大学物理第7章静电场理解练习知识题
大学物理热力学基础静电场知识点及试题带答案

静电场一、基本要求 1、掌握描述静电场的两个物理量——电场强度和电势的概念,理解电场强度叠加原理和电势叠加原理,熟练掌握用微元法求解一些简单问题中的电场强度。
2、理解静电场的两个重要定理——高斯定理和环路定理,熟练掌握利用高斯定理求解电场强度的条件和方法。
3、掌握利用电势叠加原理和电势的定义式求解带电体的电势。
4、理解导体的静电平衡条件,了解电介质的极化现象及其微观解释,理解各向同性介质中的D 和E 之间的关系和区别。
理解电介质中的高斯定理和安培环路定理。
5、理解电容的定义,并能计算简单几何形状的电容器的电容。
6、了解电场能量密度和电场能量的概念,能用能量密度计算电场能量。
二、主要内容 1、库伦定律:123014q q rF r πε=2、电场强度:0F E q =电场强度的叠加原理:123E E E E =+++… 电荷连续分布的带电体的场强:3014dq E dE r r πε==⎰⎰(1)线状分布:2014ldl rE r rλπε=⎰(2)面状分布:2014sds rE r rσπε=⎰⎰(3)体状分布:2014VdV rE r r ρπε=⎰⎰⎰3、静电场的高斯定理:101nii SE dS q ε=⋅=∑⎰⎰4、静电场的环路定理:0LE dl ⋅=⎰5、电势:P PU E dl ∞=⋅⎰电势的叠加原理:123U U U U =+++… 电荷连续分布的带电体的电势:014dqU dU r πε==⎰⎰(1)线状分布:014ldlU rλπε=⎰(2)面状分布:014sdsU r σπε=⎰⎰(3)体状分布:014VdVE rρπε=⎰⎰⎰6、导体的静电平衡条件电场表述:(1)导体内部场强处处为零;(2)导体表面附近的场强方向处处与它的表面垂直,且0/e E σε=。
电势表述:(1)导体是等势体;(2)导体表面是等势面。
7、电介质中的高斯定理:1nii SD dS q =⋅=∑⎰⎰ 各向同性线性电介质:0rD E E εεε==8、电容器的电容:Q C U =特例:平行板电容器的电容:SC dε= 电容器储能:22111222Q W QU CU C === 9、电场的能量密度:2012e r E ωεε=电场能量:2012e e r V VW dV E dV ωεε==⎰⎰⎰⎰⎰⎰ 三、习题及解答1.在真空中的静电场中,作一封闭的曲面,则下列结论中正确的是( D )A.通过封闭曲面的电通量仅是面内电荷提供的B.封闭曲面上各点的场强是面内电荷激发的C.由高斯定理求得的场强仅由面内电荷所激发的D.由高斯定理求得的场强是空间所有电荷共同激发的2、半径为R 的“无限长”均匀带电圆柱面的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为: ( B )3、在真空中的A 、B 两平行金属板,相距为d ,板面积为S (S→∞),各带电+q 和-q , 两板间的作用力f 大小为( C )4、在静电场中,作一闭合曲面S ,若有 则S 面内必定(D )A .既无自由电荷,也无束缚电荷B .没有自由电荷C .自由电荷和束缚电荷的代数和为零D .自由电荷的代数和为零5.关于静电场中的电位移线,下列说法中,哪一种是正确的?(C )A .起自正电荷,止于负电荷,不形成闭合线,不中断B .任何两条电位移线互相平行C .起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空间不相交D .电位移线只出现在有电介质的空间6、一带电体可作为点电荷处理的条件是(C )(A )电荷必须呈球形分布。
大学物理第7章静电场中的导体和电介质课后习题及答案

1第7章 静电场中的导体和电介质 习题及答案1. 半径分别为R 和r 的两个导体球,相距甚远。
用细导线连接两球并使它带电,电荷面密度分别为1s 和2s 。
忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。
试证明:Rr =21s s。
