描述1-1 ||与有无不同?和有无不同? 和有无不同?其不同在哪里?试举例说明.解:(1)是位移的模,是位矢的模的增量,即,;(2)是速度的模,即.只是速度在径向上的分量.∵有(式中叫做单位矢),则式中就是速度径向上的分量,∴不同如题1-1图所示.题1-1图(3)表示加速度的模,即,是加速度在切向上的分量.∵有表轨道节线方向单位矢),所以式中就是加速度的切向分量.(的运算较复杂,超出教材规定,故不予讨论)1-2 设质点的运动方程为=(),=(),在计算质点的速度和加速度时,有人先求出r=,然后根据 =,及=而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即=及=你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有,故它们的模即为而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作其二,可能是将误作速度与加速度的模。
在1-1题中已说明不是速度的模,而只是速度在径向上的分量,同样,也不是加速度的模,它只是加速度在径向分量中的一部分。
或者概括性地说,前一种方法只考虑了位矢在径向(即量值)方面随时间的变化率,而没有考虑位矢及速度的方向随间的变化率对速度、加速度的贡献。
1-3 一质点在平面上运动,运动方程为=3+5, =2+3-4.式中以 s计,,以m计.(1)以时间为变量,写出质点位置矢量的表示式;(2)求出=1 s 时刻和=2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算=0 s时刻到=4s时刻内的平均速度;(4)求出质点速度矢量表示式,计算=4 s 时质点的速度;(5)计算=0s 到=4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算=4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式).解:(1)(2)将,代入上式即有(3)∵∴(4)则(5)∵(6)这说明该点只有方向的加速度,且为恒量。
《大学物理学(第二版)》(李乃伯主编)第一至第五单元课后习题指导

《物理学(第二版)》(李迺伯主编)第一章:过关测试第一关1.判断下列哪一种说法是正确的A.你用手关一扇门,此门可以看成质点;B.开枪后子弹在空中飞行,子弹可看成质点;C.讨论地球自转,地球可看成质点;D.一列火车在半径为800m的圆轨道上行驶,火车可看成质点。
答案:B2.下列哪一种说法是正确的A.加速度恒定不变时,物体的运动方向必定不变;B.平均速率等于平均速度的大小;C.不论加速度如何,平均速率的表达式总可以写成。
上式中为初始速率,为末了速率;D.运动物体的速率不变时,速度可以变化。
答案:D3.某质点的运动学方程为,以为单位,以为单位。
则该质点作A.匀加速直线运动,加速度为正值;B.匀加速直线运动,加速度为负值;C.变加速直线运动,加速度为正值;D.变加速直线运动,加速度为负值。
答案:D (解:速度加速度)4.质点作匀加速圆周运动,它的A.切向加速度的大小和方向都在变化;B.法向加速度的大小和方向都在变化;C.法向加速度的方向变化,大小不变;D.切向加速度的方向不变,大小变化。
答案:B5.气球正在上升,气球下系有一重物,当气球上升到离地面100 m高处,系绳突然断裂,最后重物下落到地面。
与另一物体从100 m高处自由下落到地面的运动相比,下列结论正确的是A.运动的时间相同;B.运动的路程相同;C.运动的位移相同;D.落地时的速度相同。
答案:C(解:由于重物在100 m高处有向上的初速度,先上升,到达最高点后再下落。
与物体从100 m高处自由落体到地面的运动相比,运动的时间、路程,落地时的速度均不相同,仅位移相同。
)6.用细绳系一小球,使之在竖直平面内作圆周运动,当小球运动到最高点时A.小球受到重力、绳的拉力和向心力的作用;B.小球受到重力、绳的拉力和离心力的作用;C.绳子的拉力可能为零;D.小球可能处于受力平衡状态。
