大学物理(第四版)课后习题及答案 静电场

合集下载

大学物理第四版下册课后题答案

大学物理第四版下册课后题答案

大学物理第四版下册课后题答案习题1111-1.直角三角形ABC 的A 点上,有电荷C 108.191-⨯=q ,B 点上有电荷C 108.492-⨯-=q ,试求C 点的电场强度(设0.04m BC =,0.03m AC =)。

解:1q 在C 点产生的场强:11204ACq E irπε=, 2q 在C 点产生的场强:22204BCq E j r πε=,∴C 点的电场强度:4412 2.710 1.810E E E i j =+=⨯+⨯;C 点的合场强:22412 3.2410VE E E m =+=⨯,方向如图: 1.8arctan33.73342'2.7α===。

11-2.用细的塑料棒弯成半径为cm 50的圆环,两端间空隙为cm 2,电量为C 1012.39-⨯的正电荷均匀分布在棒上,求圆心处电场强度的大小和方向。

解:∵棒长为2 3.12l r d m π=-=, ∴电荷线密度:911.010q C m l λ--==⨯⋅可利用补偿法,若有一均匀带电闭合线圈,则圆心处的合场强为0,有一段空隙,则圆心处场强等于闭合线圈产生电场再减去m d 02.0=长的带电棒在该点产生的场强,即所求问题转化为求缺口处带负电荷的塑料棒在O 点产生的场强。

解法1:利用微元积分:21cos 4O x Rd dE Rλθθπε=⋅,∴2000cos 2sin 2444O dE d R R R ααλλλθθααπεπεπε-==⋅≈⋅=⎰10.72V m -=⋅;解法2:直接利用点电荷场强公式:由于d r <<,该小段可看成点电荷:112.010q d C λ-'==⨯, 则圆心处场强:1191220 2.0109.0100.724(0.5)O q E V m R πε--'⨯==⨯⨯=⋅。

方向由圆心指向缝隙处。

11-3.将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB 的半径为R ,试求圆αi2cm O R x αα心O 点的场强。

大学物理第6章真空中的静电场课后习题及答案

大学物理第6章真空中的静电场课后习题及答案

⼤学物理第6章真空中的静电场课后习题及答案第6章真空中的静电场习题及答案1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。

⼀试验电荷置于x 轴上何处,它受到的合⼒等于零?解:根据两个点电荷对试验电荷的库仑⼒的⼤⼩及⽅向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合⼒才可能为0,所以200200)1(π4)1(π42-=+x qq x qq εε故 223+=x2. 电量都是q 的三个点电荷,分别放在正三⾓形的三个顶点。

试问:(1)在这三⾓形的中⼼放⼀个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑⼒之和都为零)?(2)这种平衡与三⾓形的边长有⽆关系?解:(1) 以A 处点电荷为研究对象,由⼒平衡知,q '为负电荷,所以2220)33(π4130cos π412a q q aq'=εε故 q q 3='(2)与三⾓形边长⽆关。

3. 如图所⽰,半径为R 、电荷线密度为1λ的⼀个均匀带电圆环,在其轴线上放⼀长为l 、电荷线密度为2λ的均匀带电直线段,该线段的⼀端处于圆环中⼼处。

求该直线段受到的电场⼒。

解:先求均匀带电圆环在其轴线上产⽣的场强。

在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产⽣的场强⼤⼩为)(4220R x dq dE +=πε根据电荷分布的对称性知,0==z y E E2322)(41 cos R x xdq dE dE x +==πεθ式中:θ为dq 到场点的连线与x 轴负向的夹⾓。

+=23220)(4dq R x xE x πε232210(24R x R x +?=πλπε232201)(2R x xR+=ελ下⾯求直线段受到的电场⼒。

在直线段上取dx dq 2λ=,dq 受到的电场⼒⼤⼩为dq E dF x =dx R x xR 232221)(2+=ελλ⽅向沿x 轴正⽅向。

大学物理第9章静电场习题参考答案

大学物理第9章静电场习题参考答案

第9章 静电场9-1 两小球处于如题9-1图所示的平衡位置时,每小球受到张力T ,重力mg 以及库仑力F 的作用,则有mg T =θcos 和F T =θsin ,∴θmgtg F =,由于θ很小,故lxmgmg mg x q F 2sin tg 41220=≈==θθπε ∴3/1022⎪⎪⎭⎫⎝⎛mg l q πε9-2 设q 1,q 2在C 点的场强分别为1E 和2E,则有14299m V 108.103.0108.1109--⋅⨯=⨯⨯⨯=方向沿AC 方向 方向沿CB 方向∴ C 点的合场强E的大小为: 设E 的方向与CB 的夹角为α,则有9-3 坐标如题9-3图所示,带电圆弧上取一电荷元l q d d λ=,它在圆心O 处的场强为201d 41d RlE λπε=,方向如题9-3图所示,由于对称性,上、下两带电圆弧中对应电荷元在圆心O 处产生的d E 1和d E 2在x 方向分量相 互抵消。

0=∴x E ,圆心O 处场强E 的y 分量为方向沿y 轴正向。

9-4 (1)如题9-4图(a),取与棒端相距d 1的P 点为坐标原点,x 轴向右为正。

设带电细棒电荷元x q d d λ=至P 点的距离x ,它在P 点的场强大小为 20d 41d x xE P λπε=方向沿x 轴正向各电荷元在P 点产生的场强方向相同,于是方向沿x 轴方向。