证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以的导体球上产生的电势忽略不计,所以半径为R 的导体球的电势为的导体球的电势为R R V 0211π4e p s =014e s R =半径为r 的导体球的电势为的导体球的电势为r r V 0222π4e p s =024e s r = 用细导线连接两球,有21V V =,所以,所以Rr=21s s 2. 证明:对于两个无限大的平行平面带电导体板来说,证明:对于两个无限大的平行平面带电导体板来说,(1)(1)(1)相向的两面上,电荷的面密度总是相向的两面上,电荷的面密度总是大小相等而符号相反;大小相等而符号相反;(2)(2)(2)相背的两面上,电荷的面密度总是大小相等而符号相同。
相背的两面上,电荷的面密度总是大小相等而符号相同。
相背的两面上,电荷的面密度总是大小相等而符号相同。
证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1s ,2s ,3s ,4s (1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得内部的闭合圆柱面为高斯面,由高斯定理得S S d E SD +==×ò)(10320s s e故+2s 03=s上式说明相向两面上电荷面密度大小相等、符号相反。
上式说明相向两面上电荷面密度大小相等、符号相反。
(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即电平面产生的场强叠加而成的,即0222204030201=---e s e s e s e s又+2s 03=s 故 1s 4s =3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。
大学物理静电场练习题带标准答案

大学物理静电场练习题带答案————————————————————————————————作者:————————————————————————————————日期:大物练习题(一)1、如图,在电荷体密度为ρ的均匀带电球体中,存在一个球形空腔,若将带电体球心O 指向球形空腔球心O '的矢量用a 表示。
试证明球形空腔中任一点电场强度为 . A 、03ρεa B 、0ρεa C 、02ρεa D 、3ρεa2、如图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强A 、02πR λε-B 、0πRλε- C 、00ln 22π4λλεε+ D 、00ln 2π2λλεε+3、 如图所示,一导体球半径为1R ,外罩一半径为2R 的同心薄导体球壳, 外球壳所带总电荷为Q ,而内球的电势为0V ,求导体球和球壳之间的电势差 (填写A 、B 、C 或D ,从下面的选项中选取)。
A 、1020214R Q V R R πε⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ B 、102024R Q V R R πε⎛⎫- ⎪⎝⎭C 、0024Q V R πε- D 、1020214R Q V R R πε⎛⎫⎛⎫+-⎪ ⎪⎝⎭⎝⎭4.如图所示,电荷面密度为1σ的带电无限大板A 旁边有一带电导体B ,今测得导体表面靠近P 点处的电荷面密度为2σ。
求:(1)P 点处的场强 ;(2)导体表面靠近P 点处的电荷元S ∆2σ所受的电场力 。
A 、20σεB 、202σεC 、2202S σε∆D 、220S σε∆5.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ]Q Opr)(A )2200,44r Q QE D rr εεε==ππ; (B )22,44r Q QE D r r ε==ππ; (C )220,44Q QE D r r ε==ππ; (D )2200,44Q QE D r r εε==ππ。
大学物理:静电场练习题

由对称性可知 U p 0
l
l
l
0
12
的均匀电场!