答案:C(解:小球所受合力的法向分量有时称作向心力,它是“合力的分量”,不是其它物体施加的,故A不正确。
大学物理答案第17章

17-2一单缝用波长为λ1和λ2的光照明,若λ1的第一级衍射极小与λ2的第二级衍射极小重合。
问(1)这两种波长的关系如何?(2)所形成的衍射图样中是否还有其它极小重合? 解:(1)单缝衍射极小条件为λθk a =sin依题意有 212λλ= (2)依题意有11sin λθk a = 22sin λθk a =因为212λλ=,所以得所形成的衍射图样中还有其它极小重合的条件为212k k =17-3 有一单缝,缝宽为0.1mm ,在缝后放一焦距为50cm 的汇聚透镜,用波长为546.1nm 的平行光垂直照射单缝,试求位于透镜焦平面处屏上中央明纹的宽度。
解:单缝衍射中央明条纹的宽度为afx λ2=∆代入数据得mm x 461.5101.0101.54610502392=⨯⨯⨯⨯=∆--- 17-4 用波长为632.8nm 的激光垂直照射单缝时,其夫琅禾费衍射图样第一极小与单缝法线的夹角为50,试求该缝宽。
解:单缝衍射极小的条件λθk a =sin依题意有m a μλ26.70872.0108.6325sin 90=⨯==-17-5 波长为20m 的海面波垂直进入宽50m 的港口。
在港内海面上衍射波的中央波束的角宽是多少?解:单缝衍射极小条件为λθk a =sin依题意有 0115.234.0sin 52sin20sin 50===→=--θθ 中央波束的角宽为0475.2322=⨯=θ17-6 一单色平行光垂直入射一单缝,其衍射第3级明纹位置恰与波长为600nm 的单色光垂直入射该缝时衍射的第2级明纹位置重合,试求该单色光的波长。
解:单缝衍射明纹条件为2)12(sin λθ+=k a依题意有2)122(2)132(21λλ+⨯=+⨯代入数据得nm 6.428760057521=⨯==λλ 17-7 用肉眼观察星体时,星光通过瞳孔的衍射在视网膜上形成一个亮斑。
(1)瞳孔最大直径为7.0mm ,入射光波长为550nm 。
大学物理上册作业题

大学物理上册作业题(总17页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2014 ~2015学年第二学期 大学物理作业题第1章 质点运动学 作业一、教材:选择题1 ~ 4;计算题:9,13,14,17 二、附加题 (一)、选择题1、某物体的运动规律为d v /dt=-kv 2t ,式中的k 为大于零的常量.当t=0时,初速为v 0,则速度v 与时间t 的函数关系是[ ]A 、0221v kt v +=;B 、0221v kt v +-=;C 、02121v kt v +=;D 、02121v kt v +-=2、某质点作直线运动的运动学方程为x =3t-5t 3+6(SI),则该质点作[ ] A 、匀加速直线运动,加速度沿x 轴正方向 B 、匀加速直线运动,加速度沿x 轴负方向 C 、变加速直线运动,加速度沿x 轴正方向 D 、变加速直线运动,加速度沿x 轴负方向3、一质点在t=0时刻从原点出发,以速度v 0沿x 轴运动,其加速度与速度的关系为a =-kv 2,k 为正常数。
这个质点的速度v 与所经路程x 的关系是[ ] A 、kxe v v -=0;B 、)21(200v x v v -=;C 、201x v v -= ;D 、条件不足不能确定4、一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b 为常量), 则该质点作[ ]A 、匀速直线运动B 、变速直线运动C 、抛物线运动D 、一般曲线运动(二)、计算题1一质点在一平面内做运动,其运动方程为: 2=+-r t ti t j()5(10)(SI)试求:(1)质点的轨道方程 (2)质点从t=0到t=5s这段时间的平均速度 (3)质点在第5s末的速度; (4)质点的加速度;2、已知质点沿x轴运动,其加速度和坐标的关系为a = 2+6x2 (SI),且质点在x= 0 处的速率为10m/s,求该质点的速度v与坐标x的关系。