(2)坐标如题9-4图(b)所示,在带电细棒上取电荷元x q d d λ=与Q 点距离为r ,电荷元在Q 点所产生的场强20d 41d r xE λπε=,由于对称性,场d E 的x 方向分量相互抵消,所习题9-1图习题9-4图(a )习题9-3图习题9-2图以E x =0,场强d E 的y 分量为θλπεθsin d 41sin d d 20r xE E y ==因θθθπθθd csc d d ,d 2d ,csc d 22222=-=⎪⎭⎫⎝⎛-==x ctg tg x r ∴ θθπελθλπεd sin d 4sin d 41d 2020==r xE y其中 22222221)2/(d 2/c o s ,)2/(d 2/c o s L L L L +-=+=θθ代入上式得方向沿y 轴正向。

第4章大学物理(I-1)教材课后习题答案

第4章大学物理(I-1)教材课后习题答案

由高斯定理可得半径为 r0 、电荷体密度为 的均匀带电球体在 r 处产生的场强为
4 (a r )2 E2
由上面的结论,有
4 (a r )3 3
0
E2
(a r ) 3 0
r (a r ) E1 , E2 3 0 3 0
Q 2 0 R 2
4.5 将一“无限长”带电细线弯成题 4.5 图所示的形状,设电荷均匀分布,电荷线密度 为 ,四分之一圆弧 AB 的半径为 R 。试求圆心 O 处的场强。
y
dE R O R
4.5 解图
θ
x
θθ
d
题 4.5
4.5 解图
解 由例 4.4 的结论可知:半无限长均匀带电细线 AC 在 O 处的场强为
设四分之一圆弧 AB 在圆心 O 处的场强为
因为
dE2
dq Rd d 2 2 4 0 R 4 0 R 4 0 R 1
所以
dE2 x dE2 cos
d cos 4 0 R
由此可得
E2 x
2 cosd 0 4 0 R 4 0 R
中间区域:
1 2 2 0

2 1011 1.13 Vm-1, 方向向左. 2 8.85 1012
31
EⅡ E2 E1
右边区域:
1 2 3 2 1011 3.39 Vm-1, 方向向右. 2 0 2 8.85 1012
q0 必须在两电荷之间才能平衡,设与 2q 之间的距离为 x ,若合力为零,则有
qq0 1 2qq0 1 2 4 0 x 4 0 (l x) 2
由此可得 x 2 4lx 2l 2 0 ,解此方程可得

大学物理(第四版)课后习题及答案_电介质

大学物理(第四版)课后习题及答案_电介质

电解质题8.1:一真空二极管,其主要构件是一个半径R 1 = 5.0⨯10-4 m 的圆柱形阴极和一个套在阴极外,半径m 105.432-⨯=R 的同轴圆筒形阳极。

阳极电势比阴极电势高300 V ,阴极与阳极的长度均为L = 2.5⨯10-2 m 。

假设电子从阴极射出时的速度为零。

求:(1)该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力。

题8.1分析:(1)由于半径L R <<1,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性。

从阴极射出的电子在电场力作用下从静止开始加速,电于所获得的动能等于电场力所作的功,也即等于电子势能的减少。

由此,可求得电子到达阳极时的动能和速率。

(2)计算阳极表面附近的电场强度,由E F q =求出电子在阴极表面所受的电场力。

解:(1)电子到达阳极时,势能的减少量为J 108.417ep -⨯-=-=∆eV E由于电子的初始速度为零,故 J 108.417ep ek ek -⨯=∆-=∆-E E E因此电子到达阳极的速率为17eks m 1003.122-⋅⨯===meVmE v (2)两极间的电场强度为r 02e E r πελ-=两极间的电势差1200ln 2d 2d 2121R R r r V R R R R πελπελ-=-=⋅=⎰⎰r E 负号表示阳极电势高于阴极电势。

阴极表面电场强度r 121r 10ln 2e e E R R R V R =-=πελ电子在阴极表面受力N e E F r 141037.4-⨯=-=e这个力尽管很小,但作用在质量为9.11⨯10-31 kg 的电子上,电子获得的加速度可达重力加速度的5⨯1015倍。

题8.2:一导体球半径为R 1,外罩一半径为R 2的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0。

求此系统的电势和电场的分布。

题8.2分析:不失一般情况,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示,依照电荷的这一分布,利用高斯定理可求得电场分布。

大连理工大学大学物理作业4(静电场四)及答案详解

大连理工大学大学物理作业4(静电场四)及答案详解

作业4 静电场四导线穿过外球壳上的绝缘小孔与地连接,外球壳上带有正电荷,则内球壳上[ ]。

.A 不带电荷.B 带正电 .C 带负电荷.D 外表面带负电荷,内表面带等量正电荷答案:【C 】解:如图,由高斯定理可知,内球壳内表面不带电。

否则内球壳内的静电场不为零。

如果内球壳外表面不带电(已经知道内球壳内表面不带电),则两壳之间没有电场,外球壳内表面也不带电;由于外球壳带正电,外球壳外表面带正电;外球壳外存在静电场。

电场强度由内球壳向外的线积分到无限远,不会为零。

即内球壳电势不为零。

这与内球壳接地(电势为零)矛盾。

因此,内球壳外表面一定带电。

设内球壳外表面带电量为q (这也就是内球壳带电量),外球壳带电为Q ,则由高斯定理可知,外球壳内表面带电为q -,外球壳外表面带电为Q q +。

这样,空间电场强度分布r r qr E ˆ4)(201πε=,(两球壳之间:32R r R <<)r r Qq r E ˆ4)(202πε+= ,(外球壳外:r R <4)其他区域(20R r <<,43R r R <<),电场强度为零。