练: 真空中一半径为R的均匀带电球面,总电量为 Q(Q > 0)。今在球面上挖去非常小块的面积
ΔS (连同电荷), 且假设
不影响原来的电荷分布, 则挖去ΔS后球心处电场
R
O
S
强度的大小E= QS /(16 2 0 R 4 )
其方向为 由圆心O点指向S
解:由场强叠加原理,挖去S 后的电场可以看作
和Φ2 ,通过整个球面的电场强度通量为 ΦS ,则
(C) (A) Φ1 Φ2 , ΦS q / 0
S2
q S1 q
O a 2a X
(B)Φ1 Φ2 , ΦS 2q / 0
(C) Φ1 Φ2 , ΦS q / 0
(D) Φ1 Φ2 , ΦS q / 0
解:由高斯定理 ΦS q / 0
(D) 0
解:过P点作如图同轴圆柱形高斯面S,由高斯定理
SE dS 2rlE 0
R1
所以E=0。
l
2
1 R2O r P
4. 有两个点电荷电量都是 +q, 相距为2a。今以左边的
点电荷所在处为球心,以a为半径作一球形高斯面,
在球面上取两块相等的小面积 S1 和 S2 , 其位置如图 所示。设通过 S1 和 S 2 的电场强度通量分别为 Φ1
2. 上半部带正电,下半部带负电,线密度为
3. 非均匀带电,线密度为 0sin
y
dq
d o
x
R
dE
思路:叠加法
dq dE E
解:1)
dq Rd
dE
dq
4 0 R 2
;沿径向
大学物理 第7章 真空中的静电场 答案

第七章 真空中的静电场7-1 在边长为a 的正方形的四角,依次放置点电荷q,2q,-4q 和2q ,它的几何中心放置一个单位正电荷,求这个电荷受力的大小和方向。
解:如图可看出两2q 的电荷对单位正电荷的在作用力 将相互抵消,单位正电荷所受的力为)41()22(420+=a q F πε=,2520aqπε方向由q 指向-4q 。
7-2 如图,均匀带电细棒,长为L ,电荷线密度为λ。
(1)求棒的延长线上任一点P 的场强;(2)求通过棒的端点与棒垂直上任一点Q 的场强。
解:(1)如图7-2 图a ,在细棒上任取电荷元dq ,建立如图坐标,dq =λd ξ,设棒的延长线上任一点P 与坐标原点0的距离为x ,则2020)(4)(4ξπεξλξπεξλ-=-=x d x d dE则整根细棒在P 点产生的电场强度的大小为)11(4)(40020xL x x d E L--=-=⎰πελξξπελ=)(40L x x L-πελ方向沿ξ轴正向。
(2)如图7-2 图b ,设通过棒的端点与棒垂直上任一点Q 与坐标原点0的距离为y204rdxdE πελ=θπελcos 420r dxdE y =,θπελsin 420rdxdE x = 因θθθθcos ,cos ,2yr d y dx ytg x ===,习题7-1图dq ξd ξ习题7-2 图axxdx习题7-2 图by代入上式,则)cos 1(400θπελ--=y =)11(4220Ly y +--πελ,方向沿x 轴负向。
θθπελθd y dE E y y ⎰⎰==00cos 400sin 4θπελy ==2204Ly y L+πελ 7-3 一细棒弯成半径为R 的半圆形,均匀分布有电荷q ,求半圆中心O 处的场强。
解:如图,在半环上任取d l =Rd θ的线元,其上所带的电荷为dq=λRd θ。
对称分析E y =0。
θπεθλsin 420R Rd dE x =⎰⎰==πθπελ00sin 4RdE E x R02πελ=2022Rq επ=,如图,方向沿x 轴正向。
习题解答---大学物理第7章习题--2

专业班级_____ ________学号________第七章静电场中的导体和电介质一、选择题:1,在带电体A旁有一不带电的导体壳B,C为导体壳空腔的一点,如下图所示。
则由静电屏蔽可知:[ B ](A)带电体A在C点产生的电场强度为零;(B)带电体A与导体壳B的外表面的感应电荷在C点所产生的合电场强度为零;(C)带电体A与导体壳B的表面的感应电荷在C点所产生的合电场强度为零;(D)导体壳B的、外表面的感应电荷在C点产生的合电场强度为零。
解答单一就带电体A来说,它在C点产生的电场强度是不为零的。
对于不带电的导体壳B,由于它在带电体A这次,所以有感应电荷且只分布在外表面上(因其部没有带电体)此感应电荷也是要在C点产生电场强度的。
由导体的静电屏蔽现象,导体壳空腔C点的合电场强度为零,故选(B)。