大学物理A(1)章节练习题

大学物理A (1)章节练习题第一章 质点运动学1.关于质点的概念下列理解正确的是( )A.研究地球公转时,因为地球直径太大,不能把地球看成质点来研究B.质点是一个理想化的模型,并且是真实存在的C.如果一个物体可以被看成质点,那么我们在研究问题时就可以忽略这个物体的形状和大小D.只有质量小的物体才能被看成质点,质量大的物体则不能被看成质点2.关于质点的概念下列理解错误的是( )A.只有很小的物体才能看成质点B.质点是为了方便研究物体运动而提出的一个理想化的模型,实际并不存在C.质点忽略了物体的形状和大小,看成一个有质量的点D.质点不同于数学中的几何点3. 下列关于速度和速率的说法,正确的是()A.瞬时速度是矢量,而平均速度是平均值,是个标量B.瞬时速率不是平均速率的极限值C.瞬时速率和瞬时速度的大小相等D.瞬时速度可以描述物体运动的快慢,而平均速度不能描述物体运动的快慢4.一运动质点在某瞬时位于位矢r (x ,y )的端点处,对其速度的大小的表示有四种意见,即(1)t d d r ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 下述判断正确的是( )A. 只有(1)(2)正确B. 只有(2)正确C. 只有(2)(3)正确D. 只有(3)(4)正确5.质点作圆周运动时,下列说表述中正确的是( )A.速度方向一定指向切向,加速度方向一定指向圆心B.切向加速度仅由速率的变化引起C.由于法向分速度为零,所以法向加速度也一定为零D.速度方向一定指向切向,加速度方向也一般指向切向6.(判断)质点是一个理想化的模型,所以质点没有大小,形状和质量.7.(判断)物体在做单向直线运动时,位移的大小等于路程.8.(判断)当质点的位矢和速度被同时确定时,其运动状态也就被确定.9.(判断)匀速圆周运动的物体,速度方向一直沿着切线方向.10.(判断)匀加速运动时,速度方向总是与加速度方向在一条直线上.11.(判断)变速圆周运动中,其加速度的方向始终指向圆心.12.(判断)相对地面做匀速直线运动的火车车厢可以看做是惯性参考系.13.(判断)路程和位移是两个不同的概念,在时间趋于零时,位移的大小等于路程.14.一质点在半径为2m 的圆周上运动,其角位置为32t =θ,式中θ的单位为rad ,t 单位是s .(1)质点在任意时刻的角速度=ω .(2)t=1s 时质点的法向加速度 .切向加速度为 。
大学物理17章答案

第17章 量子物理基础17.1 根据玻尔理论,计算氢原子在n = 5的轨道上的动量矩与其在第一激发态轨道上的动量矩之比.[解答]玻尔的轨道角动量量子化假设认为电子绕核动转的轨道角动量为2π==n n hL mvr n ,对于第一激发态,n = 2,所以L 5/L 2 = 5/2.17.2设有原子核外的3p 态电子,试列出其可能性的四个量子数.[解答] 对于3p 态电子,主量子数为n = 3,角量子数为 l = 1,磁量子数为 m l = -l , -(l - 1), …, l -1, l ,自旋量子数为 m s = ±1/2.3p 态电子的四个可能的量子数(n ,l ,m l ,m s )为(3,1,1,1/2),(3,1,1,-1/2),(3,1,0,1/2),(3,1,0,-1/2),(3,1,-1,1/2),(3,1,-1,-1/2) .17.3 实验表明,黑体辐射实验曲线的峰值波长λm 和黑体温度的乘积为一常数,即λm T = b = 2.897×10-3m·K .实验测得太阳辐射波谱的峰值波长λm = 510nm ,设太阳可近似看作黑体,试估算太阳表面的温度.[解答]太阳表面的温度大约为392.8971051010λ--⨯==⨯m b T = 5680(K).17.4 实验表明,黑体辐射曲线和水平坐标轴所围成的面积M (即单位时间内从黑体单位表面上辐射出去的电磁波总能量,称总辐射度)与温度的4次方成正比,即M = σT 4,其中σ =5.67×10-8W·m -2·K -4.