内球壳电势为041)11(4ˆ4ˆ4)()(403202020214324322=++-=⋅++⋅=⋅+⋅=⋅=⎰⎰⎰⎰⎰∞∞∞R Q q R R q r d r rQq r d r r q r d r E r d r E l d E U R R R R R R R πεπεπεπε则04432=++-R QR q R q R q ,4324111R R R R Q q +--=由于432R R R <<,0>Q ,所以0<q即内球壳外表面带负电,因此内球壳负电。

2.真空中有一组带电导体,其中某一导体表面某处电荷面密度为σ,该处表面附近的场强大小为E ,则0E σ=。

那么,E 是[ ]。

.A 该处无穷小面元上电荷产生的场 .B 导体上全部电荷在该处产生的场 .C 所有的导体表面的电荷在该处产生的场 .D 以上说法都不对答案:【C 】解:处于静电平衡的导体,导体表面附近的电场强度为0E σ=,指的是:空间全部电荷分布,在该处产生的电场,而且垂直于该处导体表面。

大学物理第四章静电场课后习题概要

大学物理第四章静电场课后习题概要

b
p
o
x
l
dx
x
kxdx dE 4 0 x b 2 kxdx k bl l E ln 2 0 4 4 0 b l b 0 x b
l
1
1
方向沿x轴的负方向。
练习题4-7 图为两个分别带有电荷的同心球壳系统。 设半径为 R1 和R2 的球壳上分别带有电荷 Q1 和 Q2 ,求: (1)I、II 、III三个区域中的场强;(2)若 Q1 Q2 , 各区域的电场强度又为多少?画出此时的电场强度分 布曲线。 q内 2 解: s E dS 4r E 0
0 r R1
E1 0
Q1
R1
R1 r R2
r R2
当 Q1 Q2 时
40 r Q1 Q2 E3 40 r 2
2
E2
Q1
Q2
Ⅲ Ⅱ
O Ⅰ
R2
0 r R1
E1 0
R1 r R2
r R2
当 Q1 Q2 时
0 r R1
当 Q1 Q2 时
Q1
R1
R2
O Ⅰ Ⅱ Ⅲ
Q2
r
练习题4-12 同轴电缆是由两个很长且彼此绝缘的同 轴金属圆柱体构成,如图所示。设内圆柱体的电势 为U1,半径为R1;外圆柱体的电势为U2 ,外圆柱体 的内半径为R2,两圆柱体之间为空气。求两个圆柱 体的空隙中离轴为r处(R1 < r <R2)的电势。
定理可知球外空间的场强E外
(3)因为球表面的场强 E表 变小。
q 4 0 r
2
。由此可知,球
外空间的场强与气球吹大过程无关。

大学物理学(第四版)课后习题答案(下册)

大学物理学(第四版)课后习题答案(下册)

大学物理学课后习题答案(下册)习题99.1 选择题(1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q 所受到合力为零,则Q 与q 的关系为:()(A )Q=-2 3/2q (B) Q=2 3/2q (C) Q=-2q (D) Q=2q[答案:A](2)下面说法正确的是:()(A )若高斯面上的电场强度处处为零,则该面内必定没有电荷;(B )若高斯面内没有电荷,则该面上的电场强度必定处处为零;(C)若高斯面上的电场强度处处不为零,则该面内必定有电荷;(D )若高斯面内有电荷,则该面上的电场强度必定处处不为零。

[答案:D](3)一半径为R 的导体球表面的面点荷密度为σ,则在距球面R 处的电场强度()(A )σ/ε0(B)σ/2ε0(C)σ/4ε0(D )σ/8ε0[答案:C](4)在电场中的导体内部的()(A )电场和电势均为零;(B)电场不为零,电势均为零;(C)电势和表面电势相等;(D)电势低于表面电势。

[答案:C]9.2 填空题(1)在静电场中,电势不变的区域,场强必定为。

[ 答案:相同](2)一个点电荷q 放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中心向外移动至无限远,则总通量将。

[ 答案:q/6ε0, 将为零](3)电介质在电容器中作用(a)——(b)——。

[ 答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命](4)电量Q 均匀分布在半径为R 的球体内,则球内球外的静电能之比。