2,在一孤立导体球壳,如果在偏离球心处放一点电荷+q,则在球壳、外表面上将出现感应电荷,其分布情况为 [ B ](A)球壳表面分布均匀,外表面也均匀;(B)球壳表面分布不均匀,外表面均匀;(C)球壳表面分布均匀,外表面不均匀;(D)球壳的、外表面分布都不均匀。
解答 由于静电感应,球壳表面感应-q ,而外表面感应+q ,由于静电屏蔽,球壳部的点电荷+q 和表面的感应电荷不影响球壳外的电场,外表面的是球面,因此外表面的感应电荷均匀分布,如图11-7所示。
故选(B )。
3. 当一个带电导体达到静电平衡时:[ D ](A) 表面上电荷密度较大处电势较高 (B) 表面曲率较大处电势较高。
(C)导体部的电势比导体表面的电势高。
(D)导体任一点与其表面上任一点的电势差等于零。
4. 如图示为一均匀带电球体,总电量为+Q ,其外部同心地罩一、外半径分别为r 1、r 2的金属球壳、设无穷远处为电势零点,则在球壳半径为r 的P 点处的场强和电势为: [ D ](A )E=r Q U r Q 0204,4πεπε=(B )E=0,104r Q U πε= (C )E=0,rQ U 04πε=(D )E=0,204r Q U πε=5. 关于高斯定理,下列说法中哪一个是正确的? [ C ](A )高斯面不包围自由电荷,则面上各点电位移矢量D为零。
大学物理 静电场习题

第7、8章 习题
28
其他习题
1、如图所示,真空中一长为L的均匀带电细直杆,总电荷为q, 试求在直杆延长线上距杆的一端 距离为d的P点的电场强度.
解:设杆的左端为坐标原点O,x轴沿直方向.带 电直杆的电荷线密度为λ =q / L,在x处取一电 荷元dq = ldx = qdx / L,它在P点的场强:
dq
Q
r a qO b
第7、8章 习题
27
(3) 球心O点处的总电势为分布在球壳内外表面上的电荷和 点电荷q在O点产生的电势的代数和
U O U q U q U Qq
q q Qq 4 0 r 4 0 a 4 0 b
Q
r a qO b
Q q 1 1 1 ( ) 4 0 r a b 4 0 b
-3 σ / (2ε0) 的电场强度分别为: EA=__________________ , - σ / (2ε0) EB=__________________ ,
3 σ / (2ε0) EC=_______________( 设方向向右为正).
+ +2 A B C
第7、8章 习题
31
4、在点电荷+q和-q的静电场中,作出 如图所示的三个闭合面S1、S2、S3,则 通过这些闭合面的电场强度通量分别是:
第7、8章 习题
35
8、静电学中有下面几个常见的场强公式:
E F /q
E = q / (40r2) E = (UA-UB) / l
(1) (2) (3)
问:1.式(1)、(2)中的q意义是否相同? 2.各式的适用范围如何?
第7、8章 习题
36
答:1. (1)、(2) 两式中的q意义不同.(1) 式中的q是置于静 电场中受到电场力作用的试验电荷;(2)中的q是产生电场
大学物理第07章习题分析与解答

r R r REOr(D)E ∝1/r 222第七章 静电场7-1 关于电场强度与电势的关系,描述正确的是[ ]。
(A) 电场强度大的地方电势一定高; (B) 沿着电场线的方向电势一定降低; (C) 均匀电场中电势处处相等; (D) 电场强度为零的地方电势也为零。
分析与解 电场强度与电势是描述静电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零;电场强度等于负电势梯度;静电场是保守场,电场线的方向就是电势降低的方向。
正确答案为(B )。
7-2 半径为R 的均匀带电球面的静电场中各点的电场强度的大小E 与距球心的距离r 之间的关系曲线为[ ]。
7-3、下分析与解 根据静电场的高斯定理可以求得均匀带电球面的电场强度分布为⎪⎩⎪⎨⎧>πε<=R r rQRr E 2040。
正确答案为(B )。
7-3 下列说法正确的是[ ]。
(A )带正电的物体电势一定是正的 (B)电场强度为零的地方电势一定为零 (C )等势面与电场线处处正交 (D)等势面上的电场强度处处相等分析与解 正电荷在电场中所受的电场力的方向与电场线的切线方向相同,电荷在等势面上移动电荷时,电场力不做功,说明电场力与位移方向垂直。
正确答案为(C )。
7-4 真空中一均匀带电量为Q 的球壳,将试验正电荷q 从球壳外的R 处移至无限远处时,电场力的功为[ ]。