试由此估算太阳单位表面积的辐射功率(太阳表面温度可参见上题).[解答]太阳单位表面积的辐射功率大约为M = 5.67×10-8×(5680)4 = 5.9×107(W·m -2).17.5宇宙大爆炸遗留在宇宙空间的均匀背景辐射相当于3K 黑体辐射.求:(1)此辐射的单色辐射强度在什么波长下有极大值?(2)地球表面接收此辐射的功率是多少?[解答](1)根据公式λm T = b ,可得辐射的极值波长为λm = b/T = 2.897×10-3/3 = 9.66×10-4(m).(2)地球的半径约为R = 6.371×106m ,表面积为 S = 4πR 2.根据公式:黑体表面在单位时间,单位面积上辐射的能量为 M = σT 4,因此地球表面接收此辐射的功率是P = MS = 5.67×10-8×34×4π(6.371×106)2= 2.34×109(W).17.6 铝表面电子的逸出功为6.72×10-19J,今有波长为λ = 2.0×10-7m 的光投射到铝表面上.试求:(1)由此产生的光电子的最大初动能;(2)遏止电势差;(3)铝的红限波长.[解答](1)光子的能量为E = hν = hc/λ,根据爱因斯坦光电效应方程hν = E k + A,产生的光电子的最大初动能为E k= hν - A= 6.63×10-34×3×108/2.0×10-7-6.72×10-19= 3.23×10-19(J).(2)遏止电势差的公式为eU s = E k,遏止电势差为U s = E k/e = 3.23×10-19/1.6×10-19=2.0(V).(3)铝的红限频率为ν0= A/h,红限波长为λ0= c/ν0= hc/A= 6.63×10-34×3×108/6.72×10-19= 2.96×10-7(m).17.7 康普顿散射中入射X射线的波长是λ = 0.70×10-10m,散射的X 射线与入射的X射线垂直.求:(1)反冲电子的动能E K ;(2)散射X 射线的波长;(3)反冲电子的运动方向与入射X 射线间的夹角θ.[解答](1)(2)根据康普顿散射公式得波长变化为21222sin 2 2.42610sin 24ϕπλΛ-∆==⨯⨯= 2.426×10-12(m),散射线的波长为λ` = λ + Δλ = 0.72426×10-10(m).反冲电子的动能为`k hchcE λλ=-34834810106.6310310 6.63103100.7100.7242610----⨯⨯⨯⨯⨯⨯=-⨯⨯= 9.52×10-17(J).(3)由于 /`tan /`hc hc λλθλλ==,0.70.96650.72426==,所以夹角为θ = 44°1`.17.8 求波长分别为λ1 = 7.0×10-7m 的红光;λ2 = 0.25×10-10m 的X 射线的能量、动量和质量.[解答]X 射线的能量为E = h ν = hc/λ,动量为 p = h/λ;由E = hc/λ = mc 2,得其质量为m = h/cλ.对于红光来说,能量为348176.6310310710E --⨯⨯⨯=⨯= 2.84×10-19(J),动量为34176.6310710p --⨯=⨯= 9.47×10-25(kg·m·s -1),质量为341876.6310310710m --⨯=⨯⨯⨯= 3.16×10-36(kg).对于X 射线来说,能量为3482106.63103100.2510E --⨯⨯⨯=⨯= 7.956×10-15(J),动量为342106.63100.2510p --⨯=⨯= 2.652×10-23(kg·m·s -1),质量为3428106.63103100.2510m --⨯=⨯⨯⨯= 8.84×10-32(kg).17.9 处于第四激发态上的大量氢原子,最多可发射几个线系,共几条谱线?那一条波长最长.[解答]第四激发态的氢原子处于第5个能级,最多可发射四个线系.