[ 答案:5:6]9.3 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1) 在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡( 即每个电荷受其他三个电荷的库仑力之和都为零)?(2) 这种平衡与三角形的边长有无关系?解: 如题9.3 图示(1)以A 处点电荷为研究对象,由力平衡知:q 为负电荷2 14π0qcos30a 214π(qq3a)23解得(2)与三角形边长无关.q3q3题9.3 图题9.4 图9.4 两小球的质量都是m,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2 , 如题9.4 图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题9.4 图示T sin T cosF emg14π 0 (2lq 2sin ) 2解得q2l sin 4 0 mg t an9.5 根据点电荷场强公式 Eq4 0 r,当被考察的场点距源点电荷很近(r→0)时,则场强→∞,这是没有物理意义的,对此应如何理解?q解: E4 π0rr0 仅对点电荷成立,当r0 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.9.6 在真空中有 A ,B 两平行板,相对距离为 d ,板面积为S ,其带电量分别为+ q 和- q .则q 2 这两板之间有相互作用力 f ,有人说 f =4 d 2, 又有人说,因为 f = qE , Eq,所S222d2l l 22以 f =q .试问这两种说法对吗 ?为什么 ? f 到底应等于多少 ?S解: 题中的两种说法均不对. 第一种说法中把两带电板视为点电荷是不对的,第二种说法把q合场强 E看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个S板的电场为 E q,另一板受它的作用力fq q q2,这是两板间相互作用的电场力.2 0 S2 0 S2 0 S9.7 长 l =15.0cm 的直导线 AB 上均匀地分布着线密度=5.0x10 -9C 2 m-1的正电荷.试求:(1) 在导线的延长线上与导线B 端相距a 1 =5.0cm 处 P 点的场强; (2) 在导线的垂直平分线上与导线中点相距d 2 =5.0cm 处 Q 点的场强.解: 如题 9.7 图所示(1) 在带电直线上取线元dx ,其上电量dq 在 P 点产生场强为 dE PE P14 π 0 ( adE Pdxx) 22 dx题 9.7 图4π 02(a x) 2[ 11]4π 0a l al 2 2lπ 0 (4 al 2)用 l15 cm ,5.0 10 9 C m 1, a 12.5 cm 代入得(2) 同理2E P6.74 10 N CdE1 dx 1方向水平向右方向如题 9.7 图所示Q 4 π 0 x2由于对称性dE Qxl0 ,即 E Q 只有 y 分量,2d 220 l 1∵dE Qy1x d2 224 π 0 xd 2x22EdEd 2 2 dxQylQyl4π 2l 2(x23d 2 )22π 0 l4d2以5.0 10 9C cm , l 15 cm , d 2 5 cm 代入得E Q E Qy14.96 102 N C ,方向沿 y 轴正向9.8一个半径为 R 的均匀带电半圆环,电荷线密度为, 求环心处 O 点的场强.解: 如 9.8 图在圆上取 dl Rd题 9.8 图dqdl R d ,它在 O 点产生场强大小为Rd dE24π 0 R方向沿半径向外则dE xdE sinsin d 4π 0 RdE ydE cos()cos d 4π 0 R积 分 E xsin d4π 0 R2π 0 RE ycos d 04π 0 R∴E E x2π R,方向沿x 轴正向.122222 229.9均匀带电的细线弯成正方形,边长为 l ,总电量为 q .(1) 求这正方形轴线上离中心为 r处的场强 E ; (2) 证明:在 rl 处,它相当于点电荷 q 产生的场强 E .解: 如 9.9 图示,正方形一条边上电荷q在 P 点产生物强4dE P 方向如图,大小为dE Pcos 4π 0 1 cos 2 l2r24∵cos 1l22r 2l 2∴dE Pcos 2cos 1ll2l24π0 rr42dE P 在垂直于平面上的分量dE∴dEl dE P cosr4π 0 rlr 2lr2l424题 9.9 图由于对称性, P 点场强沿 OP 方向,大小为E P 4 dE∵4π 0(r 2q 4l4 lr l2l2) r 24222e .e内r 0 内1∴E P4π 0 (r qrl) r 2l4 2方向沿OP9.10(1) 点电荷q 位于一边长为a的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2) 如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?解: (1) 由高斯定理 E dS qs立方体六个面,当q 在立方体中心时,每个面上电通量相等∴各面电通量q 6 0(2) 电荷在顶点时,将立方体延伸为边长2a 的立方体,使q 处于边长2a 的立方体中心,则边长2a 的正方形上电通量q 6 0对于边长 a 的正方形,如果它不包含q 所在的顶点,则qe,24 0如果它包含q 所在顶点则 e 0 .如题9.10 图所示.题9.10 图9.11均匀带电球壳内半径6cm,外半径10cm,电荷体密度为238cm ,12cm 各点的场强.10 5 C2 m-3 求距球心5cm,解: 高斯定理 E dSsq2q , E4πr0 0当r 5 cm时,q 0 , E 0r 8 cm 时,q4π3p (r r 3 ) 34πr 3 r 2∴ E34π 23.48 10 4 N C ,方向沿半径向外.22外3 r 3r 12 cm 时, q4π(r3 r 内)4π 3 外 ∴E33r 内 4.10 10 4N C1沿半径向外 .4π 0 r9.12半径为 R 1 和 R 2 ( R 2 > R 1 ) 的两无限长同轴圆柱面,单位长度上分别带有电量 和-, 试求:(1)r < R 1 ; (2) R 1 < r < R 2 ;(3) r > R 2 处各点的场强.