(A )24R qQ o πε (B )R Q o πε4 (C ) R q o πε4 (D )R qQ o πε4分析与解 静电场力是保守力,电场力做的功等电势能增量的负值,也可以表示成这一过程的电势差与移动电量的乘积,由习题7-2可知电场强度分布,由电势定义式⎰∞⋅=R rE d V 可得球壳与无限远处的电势差。
正确答案为(D )。
7-5 关于静电场的高斯定理有下面几种说法,其中正确的是[ ]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7章 习题精选(一)选择题7-1、下列几种说法中哪一个是正确的?(A )电场中某点场强的方向,就是点电荷在该点所受电场力的方向.(B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同.(C )场强可由q F E /=计算,其中q 为试验电荷,q 可正、可负,F 为试验电荷所受电场力. (D )以上说法都不正确.[ ]7-2、图中实线为某电场的电场线,虚线表示等势面,由图可看出: (A )C B A E E E >>,C B A V V V >>.(B )C B A E E E <<,C B A V V V <<. (C )C B A E E E >>,C B A V V V <<.(D )C B A E E E <<,C B A V V V >>.[ ]7-3、关于电场强度定义式0/q F E=,下列说法中哪个是正确的?(A )场强E的大小与试验电荷0q 的大小成反比.(B )对场中某点,试验电荷受力F与0q 的比值不因0q 而变.(C )试验电荷受力F 的方向就是场强E的方向.(D )若场中某点不放试验电荷0q ,则0=F ,从而0=E.[ ]7-4、有一边长为a 的正方形平面,在其中垂线上距中心O 点垂直距离为a /2处,有一电量为q 的正点电荷,如图所示,则通过该平面的电场强度通量为(A )03εq . (B )04επq (C )03επq . (D )06εq[ ]7-5、已知一高斯面所包围的体积内电荷代数和0=∑q ,则可肯定:(A )高斯面上各点场强均为零. (B )穿过高斯面上每一面元的电场强度通量均为零. (C )穿过整个高斯面的电场强度通量为零. (D )以上说法都不对.[ ]q7-6、点电荷Q 被曲面S 所包围,从无穷远处引入另一点电荷q 至曲面外一点,如图,则引入前后: (A )曲面S 的电场强度通量不变,曲面上各点场强不变. (B )曲面S 的电场强度通量变化,曲面上各点场强不变. (C )曲面S 的电场强度通量变化,曲面上各点场强变化. (D )曲面S 的电场强度通量不变,曲面上各点场强变化.[ ]7-7、高斯定理0/d ε∑⎰⋅=q S E S(A )适用于任何静电场. (B )只适用于真空中的静电场. (C )只适用于具有球对称性、轴对称性和平面对称性的静电场.(D )只适用于虽然不具有(C )中所述的对称性、但可以找到合适的高斯面的静电场.[ ]7-8、关于高斯定理的理解有下面几种说法,其中正确的是:(A )如果高斯面上E处处为零,则该面内必无电荷.(B )如果高斯面内无电荷,则高斯面上E处处为零.(C )如果高斯面上E处处不为零,则高斯面内必有电荷.(D )如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零.[ ]7-9、静电场中某点电势的数值等于(A )试验电荷q 0置于该点时具有的电势能. (B )单位试验电荷置于该点时具有的电势能. (C )单位正电荷置于该点时具有的电势能.(D )把单位正电荷从该点移到电势零点外力所做的功.[ ]7-10、图中所示为轴对称性静电场的E ~r 曲线,请指出该电场是由下列哪一种带电体产生的(E 表示电场强度的大小,r 表示离对称轴的距离).(A )“无限长”均匀带电圆柱面. (B )“无限长”均匀带电圆柱体. (C )“无限长”均匀带电直线. (D )“有限长”均匀带电直线.[ ]7-11、如图所示,边长为l 的正方形,在其四个顶点上各放有等量的点电荷.若正方形中心O 处的场强值和电势值都等于零,则:(A )顶点a 、b 、c 、d 处都是正电荷.(B )顶点a 、b 处是正电荷,c 、d 处是负电荷. (C )顶点a 、c 处是正电荷,b 、d 处是负电荷. (D )顶点a 、b 、c 、d 处都是负电荷.