(1)能级5到4,1条谱线;(2)能级5和4到3,2条谱线;(3)能级5、4和3到2,3条谱线;(3)能级5、4、3和2到1,4条谱线.共10条谱线.从能级5跃迁到4发射的光谱频率最小,波长最长.17.10 设氢原子中电子从n = 2的状态被电离出去,需要多少能量.[解答]氢原子能级公式为4222018n me E h n ε=-,当n =1时,基态能级的能量为412208me E h ε=-≈-2.18×10-18(J) = -13.6(eV),因此 12n E E n =.当电子从n 能级跃迁到m 能级时放出(正)或吸收(负)光子的能量为12211()n m E E E E n m ∆=-=-.电离时,m 趋于无穷大.当电子从n = 2的能级电离时要吸收能量 221113.6()2E ∆=--∞= -3.4(eV),因此需要3.4eV 的能量.17.11 质量为m 的卫星,在半径为r 的轨道上环绕地球运动,线速度为v .(1)假定玻尔氢原子理论中关于轨道角动量的条件对于地球卫星同样成立.证明地球卫星的轨道半径与量子数的平方成正比,即r = Kn 2,(式中K 是比例常数);(2)应用(1)的结果求卫星轨道和下一个“容许”轨道间的距离,由此进一步说明在宏观问题中轨道半径实验上可认为是连续变化的(利用以下数据作估算:普朗克常数h = 6.63×10-34J·s ,地球质量M = 6×1024kg ,地球半径R = 6.4×103km ,万有引力常数G =6.7×10-11N·m 2·kg -2.[解答](1)卫星绕地球运动的向心力是万有引力22Mm mv G r r =;根据玻尔理论,角动量为mvr = nh /2π.将前式乘以mr 3得2222()()4nh GMm r mvr π==,所以 222224h n r Kn GMm π==,即:卫星的轨道半径与量子数的平方成正比.(2)假设卫星质量m = 100kg ,比例系数为2224h K GMm π=342211242(6.6310)4 6.710610(100)π--⨯=⨯⨯⨯⨯⨯ = 2.77×10-87.可见:比例系数很小.当r = R 时,地球表面的量子数为460 4.810n ⨯.可见:地球表面处的量子数很大.地面以上的量子数设为n `,(n` = 1,2,3,…),则总量子数可表示为两个量子数之和:n =n 0 + n`.轨道间的距离为Δr = K [(n 0 + n` + 1)2 - (n 0 + n`)2]= K [2(n 0 + n`) + 1].由于n 0>>1,所以Δr = 2Kn 0 + 2Kn`.设n` = kn 0,即:取地面以上的量子数为地球表面量子数的倍数,有n = (k + 1)n 0,则r = Kn 02(k + 1)2,Δr = 2Kn 0(k + 1) = 2.66×10-40(k + 1).这说明:当地面以上的量子数按k + 1成倍地增加时,半径将按k + 1的平方的规律增加,而轨道之间的距离只按k + 1的一次方的规律增加;由于Δr 的系数很小,所以轨道间距是非常非常小的,因此可认为轨道半径是连续变化的.17.12 电子和光子各具有波长2.0×10-10m ,它们的动量和总能量各是多少?[解答]它们的动量都为34106.6310210h p λ--⨯==⨯= 3.315×10-24(kg·m·s -1).根据公式E 2 = p 2c 2 + m 02c 4,电子的总能量为E ==3×108×[(3.315×10-24)2+ (9.1×10-31×3×108)2]1/2=8.19×10-14(J).光子的静止质量为零,总能量为E = cp= 3×108×3.315×10-24 = 9.945×10-16(J).17.13 室温下的中子称为热中子T = 300K ,试计算热中子的平均德布罗意波长.[解答]中子热运动的平均速度为=v其中k为玻尔兹曼常数k= 1.38×10-23J·K-1,m p是电子的质量m p= 1.675×10-27kg,可得平均速度为v= 2.509×104(m·s-1),平均动量为=np m v= 4.2×10-27(kg·m·s-1).