解: 高斯定理qE dSs取同轴圆柱形高斯面,侧面积则S E d S S2πrl E 2πrl对(1)r R 1 q 0, E 0(2)R 1rR 2q l∴E2π 0 r沿径向向外(3)∴r R 2q 0E题 9.13 图9.13 两个无限大的平行平面都均匀带电,电荷的面密度分别为 1 和 2 ,试求空间各处场强. 解:如题 9.13 图示,两带电平面均匀带电,电荷面密度分别为1 与2 ,两面间,E1( 2 02)n1 面外,E1 (1 2)n20 210 1 2 面外, E(12 02) nn :垂直于两平面由1 面指为2 面.9.14半径为 R 的均匀带电球体内的电荷体密度为, 若在球内挖去一块半径为r < R 的 小球体,如题 9.14图所示.试求:两球心 O 与 O 点的场强,并证明小球空腔内的电场是均匀的. 解:将此带电体看作带正电的均匀球与带电的均匀小球的组合,见题9.14 图 (a) .(1)球在 O 点产生电场球在 O 点产生电场 E 10E 200,4 πr 33OO' 4π 0d∴O 点电场 E 0r33 d3OO ';4 d 3(2)在 O 产生电场 E 103 4π 0dOO '球在 O 产生电场 E 20∴ O 点电场E 0OO'3 0题 9.14 图(a)题 9.14 图 (b)(3) 设空腔任一点 P 相对 O 的位矢为 r ,相对 O 点位矢为 r ( 如 题 8-13(b) 图)r 则E PO,3r E PO,3 03 3q -8r0 6OO∴E PE PO E PO(r r )3 0 OO' d3 0 3 0∴腔内场强是均匀的.-69.15 一电偶极子由 =1.0 3 10 C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电5-1偶极子放在 1.0 3 10 N2 C的外电场中,求外电场作用于电偶极子上的最大力矩.解:∵ 电偶极子 p 在外场 E 中受力矩Mp E∴M maxpE qlE 代入数字M max1.0 1062 1031.0 1052.0 10 4N m9.16 两点电荷1 =1.5 3 10 C , -82 =3.03 10C ,相距 r 1 =42cm ,要把它们之间的距离变为r 2 =25cm ,需作多少功 ?解: Ar 2 F drr 2 q 1 q 2dr q 1q 2(11 ) r 1r 24π 24π 0 r 1r 26.55 10 J外力需作的功AA 6.55 106J题 9.17 图9.17 如题 9.17图所示,在 A , B 两点处放有电量分别为+q ,- q 的点电荷, AB 间距离为2 R ,现将另一正试验点电荷q 0 从 O 点经过半圆弧移到 C 点,求移动过程中电场力作的功. 解:如题 9.17 图示U 1 ( q 4π 0 Rq) 0 RU 1 ( q q ) 4π 0 3 R Rq 6 π 0 Rq q4-31-19∴A q 0 (U O U C )q o q 6π 0 R9.18 如题 9.18图所示的绝缘细线上均匀分布着线密度为 的正电荷 , 两直导线的长度和半圆环的半径都等于R .试求环中心 O 点处的场强和电势.解: (1) 由于电荷均匀分布与对称性, AB 和 CD 段电荷在 O 点产生的场强互相抵消,取dl Rd则 dqRd 产生 O 点 d E 如图,由于对称性, O 点场强沿 y 轴负方向题 9.18 图EdE2Rd cosy24π 0 R[ sin() 4 π 0 R2sin]22 π 0 R(2)AB 电荷在 O 点产生电势,以 UAdx 1B4 π 0 x2 R dxR4π 0 x4π 0ln 2同理 CD 产生半圆环产生U 24 π 0πR 3ln 24π 0 R4 0∴U O U 1 U 2 U 32π 0ln 24 09.19 一电子绕一带均匀电荷的长直导线以23 10 m 2 s 的匀速率作圆周运动. 求带电直线上的线电荷密度. ( 电子质量m 0 =9.1 3 10 kg ,电子电量 e =1.60 3 10 C)2U U -1E 解:设均匀带电直线电荷密度为 ,在电子轨道处场强E2π 0 r电子受力大小F eeEe 2 π 0 r∴e mv2π 0 rr2π 0 得mv 2 12.5 10 13 C m 1e-19.20 空气可以承受的场强的最大值为=30kV2 cm,超过这个数值时空气要发生火花放 电. 今有一高压平行板电容器,极板间距离为 d =0.5cm ,求此电容器可承受的最高电压. 解:平行板电容器内部近似为均匀电场UEd 1.5 104V9.21 证明:对于两个无限大的平行平面带电导体板 ( 题9.21 图) 来说, (1) 相向的两面上,电荷的面密度总是大小相等而符号相反; (2) 相背的两面上,电荷的面密度总是大小相等而符号相同. 证:如题 9.21 图所示,设两导体 A 、B 的四个平面均匀带电的电荷面密度依次为1 ,2 ,3 ,4题 9.21 图(1) 则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有E d S ( s3) S 0∴2 3说明相向两面上电荷面密度大小相等、符号相反;(2) 在 A 内部任取一点 P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即2212342 02222-77又∵2 3∴1 4说明相背两面上电荷面密度总是大小相等,符号相同.9.22 三个平行金属板 A , B 和 C 的面积都是 200cm , A 和 B 相距 4.0mm , A 与 C 相距 2.0 mm . B , C 都接地,如题 9.22图所示.如果使 A 板带正电 3.0 3 10 C ,略去边缘效应,问 B 板和 C 板上的感应电荷各是多少 ?以地的电势为零,则 A 板的电势是多少 ? 