[ ]7-12、图中所示为一球对称性静电场的电势分布曲线,r 表示离对称中心的距离.请指出该电场是由下列哪一种带电体产生的.(A )半径为R 的均匀带负电球面.(B )半径为R 的均匀带负电球体. (C )正点电荷. (D )负点电荷.[ ]7-13、已知某电场的电场线分布情况如图所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪个是正确的?(A )电场强度N M E E <. (B )电势N M V V <. (C )电势能pN pM E E <. (D )电场力的功0>W .[ ]7-14、有三个直径相同的金属小球.小球1和小球2带等量异号电荷,两者的距离远大于小球直径,相互作用力为F .小球3不带电并装有绝缘手柄.用小球3先和小球1碰一下,接着又和小球2碰一下,然后移去.则此时小球1和2之间的相互作用力为:(A )0. (B )F /4. (C )F /8. (D )F /2.[ ]7-15、一“无限大”均匀带电平面A ,其附近放一与它平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷面密度为σ+,则在导体板B 的两个表面1和2上的感应电荷面密度为:(A )σσ-=1,σσ+=2. (B )σσ211-=,σσ212+=.(C )σσ211-=,σσ212-=. (D )σσ-=1,02=σ.[ ]baA+σ27-16、A 、B 为两导体大平板,面积均为S ,平行放置,如图所示.A 板带电荷1Q +,B 板带电荷2Q +,如果使B 板接地,则AB 间电场强度的大小E 为(A )S Q 012ε. (B )S Q Q 0212ε-. (C )S Q01ε. (D )SQ Q 0212ε+. [ ]7-17、两个同心薄金属球壳,半径分别为1R 和2R (12R R >),若分别带上电荷1q 和2q ,则两者的电势分别为1V 和2V (选无穷远处为电势零点).现用导线将两球壳相连接,则它们的电势为(A )1V . (B )2V . (C )21V V +. (D ))(2121V V +.[ ]7-18、如图所示,一带负电荷的金属球,外面同心地罩一不带电的金属球壳,则在球壳中一点P 处的场强大小与电势(设无穷远处为电势零点)分别为:(A )00>=V E ,. (B )00<=V E ,. (C )00==V E ,. (D )00<>V E ,.[ ]7-19、在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布.如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现:(A )球壳内、外场强分布均无变化. (B )球壳内场强分布改变,球壳外不变. (C )球壳外场强分布改变,球壳内不变. (D )球壳内、外场强分布均改变.[ ]7-20、电场强度0/q F E=这一定义的适用范围是:(A )点电荷产生的电场. (B )静电场. (C )匀强电场. (D )任何电场.[ ]7-21、在边长为b 的正方形中心放置一点电荷Q ,则正方形顶角处的场强为: (A )20π4b Q ε. (B )20π2b Q ε. (C )20π3b Q ε. (D )20πb Qε. [ ]7-22、一“无限大”均匀带电平面A 的右侧放一与它平行的“无限大”均匀带电平面B .已知A 面电荷面密度为σ,B 面电荷面密度为σ2,如果设向右为正方向,则两平面之间和平面B 右侧的电场强度分别为:(A )002εσεσ,. (B )00εσεσ,. (C )00232εσεσ,-. (D )002εσεσ,-. +Q 2A B[ ]7-23、一带有电量Q 的肥皂泡(可视为球面)在静电力的作用下半径逐渐变大,设在变大的过程中其球心位置不变,其形状保持为球面,电荷沿球面均匀分布,则在肥皂泡逐渐变大的过程中:(A )始终在泡内的点的场强变小. (B )始终在泡外的点的场强不变. (C )被泡面掠过的点的场强变大. (D )以上说法都不对.[ ]7-24、两个同心均匀带电球面,半径分别为a R 和b R (a R <b R ),所带电荷分别为a Q 和b Q .