平均德布罗意波长为/λ=h p= 1.58×10-10(m) = 0.158(nm).17.14 一束动量是p的电子,通过缝宽为a的狭缝,在距离狭缝为R 处放置一屏,屏上电子衍射图样中央最大的宽度是多少?[解答]根据动量和位置的不确定关系Δp x·Δx≧h,其中位置不确定量为Δx = a,动量的不确定量为Δp x = p sinθ.设电子衍射图样的中央最大半宽度为w,则sinθ = w/R,可得wp a hR⋅≥,宽度为22hRwpa≥.[注意]如果将h改为ћ/2,则宽度为2w≧ћR/pa.两者相差很小.17.15 一宽度为a的一维无限深势阱,试用不确定关系估算阱中质量为m的粒子最低能量为多少?[解答]粒子坐标的不确定范围是Δx ≦a ,动量的不确定范围是Δp ≧h /Δx ≧h /a .这也就是动量p 的范围.因此能量为E = p 2/2m ≧ h 2/2ma 2,最低能量可估计为E min = h 2/2ma 2.17.16 设有一宽度为a 的一维无限深势阱,粒子处于第一激发态,求在x = 0至x = a /3之间找到粒子的几率?[解答]粒子在一维无限深势阱中的定态波函数为(0)(),(1,2,3,...)πψ≤≤==n x a n x x n a ,Ψ(x ) = 0,(x < 0,x > a ).当粒子处于第一激发态时,n = 2,在x = 0至x = a /3之间被发现的几率为/3220|()|d ψ⎰a x x /32022sin d π=⎰a x x a a23== 0.391.17.17 设粒子在宽度为a 的一维无限深势阱运动时,其德布罗意波在阱内形成驻波,试利用这一关系导出粒子在阱中的能量计算式.[解答]当粒子在势阱中形成稳定驻波时,势阱宽度必然为半波长的整数倍,即n (λ/2) = a ,(n = 1,2,3,…).根据德布罗意假设 λ = h/p ,可得粒子的动量为2λ==h nhp a 能量为 222228==p h E n m ma .17.18假定对某个粒子动量的测定可精确到千分之一,试确定这个粒子位置的最小不确定量.(1)该粒子质量为5×10-3kg ,以2m·s -1的速度运动;(2)该粒子是速度为1.8×108m·s -1的电子.[解答]粒子的动量为 p = mv ,动量的不确定量为 Δp = p /1000,根据动量和位置的不确定关系Δp ·Δx ≧ћ/2,位置的不确定量为 Δx = ћ/2Δp .(1)100024h x p mv π∆≥=∆h3431000 6.631045102-⨯⨯=π⨯⨯⨯= 5.276×10-30(m).(2)100024h x p mv π∆≥=∆h343181000 6.631049.110 1.810--⨯⨯=π⨯⨯⨯⨯= 3.22×10-10(m).17.19设有某线性谐振子处于第一激发态,其波函数为2221ψ-=a x .式中a =,k 为常数,则该谐振子在何处出现的概率最大?[解答]第一激发态的概率为22221||a xw e ψ-==,对x 求导得222222d (2)]d a x a x w xe x a x e t --=+-2222(1)a xx x a e -=-,令d w /d t = 0,得概率最大的位置为x = ±1/a .17.20一维运动的粒子,处于如下的波函数所描述的状态,(0);()0,(0).x Axe x x x λψ-⎧>=⎨<⎩式中λ > 0,A 为常数.(1)将此波函数归一化;(2)求粒子位置的概率分布函数;(3)粒子在在何处出现的概率最大?[解答](1)归一化得222201||d d x x A xe x λψ∞∞--∞==⎰⎰ 22201d 2x A x e λλ∞--=⎰2222001{2d }2x x A x e xe x λλλ∞∞---=-⎰222012()d 2xA x e λλ∞--=-⎰ 22220012(){d }2xx A xe e x λλλ∞∞---=--⎰22323012()24xA A e λλλ∞--==,所以A =2λ3/2 .