解: 如题 9.22 图示,令 A 板左侧面电荷面密度为1 ,右侧面电荷面密度为2题 9.22 图(1) ∵U AC U AB ,即∴E AC d ACE AB d A B1E AC d AB ∴22E AB且1 +2q A23S d ACq A S2 q A 13S而qCS 2q 32 10 7Cq B2S1 10 C(2)U A E AC d A Cd AC2.3 103V9.23 两个半径分别为R 1 和 R 2 ( R 1 < R 2 ) 的同心薄金属球壳,现给内球壳带电+ q ,试计算:(1) 外球壳上的电荷分布及电势大小;(2) 先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; *(3) 再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.得, 1A 1R 2解: (1) 内球带电q ;球壳内表面带电则为 q , 外表面带电为 q ,且均匀分布,其电势qdrq UE drRR4π r 2 4π R22题 9.23 图(2) 外壳接地时,外表面电荷 q 入地,外表面不带电,内表面电荷仍为 q .所以球壳电势由内球q 与内表面 q 产生:Uq 4π 0 R 2q 04π 0 R 2(3) 设此时内球壳带电量为q ;则外壳内表面带电量为 q ,外壳外表面带电量为 q q( 电荷守恒 ) ,此时内球壳电势为零,且q' q' U Aq q' 04 π 0 R 14π 0 R 24π 0 R 2得外球壳上电势UqR 1 qR 2q' q'q q'R 1 R 2 qB4π 0 R 24π 0 R 24π 0 R 24π 0 29.24 半径为 R 的金属球离地面很远,并用导线与地相联,在与球心相距为一点电荷 + q ,试求:金属球上的感应电荷的电量. d3R 处有解:如题 9.24 图所示,设金属球感应电荷为q ,则球接地时电势 U O由电势叠加原理有:题 9.24 图q' q O4π 0 R4π 0 3 RUF 01223得qq 39.25 有三个大小相同的金属小球,小球1, 2带有等量同号电荷,相距甚远,其间的库仑力为 F 0 .试求:(1) 用带绝缘柄的不带电小球3先后分别接触 1,2后移去,小球 1,2之间的库仑力;(2) 小球 3依次交替接触小球 1, 2很多次后移去,小球 1, 2之间的库仑力.解: 由题意知q 4π 0r2(1) 小球 3 接触小球 1后,小球 3 和小球 1均带电qq ,2小球 3 再与小球 2 接触后,小球 2 与小球 3 均带电q3 q 4∴此时小球 1与小球 2 间相互作用力3 q 2F q' q" 8 3 F 4π 0 r4π 0 r8(2) 小球 3 依次交替接触小球 1、 2 很多次后,每个小球带电量均为2q .3∴小球 1 、 2 间的作用力 F 22 23 q 3 q 40 4π 0r 299.26 在半径为R 1 的金属球之外包有一层外半径为R 2 的均匀电介质球壳, 介质相对介电常数为r ,金属球带电Q .试求:(1) 电介质内、外的场强; (2) 电介质层内、外的电势; (3) 金属球的电势.解: 利用有介质时的高斯定理D dS qS(1) 介质内(R 1 rR 2 ) 场强DQr4 πr, E 内 Qr ;4 π 0 r r20 F 3r外 2介质外 (r R 2 ) 场强DQr 4πr 3, E 外Qr4 π 0 r(2) 介质外 (rR 2 ) 电势UE drrQ 4 π 0 r介质内(R 1 rR 2 ) 电势UE 内 dr rE 外 drrq1 ( 4π 0 r r 1 Q )R 2 4 π 0 R 2(3) 金属球的电势Q(1 r1 4π 0 r rR 2R 2 U E 内 drE 外 drR 1 R 2R 2 Qdr QdrR4π 0 r R 24 π 0rQ4π 0( 1 r1 rR 1R 29.27 如题 9.27图所示,在平行板电容器的一半容积内充入相对介电常数为 r 的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值. 解: 如题 9.27 图所示,充满电介质部分场强为E 2 ,真空部分场强为 E 1 ,自由电荷面密度分别为2 与1由 D dSq 0 得D 11 ,D 22而D 1E 1 , D 20 rE 23)2)2E 1 E 2∴2 U d0 rE 2 r10 E 1题 9.27 图题 9.28 图9.28 两个同轴的圆柱面,长度均为l ,半径分别为 R 1 和 R 2 ( R 2 > R 1 ) , 且 l >> R 2 - R 1 ,两柱面之间充有介电常数的均匀电介质 . 当两圆柱面分别带等量异号电荷Q 和- Q 时,求:(1) 在半径 r 处(R 1 < r < R 2 =,厚度为 dr ,长为 l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2) 电介质中的总电场能量; (3) 圆柱形电容器的电容.解: 取半径为 r 的同轴圆柱面(S)则D d S ( S)2πrlD当 (R 1 r∴R 2 ) 时,q QDQ 2 πrl D 2Q2 (1) 电场能量密度w2 8π2r 2l 2Q2 Q 2dr 薄壳中 dWwd8π2r 2l22πrdrl4π rl(2) 电介质中总电场能量WdWR 2 Q2drQ lnR 2VR 14πrl4πl R 1(3) 电容:∵WQ2C2Q 2 2πl∴C2W ln( R2 / R1 )题9.29 图9.29 如题9.29 图所示,C1 =0.25 F,C2 =0.15 F,C3 =0.20 F .C1上电压为50V.求:U AB .解: 电容C1 上电量Q1 C1U 1电容C2 与C3 并联C23 C2 C3其上电荷∴Q23 Q1Q232C1U 125 50UABC23U 1 U 2C2350(13525)3586 V9.30C1 和C2 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V 的电压,是否会击穿?解: (1) C1 与C2 串联后电容C C1C2200 300 120pF(2) 串联后电压比C1 C2U 1 C2200 300 3U 2 C1,而U 1 U 221000∴U 1600 V , U 2400 V即电容C1 电压超过耐压值会击穿,然后C2 也击穿.9.31半径为R1 =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为R2 =4.0cmU2222 2和 R 3 =5.0cm ,当内球带电荷 Q =3.0 3 10 C 时,求:(1) 整个电场储存的能量;(2) 如果将导体壳接地,计算储存的能量; (3) 此电容器的电容值.解: 如图,内球带电 Q ,外球壳内表面带电Q ,外表面带电 Q(1) 在 rR 1 和 R 2题 9.31 图r R 3 区域在 Rr R 时E 0E Qr 1214π 0 rrR 3 时Qr 24π 0 r∴在 R 1rR 2 区域W 1R 2 1 R 1 2Q( 2 4π 0 r) 24πr drR 2 Q drQ( 1 1 ) R 18π 0 r8π 0 R 1R 2在 rR 3 区域W 1 ( Q) 2 4πr 2drQ 1R 32 0 4π 0 r8π0 R 3∴ 总能量W W 1 W 2Q( 1 1 1 ) 8π 0 R 1R 2R 31.82 10 4J(2) 导体壳接地时,只有R 1rR 2 时 EQr , W 2 04π 0 r2 -83E 3 22312∴W W 1Q21( 8π 0 R 11 ) 1.01 R 210 4 J(3) 电容器电容C2W Q2 4 π 0 /(11 ) R 1R 24.49 10F习 题 1010.1 选择题(1) 对于安培环路定理的理解,正确的是:( A )若环流等于零,则在回路 L 上必定是 H 处处为零; ( B )若环流等于零,则在回路 L 上必定不包围电流;( C )若环流等于零,则在回路L 所包围传导电流的代数和为零;( D )回路 L 上各点的 H 仅与回路 L 包围的电流有关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电场强度E的方向为带电平板外法线方向。
证2:如图所示,取无限长带电细线为微元,各微元在点P激发的电场强 度dE在Oxy平面内且对x轴对称,因此,电场在y轴和z轴方向上的分量之 和,即Ey、Ez均为零,则点P的电场强度应为
积分得 电场强度E的方向为带电平板外法线方向。 上述讨论表明,虽然微元割取的方法不同,但结果是相同的。
(2)由于正、负电荷分别对称分布在y轴两侧,我们设想在y轴上能 找到一对假想点,如果该带电环对外激发的电场可以被这一对假想点上 等量的点电荷所激发的电场代替,这对假想点就分别称作正、负等效电 荷中心。等效正负电荷中心一定在y轴上并对中心O对称。由电偶极矩p 可求得正、负等效电荷中心的间距,并由对称性求得正、负电荷中心。 解:(1)将圆环沿y轴方向分割为一组相互平行的元电偶极子,每一元 电偶极子带电
行,对电场强度通量贡献为零。整个高斯面的电场强度通量为 由于,圆柱体电荷均匀分布,电荷体密度,处于高斯面内的总电荷 由高斯定理可解得电场强度的分布, 解:取同轴柱面为高斯面,由上述分析得 题7.16:一个内外半径分别R1为R2和的均匀带电球壳,总电荷为Q1,球 壳外同心罩一个半径为 R3的均匀带电球面,球面带电荷为Q2。求电场 分布。电场强度是否是场点与球心的距离r的连续函数?试分析。
题7.16分析:以球心O为原点,球心至场点的距离r为半径,作同心球面 为高斯面。由于电荷呈球对称分布,电场强度也为球对称分布,高斯面 上电场强度沿径矢方向,且大小相等。因而,在确定高斯面内的电荷 后, 利用高斯定理 即可求的电场强度的分布 解:取半径为r的同心球面为高斯面,由上述分析 r < R1,该高斯面内无电荷,,故
E=0 在距离圆孔较远时x>>r,则 上述结果表明,在x>>r时。带电平板上小圆孔对电场分布的影响可以忽 略不计。 题7.15:一无限长、半径为R的圆柱体上电荷均匀分布。圆柱体单位长 度的电荷为,用高斯定理求圆柱体内距轴线距离为r处的电场强度。
题7.15分析:无限长圆柱体的电荷具有轴对称分布,电场强度也为轴对 称分布,且沿径矢方向。取同轴往面为高斯面,电场强度在圆柱侧面上 大小相等,且与柱面正交。在圆柱的两个底面上,电场强度与底面平
题7.13:设在半径为R的球体内,其电荷为对称分布,电荷体密度为 k为一常量。试用高斯定理求电场强度E与r的函数关系。(你能用电场 强度叠加原理求解这个问题吗?) 题7.13分析:通常有两种处理方法:(1)利用高斯定理求球内外的电 场分布。由题意知电荷呈球对称分布,因而电场分布也是球对称,选择 与带电球体同心的球面为高斯面,在球面上电场强度大小为常量,且方 向垂直于球面,因而有 根据高斯定律,可解得电场强度的分布
若把小圆孔看作由等量的正、负电荷重叠而成、挖去圆孔的带电平板
等效于一个完整的带电平板和一个带相反电荷(电荷面密度)的圆盘。 这样中心轴线上的电场强度等效于平板和圆盘各自独立在该处激发的电 场的矢量和。 解:在带电平面附近 为沿平面外法线的单位矢量;圆盘激发的电场
它们的合电场强度为 。 在圆孔中心处x = 0,则
题7.4分析:这是计算连续分布电荷的电场强度。此时棒的长度不能忽 略,因而不能将棒当作点电荷处理。但带电细棒上的电荷可看作均匀分 布在一维的长直线上。如图所示,在长直线上任意取一线元,其电荷为 dq = Qdx/L,它在点P的电场强度为 整个带电体在点P的电场强度 接着针对具体问题来处理这个矢量积分。
题7.2:质量为m,电荷为−e的电子以圆轨道绕氢核旋转,其动能为Ek。 证明电子的旋转频率满足 其中是真空电容率,电子的运动可视为遵守经典力学规律。 题7.2分析:根据题意将电子作为经典粒子处理。电子、氢核的大小约 为10−15 m,轨道半径约为10−10 m,故电子、氢核都可视作点电荷。点 电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有
则带电圆环的电偶极矩
(2)等效正、负电荷中心间距为
根据对称性正、负电荷中心在y轴上,所以其坐标分别为和。 也可以借助几何中心的定义,得
即正、负电荷中心分别在y轴上距中心 O为处
题7.10:设匀强电场的电场强度E与半径为R的半球面的对称轴平行,试 计算通过此半球面的电场强度通量。 题7.10分析方法1:由电场强度通量的定义,对半球面S求积分,即。 方法2:作半径为R的平面与半球面S一起可构成闭合曲面,由于闭合面 内无电荷,由高斯定理
解2:将带电球分割成球壳,球壳带电 由上述分析,球体内 球体外(r>R) 题7.14:一无限大均匀带电薄平板,电荷面密度为,在平板中部有一半 径为r的小圆孔。求圆孔中心轴线上与平板相距为x的一点P的电场强 度。 题7.14分析:用补偿法求解
利用高斯定理求解电场强度只适用于几种非常特殊的对称性电场。本 题的电场分布虽然不具有这样的对称性,但可以利用具有对称性的无限 大带电平面和带电圆盘的电场叠加,求出电场的分布。
题7.7:水分子H2O中氧原子和氢原子的等效电荷中心如图所示。假设氧 原子和氢原子等效电荷中心间距为r0。试计算在分子的对称轴线上,距 分子较远处的电场强度。 题7.7分析:水分子的电荷模型等效于两个电偶极子,它们的电偶极矩 大小均为,而夹角为。叠加后水分子的电偶极矩大小为,方向沿对称轴 线。由于点O到场点A的距离x>>r0,利用教材中电偶极子在延长线上的 电场强度
(2)利用带电球壳电场叠加的方法求球内外的电场分布。将带电球 分割成无数个同心带电球壳,球壳带电荷为,每个带电球壳在壳内激发
的电场dE = 0,而在球壳外激发的电场 由电场叠加可解得带电球体内外的电场分布 解1:因电荷分布和电场分布均为球对称,球面上各点电场强度的大小 为常量,由高斯定律得球体内
球体外(r>R)
这表明穿过闭合曲面的净通量为零,穿入平面的电场强度通量在数 值上等于穿出半球面S的电场强度通量。因而 解1:取球坐标系,电场强度矢量和面元在球坐标系中可表示为
解2:由于闭合曲面内无电荷分布,根据高斯定理,有 依照约定取闭合曲面的外法线方向为面元dS的方向,
题7.11:边长为a的立方体如图所示,其表面分别平行于xy、yz和zx平 面,立方体的一个顶点为坐标原点。现将立方体置于电场强度的非均匀 电场中,求电场对立方体各表面及整个立方体表面的电场强度通量。
(2)设、分别表示正、负带电导线单位长度所受的电场力,则有
显然有,相互作用力大小相等,方向相反,两导线相互吸引。
题7.9:如图所示,电荷分别均匀分布在两个半径为R的半细圆环上。 求:(1)带电圆环偶极矩的大小和方向;(2)等效正、负电荷中心的 位置。 题7.9分析:(1)电荷分布呈轴对称,将细环分割成长度均为ds的线 元,带正电荷的上半圆环线元与带负电荷的下半圆环对称位置上的线元 构成一元电偶极子,细圆环总的偶极矩等于各元电偶极矩之和,有
题7.1:1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中 子就是由一个带的上夸克和两个带下夸克构成,若将夸克作为经典粒子 处理(夸克线度约为10−20 m),中子内的两个下夸克之间相距2.6010−15 m。求它们之间的斥力。 题7.1解:由于夸克可视为经典点电荷,由库仑定律 与方向相同表明它们之间为斥力。
利用几何关系统一积分变量,则 当棒长时,若棒单位长度所带电荷为常量,则P点电场强度 此结果与无限长带电直线周围的电场强度分布相同。这说明只要满足, 带电长直细棒可视为无限长带电直线。 题7.5:一半径为R的半圆细环上均匀分布电荷Q,求环心处的电场强度
题7.5分析:在求环心处的电场强度时,不能将带电半圆环视作点电 荷。现将其抽象为带电半圆弧线。在弧线上取线元dl,其电荷此电荷元 可视为点电荷,它在点O的电场强度。因圆环上电荷对y轴呈对称性分 布,电场分布也是轴对称的,则有,点O的合电场强度,统一积分变量 可求得E。 解:由上述分析,点O的电场强度 由几何关系,统一积分变量后,有 方向沿y轴负方向。
题7.11解:参见图。由题意E与Oxy面平行,所以对任何与Oxy面平行的 立方体表面。电场强度的通量为零。即。而
考虑到面CDEO与面ABGF的外法线方向相反,且该两面的电场分布 相同,故有
同理 因此,整个立方体表面的电场强度通量 题7.12:地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作 用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面 必然带有负电荷。晴天大气电场平均电场强度约为120 Vm−1,方向指向 地面。试求地球表面单位面积所带的电荷(以每平方厘米的电子数表 示)。 题7.11分析:考虑到地球表面的电场强度指向地球球心,在大气层中取 与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷。 解:在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半 径(RE为地球平均半径)。由高斯定理 地球表面电荷面密度 单位面积额外电子数
(2)除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合 力为零,所以氯离子所受的合力的值为
方向如图所示。
题7.4:若电荷Q均匀地分布在长为L的细棒上。求证:(1)在棒的延长 线,且离棒中心为r处的电场强度为 (2)在棒的垂直平分线上,离棒为r处的电场强度为 若棒为无限长(即),试将结果与无限长均匀带电直线的电场强度相比 分布。
解1:水分子的电偶极矩 在电偶极矩延长线上
解2:在对称轴线上任取一点A,则该点的电场强度 由于 代入得
测量分子的电场时,总有x>>r0,因此, 式中,将上式化简并略去微小量后,得 题7.8:无两条无限长平行直导线相距为r0,均匀带有等量异号电荷,电 荷线密度为。(1)求两导线构成的平面上任一点的电场强度(设该点 到其中一线的垂直距离为x);(2)求每一根导线上单位长度导线受到 另一根导线上电荷作用的电场力。 题7.8分析:(1)在两导线构成的平面上任一点的电场强度为两导线单 独在此所激发的电场的叠加。 (2)由F = qE,单位长度导线所受的电场力等于另一根导线在该导 线处的电场强度来乘以单位长度导线所带电的量,即:F = E应该注 意:式中的电场强度E是除去自身电荷外其它电荷的合电场强度,电荷 自身建立的电场不会对自身电荷产生作用力。 题7.8解:(1)设点P在导线构成的平面上,、分别表示正、负带电导 线在P点的电场强度,则有
相关文档
最新文档