设某点与球心相距r ,当b R r >时,该点的电场强度的大小为:(A )⎪⎪⎭⎫ ⎝⎛+2b b 2a 0π41R Q r Q ε. (B )⎪⎭⎫ ⎝⎛+2b a 0π41r Q Q ε. (C )⎪⎭⎫ ⎝⎛-2b a 0π41r Q Q ε. (D )2a 0π41r Q ε. [ ]7-25、关于高斯定理的理解有下面几种说法,其中正确的是: (A )如果高斯面内有净电荷,则通过高斯面的电通量必不为零.(B )如果高斯面内无电荷,则高斯面上E处处为零.(C )如果高斯面上E处处不为零,则该面内必有电荷. (D )高斯定理仅适用于具有高度对称性的电场.[ ]7-26、一点电荷放在球形高斯面的中心处,下列哪一种情况,通过该高斯面的电通量会发生变化. (A )将另一点电荷放在高斯面外. (B )将另一点电荷放在高斯面内. (C )将球心处的点电荷移开,但仍在高斯面内. (D )将高斯面缩小.[ ]7-27、在已知静电场分布的条件下,任意两点1P 和2P 之间的电势差决定于: (A )1P 和2P 两点的位置. (B )1P 和2P 两点处的电场强度的大小和方向. (C )试验电荷所带电荷的正负. (D )试验电荷所带的电量.[ ]7-28、带电导体达到静电平衡时,其正确结论是:(A )导体表面上曲率半径小处电荷密度较小.(B )表面曲率半径较小处电势较高.(C )导体内部任一点电势都为零. (D )导体内任一点与其表面上任一点的电势差等于零.[ ]7-29、一个平行板电容器,充电后与电源断开,当用绝缘手柄将电容器两极板间距离拉大,则两极板间的电势差U ,电场强度的大小E ,将发生如下变化.(A )U 减小,E 减小. (B )U 增大,E 增大.(C )U 增大,E 不变. (D )U 减小,E 不变.[ ](二)填空题7-1、根据定义,静电场中某点的电场强度等于置于该点的___________________所受到的电场力.7-2、电场线稀疏的地方电场强度________;密集的地方电场强度________.(填“较大”或“较小”)7-3、均匀带电细圆环圆心处的场强为______________.7-4、一电偶极子,带电量为C 1025-⨯=q ,间距cm 5.0=L ,则系统电矩为_____________Cm .7-5、在静电场中作一任意闭合曲面,通过该曲面的电场强度通量的值取决于________________.7-6、两个平行的“无限大”均匀带电平面,其电荷面密度分别为σ+和σ-,则两平面之间的电场强度大小为___________________,方向为_____________________.7-7、一个均匀带电球面半径为R ,带电量为Q .在距球心r 处(r <R )某点的电势为________________.7-8、在电荷为q 的点电荷的静电场中,将一电荷为0q 的试验电荷从a 点(距离q 为a r )沿任意路径移动到b 点(距离q 为b r ),外力克服静电场力所做的功=W ____________________.7-9、电荷为C 1059-⨯-的试验电荷放在电场中某点时,受到N 10209-⨯的向下的力,则该点的电场强度大小为____________,方向____________.7-10、两个平行的“无限大”均匀带电平面,其电荷面密度分别为σ+和σ2+,如图所示,则A 、B 、C 三个区域的电场强度分别为:E A =______________,E B =________________,E C =_____________(设方向向右为正).7-11、一半径为R 的带有一缺口的细圆环,缺口长度为d (d <<R )环上均匀带有正电,电荷为q ,如图所示.则圆心O 处的场强大小=E ______________,场强方向为____________.7-12、半径为R 的半球面置于场强为E的均匀电场中,其对称轴与场强方向一致,如图所示.则通过该半球面的电场强度通量为___________.7-13、一均匀带正电的导线,电荷线密度为λ,其单位长度上总共发出的电场线条数(即电场强度通量)是____________.7-14、如图,点电荷q 和-q 被包围在高斯面S 内,则通过该高斯面的电场强度通量⎰⋅SS E d =_________,式中E为__________________处的场强.7-15、在点电荷+q 和-q 的静电场中,作出如图所示的三个闭合面S 1、S 2、S 3,则通过这些闭合面的电场强度通量分别是:1Φ=___________,2Φ=___________,3Φ=________________.7-16、描述静电场的两个基本物理量是__________________;它们的定义公式是_______________和_________________.7-17、图示BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电荷为+q 的点电荷,O 点有一电荷为-q 的点电荷.线段R BA =.现将一单位正电荷从B 点沿半圆弧轨道BCD 移到D 点,则电场力所做的功为_____________.123+σ +2σAB C7-18、半径为R 的均匀带电圆环,电荷线密度为λ.设无穷远处为电势零点,则圆环中心O 点的电势V =_____________________.7-19、静电场的场强环路定理的数学表示式为:____________.该式的物理意义____________________该定理表明,静电场是____________场.7-20、电荷为Q 的点电荷固定在空间某点上,将另一电荷为q 的点电荷放在与Q 相距r 处.若设两点电荷相距无限远时电势能为零,则此时系统的电势能E p =___________________.7-21、一空气平行板电容器,两极板间距为d ,充电后板间电压为U .然后将电源断开,在两板间平行地插入一厚度为d /3的金属板,则板间电压变成U '=________________.7-22、如图所示,两同心导体球壳,内球壳带电荷+q ,外球壳带电荷-2q .静电平衡时,外球壳的电荷分布为:内表面_____________;外表面_______________.7-23、如图所示,把一块原来不带电的金属板B ,移近一块已带有正电荷Q 的金属板A ,平行放置.设两板面积都是S ,板间距离是d ,忽略边缘效应.当B 板不接地时,两板间电势差U AB =_____________;B 板接地时两板间电势差='ABU _____________.7-24、一个不带电的金属球壳的内、外半径分别为R 1和R 2,今在中心处放置一电荷为q 的点电荷,则球壳的电势U =_____________.7-25、一平行板电容器充电后切断电源,若使两电极板距离增加.则电容将____________,两极板间电势差将__________.(填“增大”、“减小”或“不变”)S(三)计算题7-1、电荷为q 1=8.0×10-6C 和q 2=-8.0×10-6C 的两个点电荷相距20cm ,求离它们都是20cm 处的电场强度.(真空介电常量-2-12120m N C 108.85⋅⋅⨯=ε)7-2、如图所示,一长为10cm 的均匀带正电细杆,其电荷为1.5×10-8C ,试求在杆的延长线上距杆的端点5cm 处的P 点的电场强度.(2-290C m N 10941⋅⋅⨯=πε)7-3、绝缘细线弯成的半圆环,半径为R ,其上均匀地带有正电荷Q ,试求圆心O 点的电场强度.7-4、“无限长”均匀带电的半圆柱面,半径为R ,设半圆柱面沿轴线OO'单位长度上的电荷为λ,试求轴线上一点的电场强度.7-5、真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为λ-和λ+.试求:在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点).7-6、真空中一立方体形的高斯面,边长a =0.1m ,位于图中所示位置.已知空间的场强分布为:bx E =x ,0z y ==E E .常量b =1000N/(C ⋅m ).试求通过该高斯面的电通量.7-7、如图所示,两个点电荷+q 和-3q ,相距为d ,试求:(1)在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远?(2)若选无穷远处电势为零,两点电荷之间电势0=V 的点与电荷为+q 的点电荷相距多远?x_7-8、一“无限大”平面中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为σ.如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零).7-9、一个带等量异号电荷的均匀带电同心球面,半径分别为m 03.01=R 和m 10.02=R .已知两者的电势差为450V ,求内球面上所带的电荷.7-10、厚度为d 的“无限大”均匀带电导体板两表面单位面积上电荷之和为σ.试求图示离左板面距离为a 的一点与离右板面距离为b 的一点之间的电势差.12。