归一化波函数为3/22,(0);()0,(0).x xe x x x λλψ-⎧>=⎨<⎩([注]利用Γ函数的性质可简化积分过程.10()d n x n x e x∞--Γ=⎰,当n 为整数时,Γ(n ) = (n - 1)!.设y = 2λx ,则d x = d y /2λ,可得22331001d ()d 2x y x ex y e y λλ∞∞---=⎰⎰ 3311()(3)2()22λλ=Γ=,可以得出同一结果.)(2)粒子坐标的几率分布函数为32224,(0);()|()|0,(0).x x e x w x x x λλψ-⎧>==⎨<⎩(3)利用上一题的方法求导可得几率最大的位置为x = 1/λ.17.21 设有某一维势场如下:0,(0);,(0,).≤≤⎧=⎨<>⎩x LVV x x L该势场可称为有限高势阱,设粒子能量E < V0,求E所满足的关系式.[解答]粒子运动的薛定谔方程为222()0mE Vψψ∇+-=h.在三个区域的方程为210122d2()0,(0);dmE V xxψψ+-=<h22222d20,(0);dmE x Lxψψ+=<<h230322d2()0,().dmE V x Lxψψ+-=>h设1k=h,2k=h,则得221112d0,(0);dk xxψψ-=<(1)222222d0,(0);dk x Lxψψ+=<<(2)223132d0,().dk x Lxψψ-=>(3)方程的通解为ψ1(x) = A1exp(k1x) + B1exp(-k1x),(x<0);(4)ψ2(x ) = A 2cos(k 2x ) + B 2sin(k 2x ),(0<x <L );(5)ψ3(x) = A 3exp(k 1x ) + B 3exp(-k 1x ),(x >L ).(6)当x →-∞时,ψ1有限,所以B 1 = 0;当x →∞时,ψ3有限,所以A 3 = 0.当x = 0时,ψ1(0) = ψ2(0),可得A 1 = A 2; (7)同时ψ1`(0) = ψ2`(0),可得k 1A 1 = k 2B 2. (8)当x = L 时,ψ2(L ) = ψ3(L ),ψ2`(L ) = ψ3`(L ),可得A 2cos k 2L +B 2sin k 2L = B 3exp(-k 1L );(9)-k 2A 2sin k 2L + k 2B 2cos k 2L = -k 1B 3exp(-k 1L )(10)将(9)乘以k 1加(10)得k 1A 2cos k 2L + k 1B 2sin k 2L-k 2A 2sin k 2L + k 2B 2cos k 2L = 0.即 (k 1A 2 + k 2B 2)cos k 2L = (k 2A 2 - k 1B 2)sin k 2L ,亦 122222212t a n k A k B k L k A k B +=-. (11)由(7)和(8)得k 1A 2 = k 2B 2,即 B 2 = k 1A 2/k 2, (12)(12)代入(11)式得12222212tan kk k L k k =-,即0t a n =h (13)这就是总能量满足的关系式.17.22 原子内电子的量子态由n 、l 、m l 、m s 四个量子数表征,当n 、l 、m l 一定时,不同的量子态数目为多少?当n 、l 一定时,不同量子态数目为多少?当n 一定时,不同量子态数目为多少?[解答]当n 、l 、m l 一定时,m s 只取两个值,所以量子态数目为2. 当n 、l 一定时,m l 有(2l + 1)种不同取值,所以量子态数目为2(2l + 1).当n 一定时,l 从0到(n - 1)共有n 种不同取值,量子态数目为1110002(21)421n n n l l l l l ---===+=+∑∑∑2(1)4222n n n n -=⨯+=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在v ~v + dv之间的概率为
dN N
Av 2 dv
0
0≤v ≤vm , v > vm
式中A为常数.则该电子气电子的平均速率为
(A)
A 3
v
2 m
(B)
A 4
v
4 m
v (C) m
(D)
A 3
v
2 m
答:[ B ]
6、一容器内盛有1mol氢气和1mol氦气,经混合后, 温度为127 O C ,该混合气体分子的平均速率为( )
(273.15 30)
6.28 10 21(J )
2)平均动能为
k
5 kT 2
5 1.381023 303.15 2
1.05 10 20 (J )
3)氧分子的平均能量等于分子平均动能
k 1.05 10 20 (J )
4)由理想气体内能公式得
E
i RT
2
5 2
4 10 3 32 10 3
1、 一容器内贮有氧气,其压强 P 1.013 105 Pa,温
度t=27℃,求: (1)单位体积内的分子数; (2)氧分子的质量; (3)分子的平均平动动能。
解: 压强不太高,温度不太低,可视为理想气体。
(1)单位体积内的分子数
由 P nkT
n P kT
2.45 1025 (m 3 )
(2)氧气分子的质量 m M 5.3110 26 (kg ) NA
8p0V0/13R
8. 设气体分子服从麦克斯韦速率分布律, 代表平均速率 v ,vp 代表最概然速率,那么,速率在vp 到 v 范围内的分
子数占分子总数的百分率随气体的温度升高而 __保__持__不__变__(增加、降低或保持不变)。
(3)分子平均平动动能
t
3 2
kT
6.211021(J )
2、求温度在30℃时氧气分子的平均平动动能,平均动 能,平均能量以及4×10-3kg的氧气的内能?
解: 在常温下,分子的振动可以忽略,在温度为T的平衡
态下,对双原子的氧气分子,由能量均分定理
1)平均平动动能
平
3 2
kT
3 1.381023 2
(A) 200 10R
(B) 400 10R
(C) 200
10R +
10R
2
(D)
400
10R +
10R
2
答:[ c ]
7、19. 用绝热材料制成的一个容器,体积为2V0,被绝热 板隔成A、B 两部分,A 内储有1 mol单原子分子理想气 体,B 内储有2 mol 刚性双原子分子理想气体,A、B 两 部分压强相等均为p0,两部分体积均为V0,则 (_1_)_两__种_气__体;各5p自0V的0/内2 能分别为EA=__3_p_0V__0/_2_;EB= (2) 抽去绝热板,两种气体混合后处于平衡时的温度为T= ______。
f (v) a
(v0 v 2v0) 2)分别求速率大于v0和小于v0的粒子数;
f (v) 0
(v 2v0) 3)求粒子的平均速率。
f(v) a
o v0
解:1)由归一化条件
f (v)dv
0
v0 avdv 2v0 adv
0 v0
v0
0dv
2v0
3 2
av0
1
v
2v0
a 2 3v0
8.31 303 .15
7.87 10 2 (J ) 也可由氧分子的平均能量来求
E
NA
4 10 3 32 10 3
6.023 10 23 1.05 10 20
7.87 10 2 (J )
3、有N个粒子,其速率分 v v0) 1)作速率分布曲线并求常数a;
(A)a = N / (2 v 0). (B) a = N / (3 v 0). (C)a = N / (4 v 0). (D) a = N /(5v0).
Nf(v)
答:[ B ]
a
2a/3
a/3 O
v
v0 2v03v0 4v0 5v0
5、金属导体中的电子,在金属内部作无规则运动,
与容器中的气体分子很类似.设金属中共有N个
2) v v0的分子数
N1
dN
v0
N f (v)dv v0
2v0 v0
Nadv
2 3
N
v v0的分子数
N2 N N1
1N 3
3) v 0 vf (v)dv
vadv v0 v avdv
2v0
0 v0
v0
11 9
v0
4、有N个分子,其速率分布如图所示,v > 5v 0时分
子数为0,则: