大学物理电磁学综合复习试题1
北京航空航天大学大学物理电磁学试题大集合(含答案)

大学物理电磁学试题(1)一、选择题:(每题3分,共30分)1. 关于高斯定理的理解有下面几种说法,其中正确的是:(A)如果高斯面上E处处为零,则该面内必无电荷。
(B)如果高斯面内无电荷,则高斯面上E处处为零。
(C)如果高斯面上E处处不为零,则该面内必有电荷。
(D)如果高斯面内有净电荷,则通过高斯面的电通量必不为零(E )高斯定理仅适用于具有高度对称性的电场。
[ ]2. 在已知静电场分布的条件下,任意两点1P 和2P 之间的电势差决定于:(A)1P 和2P 两点的位置。
(B)1P 和2P 两点处的电场强度的大小和方向。
(C)试验电荷所带电荷的正负。
(D)试验电荷的电荷量。
[ ] 3. 图中实线为某电场中的电力线,虚线表示等势面,由图可看出:(A)C B A E E E >>,C B A U U U >> (B)C B A E E E <<,C B A U U U << (C)C B A E E E >>,C B A U U U <<(D)C B A E E E <<,C B A U U U >> [ ]4. 如图,平行板电容器带电,左、右分别充满相对介电常数为ε1与ε2的介质,则两种介质内:(A)场强不等,电位移相等。
(B)场强相等,电位移相等。
(C)场强相等,电位移不等。
(D)场强、电位移均不等。
[ ] 5. 图中,Ua-Ub 为:(A)IR -ε (B)ε+IR(C)IR +-ε (D)ε--IR [ ]6. 边长为a 的正三角形线圈通电流为I ,放在均匀磁场B 中,其平面与磁场平行,它所受磁力矩L 等于:(A)BI a 221 (B)BI a 2341(C)BI a 2 (D)0 [ ]7. 如图,两个线圈P 和Q 并联地接到一电动势恒定的电源上,线圈P 的自感和电阻分别是线圈Q 的两倍,线圈P 和Q 之间的互感可忽略不计,当达到稳定状态后,线圈P 的磁场能量与Q 的磁场能量的比值是:(A)4; (B)2; (C)1; (D)1/2 [ ] 8. 在如图所示的电路中,自感线圈的电阻为Ω10,自感系数为H 4.0,电阻R为Ω90,电源电动势为V 40,电源内阻可忽略。
大学物理(电磁学)试卷1

大学物理(电磁学)试卷1(考试时间 120分钟 考试形式闭卷)年级专业层次 姓名 学号注意:请将所有答案写在专用答题纸上,并注明题号。
答案写在试卷和草稿纸上一律无效。
一.选择题:(共30分 每小题3分)1.如图所示,两个“无限长”的共轴圆柱面,半径分别为R 1和R 2,其上均匀带电,沿轴线方向单位长度上的带电量分别为1λ和2λ,则在两圆柱面之间,距离轴线为r 的P 点处的场强大小E 为:(A )r 012πελ. (B )r 0212πελλ+. (C ))(2202r R -πελ. (D ))(2101R r -πελ.2.如图所示,直线MN 长为l 2,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷+q ,M 点有负电荷-q .今将一试验电荷+q 0从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功(A ) A < 0且为有限常量.(B ) A > 0且为有限常量. (C ) A =∞.(D ) A = 0.3.一带电体可作为点电荷处理的条件是(A )电荷必须呈球形分布. (B )带电体的线度很小. (C )带电体的线度与其它有关长度相比可忽略不计. (D )电量很小.4.下列几个说法中哪一个是正确的?(A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向.(B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同.(C )场强方向可由q F E /=定出,其中q 为试探电荷的电量,q 可正、可负,F 为试探电荷所受的电场力.(D )以上说法都不正确.5.在图(a )和(b )中各有一半径相同的圆形回路1L 、2L ,圆周内有电流1I 、2I ,其分布相同,且均在真空中,但在(b )图中2L 回路外有电流3I ,P 1、P 2为两圆形回路上的对应点,则:(A )2121,d d P P L L B B l B l B =⋅=⋅⎰⎰ (B )2121,d d P P L L B B l B l B =⋅≠⋅⎰⎰(C )2121,d d P P L L B B l B l B ≠⋅=⋅⎰⎰ (D )2121,d d P P L L B B l B l B ≠⋅≠⋅⎰⎰6.电场强度为E 的均匀电场,E的方向与X 轴正向平行,如图所示.则通过图中一半径为R 的半球面的电场强度通量为(A )E R 2π.(B )E R 221π. (C )E R 22π. (D )07.在静电场中,有关静电场的电场强度与电势之间的关系,下列说法中正确的是: (A )场强大的地方电势一定高. (B )场强相等的各点电势一定相等. (C )场强为零的点电势不一定为零. (D )场强为零的点电势必定是零.8.正方形的两对角上,各置点电荷Q ,在其余两对角上各置电荷q ,若Q 所受合力为零,则Q 与q 的大小关系为(A )q Q 22-=. (B )q Q 2-=. (C )q Q 4-=. (D )q Q 2-=.9.在阴极射线管外,如图所示放置一个蹄形磁铁,则阴极射线将 (A )向下偏. (B )向上偏. (C )向纸外偏. (D )向纸内偏.10.对位移电流,有下述四种说法,请指出哪一种说法正确.(A )位移电流是由变化电场产生的. (B )位移电流是由线性变化磁场产生的. (C )位移电流的热效应服从焦耳—楞次定律.(D )位移电流的磁效应不服从安培环路定理.二.填空题:(共30分 每小题3分)1.一平行板电容器,两板间充满各向同性均匀电介质,已知相对电容率为r ε,若极板上的自由电荷面密度为σ,则介质中电位移的大小D = ,电场强度的大小E = .2.一空气平行板电容器,电容为C ,两极板间距离为d .充电后,两极板间相互作用力为F .则两极板间的电势差为 ,极板上的电荷量大小为 .3.在相对介电常数4=r ε的各向同性均匀电介质中,与电能密度36J/cm 102⨯=e w 相应的电场强度的大小E= .(ε0=8.85×10-12C 2N -1m -2)4.平行板电容器,充电后与电源保持连接,然后使两极板间充满相对电容率为0ε的各向同性均匀电介质,这时两极板上的电量是原来的 倍,电场强度是原来的 倍;电场能量是原来的 倍.5.真空中,半径为R 1和R 2的两个导体球,相距很远,则两球的电容之比C 1:C 2= .当用细长导线将两球相连后,电容C = ,今给其带电,平衡后两球表面附近场强之比E l /E 2= .6.电量为C 1059-⨯-的试探电荷放在电场中某点时,受到N 10209-⨯向下的力,则该点的电场强度大小为 ,方向 .7.当带电量为q 的粒子在场强分布为E的静电场中从a 点到b 点作有限位移时,电场力对该粒子所作功的计算式为A = .8.图示为某静电场的等势面图,在图中画出该电场的电力线.垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 .10.面积为S 的平面,放在场强为E 的均匀电场中,已知E 与平面间的夹角为)21(πθ<,则通过该平面的电场强度通量的数值=Φe .三.计算题:(共40分 每小题10分)1、两个点电荷,电量分别为+q 和-3q ,相距为d ,试求:(l )在它们的连线上电场强度0=E的点与电荷量为+q 的点电荷相距多远?(2)若选无穷远处电势为零,两点电荷之间电势U = 0的点与电荷量为+q 的点电荷相距多远?2、无限长直导线折成V 形,顶角为 θ,置于X —Y 平面内,且一个角边与X 轴重合,如图.当导线中通有电流I 时,求Y 轴上一点P (0,a )处的磁感应强度大小.3、电量Q 均匀分布在半径为a 、长为L (L >>a )的绝缘薄壁长圆筒表面上,圆筒以角速度ω绕中心轴线旋转.一半径为2a 、电阻为R 的单匝圆形线圈套在圆筒上(如图所示).若圆筒转速按照)/1(00t t -=ωω的规律(0ω和0t 是已知常数)随时间线性地减小,求圆形线圈中感应电流的大小和流向.4、图中所示为水平面内的两条平行长直裸导线LM 与L ′M ′,其间距离为l 其左端与电动势为0ε的电源连接.匀强磁场B垂直于图面向里.一段直裸导线ab 横放在平行导线间(并可保持在导线间无摩擦地滑动)把电路接通.由于磁场力的作用,ab 将从静止开始向右运动起来.求(1) ab 能达到的最大速度V .(2) ab 达到最大速度时通过电源的电流I .dq +q 3-大学物理(电磁学)试卷1答案一.选择题:(共30分,每小题3分) 1.(A )2.(D )3.(C )4.(C )5.(C ) 6.(D ) 7.(C ) 8.(A ) 9.(B ) 10.(A ) 二.填空题:(共30分)l . σ 2分)/(0r εεσ1分 2. C Fd /2 3分FdC 22分3. 3.36×1011V /m 4.r ε 1分 1 1分r ε1分 5. R 1/R 2l 分)(4210R R +πε 2分 R 2/R 12分 6. 4N/C2分 向上1分 7. ⎰⋅b al E qd3分8.9. B r 2π 3分 10.)21cos(θπ-ES 3分三.计算题:(共40分)l .解:设点电荷q 所在处为坐标原点O ,X 轴沿两点电荷的连线.(l )设0=E的点的坐标为x ′,则E0)'(43'42020=--=i d x qi x q E πεπε3分可得 0'2'222=-+d dx x 解出 d x )31(21'1+-=和 d x )13(21'2-= 2分其中'1x 符合题意,'2x 不符合题意,舍去. (2)设坐标x 处 U = 0,则)(43400x d qx q U --=πεπε0])(4[40=--=x d x xd q πε3分得 4/04d x x d ==-2分2.解:如图所示,将V 形导线的两根半无限长导线分别标为1和2。
大学电磁学考试题及答案

大学电磁学考试题及答案一、选择题(每题2分,共20分)1. 电磁波在真空中的传播速度是多少?A. 3×10^8 m/sB. 3×10^5 m/sC. 3×10^6 m/sD. 3×10^9 m/s答案:A2. 法拉第电磁感应定律描述的是哪种现象?A. 电荷守恒定律B. 电荷的产生和消失C. 磁场变化产生电场D. 电场变化产生磁场答案:C3. 根据洛伦兹力公式,当一个带电粒子垂直于磁场运动时,其受到的力的方向是?A. 与磁场方向相同B. 与磁场方向相反C. 与带电粒子速度方向相同D. 与带电粒子速度方向垂直答案:D4. 麦克斯韦方程组中描述电荷分布与电场关系的是?A. 高斯定律B. 法拉第电磁感应定律C. 安培环路定理D. 洛伦兹力公式答案:A5. 一个闭合电路中的感应电动势与什么因素有关?A. 磁通量的变化率B. 磁通量的大小C. 电路的电阻D. 电流的大小答案:A6. 根据电磁波的性质,以下哪种波长与频率的关系是正确的?A. 波长与频率成正比B. 波长与频率成反比C. 波长与频率无关D. 波长与频率成正比,但与速度无关答案:B7. 在电磁学中,磁感应强度的单位是什么?A. 库仑B. 特斯拉C. 安培D. 伏特答案:B8. 电磁波的传播不需要介质,这是因为电磁波具有哪种特性?A. 粒子性B. 波动性C. 传播性D. 能量性答案:B9. 根据电磁学理论,以下哪种情况下磁场强度最大?A. 导线电流较小B. 导线电流较大C. 导线电流为零D. 导线电流变化答案:B10. 电磁波的频率与波长的关系是什么?A. 频率越高,波长越长B. 频率越高,波长越短C. 频率与波长无关D. 频率与波长成正比答案:B二、填空题(每题2分,共20分)1. 电磁波的传播速度在真空中是______。
答案:3×10^8 m/s2. 根据法拉第电磁感应定律,当磁通量发生变化时,会在______产生感应电动势。
大学物理复习题

大学物理复习题(电磁学部分)一、选择题1.三个一样大小的绝缘金属小球A 、B 、C ,A 、B 两小球带有等量同号电荷,它们之间的距离远大于小球本身的直径,相互作用力为F ,若将不带电的小球C 引入,先和A 小球接触,然后和B 小球接触后移去,这时A 小球与B 小球间的相互作用力将变为: A .F/2 B. F/4 C. F/8 D. 3F/8 2、电场中高斯面上各点的电场强度是由:A 、分布在高斯面内的电荷决定的;B 、分布在高斯面外的电荷决定的;C 、空间所有的电荷决定的;D 、高斯面内电荷代数和决定的。
3、以下说法正确的是:A 、场强为零的地方,电势一定为零;电势为零的地方,均强也一定为零。
B 、场强大小相等的地方,电势也相等,等势面上各点场强大小相等。
C 、带正电的物体,电势一定是正的,不带电的物体,电势一定等于零。
D 、沿着均场强的方向,电势一定降低。
4.关于导体有以下几种说法: A .接地的导体都不带电。
B .接地的导体可带正电,也可带负电。
C .一导体的电势零,则该导体不带电。
D .任何导体,只要它所带的电量不变,则其电势也是不变的。
5.在半径为R 的均匀带电球面上,任取面积元S ∆,则此面积元上的电荷所受的电场力应是: A 0 ; B2S σε⋅∆(σ是电荷面密度); C22Sσε⋅∆ ; D 以上说法都不对。
6.平行板电容器在接入电源后,把两板间距拉大,则电容器的:A 电容增大;B 电场强度增大;C 所带电量增大;D 电容、电量及两板内场强都减小。
7.一个电阻,一个电感线圈和一个电容器与交流电源组成串联电路,通过电容器的电流应与下列哪一个的电压同位相A 电阻;B 电感线圈;C 电容器;D 全电路。
8.以下关于磁场的能量密度正确的是: A 、22B Bw μ=B 、012B w E B ε=⨯C 、012B w B μ=D 、22B w B μ=9.如图,长载流导线ab 和cd 相互垂直,它们相距l ,ab 固定不动,cd 能绕中点O 转动,并能靠近或离开ab .当电流方向如图所示时,导线cd 将A .顺时针转动同时离开ab ;B .顺时针转动同时靠近ab ;C .逆时针转动同时离开ab ;D .逆时针转动同时靠近ab 。
大学物理电磁试题及答案

大学物理电磁试题及答案一、选择题(每题5分,共20分)1. 根据库仑定律,两个点电荷之间的静电力与它们电量的乘积成正比,与它们之间的距离的平方成反比。
下列关于库仑定律的描述中,正确的是:A. 静电力与电荷量成正比B. 静电力与电荷量成反比C. 静电力与距离的平方成正比D. 静电力与距离的平方成反比答案:D2. 电容器的电容与电容器的几何尺寸和介质有关。
下列关于电容器的描述中,正确的是:A. 电容器的电容与电容器的面积成正比B. 电容器的电容与电容器的面积成反比C. 电容器的电容与电容器的介质无关D. 电容器的电容与电容器的介质成正比答案:A3. 法拉第电磁感应定律指出,当磁场变化时,会在导体中产生感应电动势。
下列关于法拉第电磁感应定律的描述中,正确的是:A. 感应电动势与磁场变化率成正比B. 感应电动势与磁场变化率成反比C. 感应电动势与磁场变化率无关D. 感应电动势与磁场变化率成平方关系答案:A4. 麦克斯韦方程组是描述电磁场的基本方程。
下列关于麦克斯韦方程组的描述中,正确的是:A. 麦克斯韦方程组只描述了电场B. 麦克斯韦方程组只描述了磁场C. 麦克斯韦方程组描述了电场和磁场的关系D. 麦克斯韦方程组与电磁波无关答案:C二、填空题(每题5分,共20分)1. 根据高斯定律,通过任意闭合曲面的电通量等于_________。
答案:曲面内包围的净电荷量除以真空中的介电常数2. 两个相同电荷量的点电荷,相距为r,它们之间的库仑力为F,当它们相距变为2r时,它们之间的库仑力变为原来的_________。
答案:1/43. 一个电容器的电容为C,当它两端的电压为V时,它所储存的电荷量为_________。
答案:CV4. 根据洛伦兹力公式,一个带电粒子在磁场中运动时,受到的力的大小为qvB,其中q是电荷量,v是速度,B是磁场强度。
当带电粒子的速度方向与磁场方向垂直时,洛伦兹力的大小为_________。
答案:qvB三、计算题(共60分)1. 一个半径为R的均匀带电球体,其总电荷量为Q,求球外距离球心r处的电场强度。
电磁学综合习题(附答案)

大学物理(电磁学)综合复习资料一.选择题: l .(本题3分)真空中一“无限大”均匀带负电荷的平面如图所示,其电场的场强分布图应是(设场强方向向右为正、向左为负)[ ]2.(本题3分)在静电场中,下列说法中哪一个是正确的? (A )带正电荷的导体,其电势一定是正值. (B )等势面上各点的场强一定相等. (C )场强为零处,电势也一定为零. (D )场强相等处,电势梯度矢量一定相等.[ ]3.(本题3分)电量之比为1:3:5的三个带同号电荷的小球A 、B 、C ,保持在一条直线上,相互间距离比小球直径大得多.若固定A 、C 不动,改变B 的位置使B 所受电场力为零时,AB 与BC 比值为 (A )5.(B )l /5. (C )5.(D )5/1[ ]4.(本题3分)取一闭合积分回路L ,使三根载流导线穿过它所围成的面.现改变三根导线之间的相互间隔,但不越出积分回路,则(A )回路L 内的∑I 不变, L 上各点的B不变. (B )回路L 内的∑I 不变, L 上各点的B改变.(C )回路L 内的∑I 改变, L 上各点的B不变.(D )回路L 内的∑I 改变, L 上各点的B改变.[ ]5.(本题3分)对位移电流,有下述四种说法,请指出哪一种说法正确. (A )位移电流是由变化电场产生的.(B )位移电流是由线性变化磁场产生的.(C )位移电流的热效应服从焦耳—楞次定律.(D )位移电流的磁效应不服从安培环路定理.6.(本题3分)将一个试验电荷q 0(正电荷)放在带有负电荷的大导体附近P 点处,测得它所受的力为F .若考虑到电量q 0不是足够小,则(A )0/q F 比P 点处原先的场强数值大. (B )0/q F 比P 点处原先的场强数值小. (C )0/q F 等于原先P 点处场强的数值. (D )0/q F 与P 点处场强数值关系无法确定.[ ]7.(本题3分)图示为一具有球对称性分布的静电场的E ~r 关系曲线.请指出该静电场是由下列哪种带电体产生的.(A )半径为R 的均匀带电球面. (B )半径为R 的均匀带电球体.(C )半径为R 的、电荷体密度为Ar =ρ(A 为常数)的非均匀带电球体. (D )半径为R 的、电荷体密度为r A /=ρ(A 为常数)的非均匀带电球体.[ ]8.(本题3分)电荷面密度为σ+和σ-的两块“无限大”均匀带电的平行平板,放在与平面相垂直的X 轴上的+a 和-a 位置上,如图所示.设坐标原点O 处电势为零,则在-a <x <+a 区域的电势分布曲线为[ ]9.(本题3分)静电场中某点电势的数值等于(A )试验电荷q 0置于该点时具有的电势能.(B )单位试验电荷置于该点时具有的电势能.(C )单位正电荷置于该点时具有的电势能.(D )把单位正电荷从该点移到电势零点外力所作的功. 10.(本题3分)在图(a )和(b )中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在(b )图中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:(A )2121,P P L L B B l d B l d B =⋅=⋅⎰⎰.(B )2121,P P L L B B l d B l d B =⋅≠⋅⎰⎰.(C )2121,P P L L B B l d B l d B ≠⋅=⋅⎰⎰.(D )2121,P P L L B B l d B l d B ≠⋅≠⋅⎰⎰.[ ]11.(本题3分)电位移矢量的时间变化率dt dD /的单位是 (A )库仑/米2. (B )库仑/秒. (C )安培/米2. (D )安培·米2.[ ]L2.(本题3分)有四个等量点电荷在OXY 平面上的四种不同组态,所有点电荷均与原点等距.设无穷远处电势为零,则原点O 处电场强度和电势均为零的组态是[ ]13.(本题3分)如图示,直线MN 长为l 2,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷+q ,M 点有负电荷-q .今将一试验电荷+q 0从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功(A ) A <0且为有限常量. (B ) A >0且为有限常量. (C ) A =∞.(D ) A =0.[ ]I14.(本题3分)一电偶极子放在均匀电场中,当电偶极矩的方向与场强方向不一致时,其所受的合力F和合力矩M为:(A )0,0==M F. (B )0,0≠=M F.(C )0,0=≠M F.(D )0,0≠≠M F.[ ]15.(本题3分)当一个带电导体达到静电平衡时:(A )表面上电荷密度较大处电势较高.(B )表面曲率较大处电势较高.(C )导体内部的电势比导体表面的电势高.(D )导体内任一点与其表面上任一点的电势差等于零.[ ]16.(本题3分)如图所示,螺线管内轴上放入一小磁针,当电键K 闭合时,小磁针的N 极的指向 (A )向外转90O. (B )向里转90O. (C )保持图示位置不动. (D )旋转180O . (E )不能确定.[ ]17.(本题3分)如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知(A ),0=⋅⎰Ll d B且环路上任意一点 B =0.(B ),0=⋅⎰Ll d B 且环路上任意一点0≠B .(C ),0≠⋅⎰Ll d B且环路上任意一点 0≠B .(D ),0≠⋅⎰Ll d B且环路上任意一点B=常量.[ ]18.(本题3分)附图中,M 、P 、O 为由软磁材料制成的棒,三者在同一平面内,当K 闭合后,(A )M 的左端出现N 极. (B )P 的左端出现N 极. (C )O 右端出现N 极. (D )P 的右端出现N 极. [ ]二.填空题: 1.(本题3分)如图所示,在边长为a 的正方形平面的中垂线上,距中心O 点a 21处,有一电量为q 的正点电荷,则通过该平面的电场强度通量为 .2.(本题3分)电量分别为q 1,q 2,q 3的三个点电荷分别位于同一圆周的三个点上,如图所示.设无穷远处为电势零点,圆半径为R ,则b 点处的电势U =3.(本题3分)在静电场中,场强沿任意闭合路径的线积分等于零,即0=⋅⎰Ll d E,这表明静电场中的电力线 .4.(本题3分)空气的击穿电场强度为m V /1026⨯,直径为0.10m 的导体球在空气中时的最大带电量为 .(22120/1085.8m N C ⋅⨯=-ε)5.(本题3分)长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两导体中有等值反向均匀电流I 通过,其间充满磁导率为μ的均匀磁介质.介质中离中心轴距离为r 的某点处的磁场强度的大小H = ,磁感应强度的大小B = . 6.(本题3分)一“无限长”均匀带电的空心圆柱体,内半径为a ,外半径为b ,电荷体密度为ρ.若作一半径为r (a <r <b ),长度为L 的同轴圆柱形高斯柱面,则其中包含的电量q = .7.(本题3分)一静止的质子,在静电场中通过电势差为100V 的区域被加速,则此质子的末速度是 .(leV =1.6×10-19J ,质子质量m P =1.67×l0-27kg ) 8.(本题3分)两个电容器1和2,串联以后接上电动势恒定的电源充电.在电源保持联接的情况下,若把电介质充入电容器2中,则电容器1上的电势差 电容器1极板上的电量 .(填增大、减小、不变) 9.(本题3分)磁场中任一点放一个小的载流试验线圈可以确定该点的磁感应强度,其大小等于放在该点处试验线圈所受的 和线圈的 的比值. 10.(本题3分) 在点电荷系的电场中,任一点的电场强度等于 ,这称为场强叠加原理.11.(本题3分)一半径为R 的均匀带电球面,其电荷面密度为σ.该球面内、外的场强分布为(r表示从球心引出的矢径): =)(r E)(R r <,=)(r E)(R r >.12.(本题3分)在静电场中,电势不变的区域,场强必定为 .三.计算题:l .(本题10分)一空气平行板电容器,两极板面积均为 S ,板间距离为 d ( d 远小于极板线度),在两极板间平行地插入一面积也是S 、厚度为 t (< d )的金属片.试求: (l )电容C 等于多少?(2)金属片放在两极板间的位置对电容值有无影响?计算如图所示的平面载流线圈在P 点产生的磁感应强度,设线圈中的电流强度为I .3.(本题10分)图中所示为水平面内的两条平行长直裸导线LM 与L ’M ’,其间距离为l 其左端与电动势为0ε的电源连接.匀强磁场B垂直于图面向里.一段直裸导线ab 横放在平行导线间(并可保持在导线间无摩擦地滑动)把电路接通.由于磁场力的作用,ab 将从静止开始向右运动起来.求(1) ab 能达到的最大速度V .(2) ab 达到最大速度时通过电源的电流I .4.(本题10分)两电容器的电容之比为2:1:21=C C(l )把它们串联后接到电压一定的电源上充电,它们的电能之比是多少? (2)如果是并联充电,电能之比是多少?(3)在上述两种情形下电容器系统的总电能之比又是多少?5.(本题10分)在一平面内有三根平行的载流直长导线,已知导线1和导线2中的电流I 1=I 2且方向相同,两者相距 3×10-2m ,并且在导线1和导线2之间距导线1为10-2m 处B =0,求第三根导线放置的位置与所通电流I 3之间的关系.一圆柱形电容器,内圆柱的半径为R 1,外圆柱的半径为R 2,长为L )]([12R R L ->>,两圆柱之间充满相对介电常数为r ε的各向同性均匀电介质.设内外圆柱单位长度上带电量(即电荷线密度)分别为λ和λ-,求: (l )电容器的电容;(2)电容器储存的能量.7.(本题10分)从经典观点来看,氢原子可看作是一个电子绕核作高速旋转的体系.已知电子和质子的电量为-e 和e ,电子质量为m e ,氢原子的圆轨道半径为r ,电子作平面轨道运动,试求电子轨道运动的磁矩m p的数值?它在圆心处所产生磁感应强度的数值B 0为多少?8.(本题10分)一无限长直导线通有电流te I I 30-=.一矩形线圈与长直导线共面放置,其长边与导线平行,位置如图所示.求:(l )矩形线圈中感应电动势的大小及感应电流的方向; (2)导线与线圈的互感系数.四.证明题:(共10分) 1.(本题10分)一环形螺线管,共N 匝,截面为长方形,其尺寸如图,试证明此螺线管自感系数为:ab h N L ln220πμ=大学物理(电磁学)参考答案 一.选择题: 1.(D ) 2.(D ) 3.(D ) 4.(B ) 5.(A ) 6.(A ) 7.(B ) 8.(C ) 9.(C ) 10.(C ) 11.(C )12.(D ) 13.(D ) 14.(B ) 15.(D ) 16.(C ) 17.(B ) 18.(B ) 二.填空题:(共27分) 1. )6/(0εq 2.)22(813210q q q R++πε 3.不可能闭合4.5.6×10-7C 5.)2/(r I π,)2/(r I H πμμ= 6.)(22a r L -ρπ7.1.38×105m 8.增大、增大9.最大磁力矩、磁矩10.点电荷系中每一个点电荷在该点单独产生的电场强度的矢量和 11.0、r rR302εσ12.零三.计算题:1.(本题10分)解:设极板上分别带电量+q 和-q ;金属片与A 板距离为d 1,与B 板距离为d 2;金属片与A 板间场强为 )/(01S q E ε= 金属板与B 板间场强为 )/(02S q E ε=金属片内部场强为0'=E 则两极板间的电势差为 d E d E U U B A 21+=- ))](/([210d d S q +=ε))](/([0t d S q -=ε 由此得)/()/(0t d S U U q C B A -=-=ε因C 值仅与d 、t 有关,与d 1、d 2无关,故金属片的安放位置对电容无影响.2.(本题10分)解:如图,CD 、AF 在P 点产生的 B =0EF DE BC AB B B B B B+++=)sin (sin 4120ββπμ-=aIB AB ,方向⊗其中0sin ,2/1)2/(sin 12===ββa a aI B AB 240μ=∴,同理:aI B BC 240μ=,方向⊗.同样 aI B B EF DE 280μ==,方向⊙.aI aIaI B 8224242000μμμ=-=∴3.解:(1)导线ab 运动起来时,切割磁感应线,产生动生电动势。
大学物理电磁学综合复习试题

大学物理电磁学综合复习试题1(共6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1电学一、选择题:1.图中所示曲线表示某种球对称性静电场的场强大小E 随径向距离r 变化的关系,请指出该电场是由下列哪一种带电体产生的: A .半径为R 的均匀带电球面; B .半径为R 的均匀带电球体; C .点电荷;D .外半径为R ,内半径为R /2的均匀带电球壳体。
( ) 2.如图所示,在坐标( a ,0 )处放置一点电荷+q ,在坐标(a ,0)处放置另一点电荷-q 。
P 点是x 轴上的一点,坐标为(x ,0)。
当a x >>时,该点场强的大小为: A .xq 04πε ; B .30xqaπε ; C .302x qa πε ; D .204xqπε 。
( ) 3.在静电场中,下列说法中哪一种是正确的?A .带正电的导体,其电势一定是正值;B .等势面上各点的场强一定相等;C .场强为零处,电势也一定为零;D .场强相等处,电势梯度矢量一定相等。
( )Eo -a +ax -Q+q Px24.如图所示为一沿轴放置的无限长分段均匀带电直线,电荷线密度分别为()0<+x λ和()0>-x λ,则o — xy 坐标平面上PA .0;B .ai 02πελ ;C .a i04πελ ; D .aj i 02)(πελ +。
( )5.如图,两无限大平行平板,其电荷面密度均为+σ,则图中三处的电场强度的大小分别为: A .0εσ,0,0εσ; B .0,0εσ,0; C .02εσ,0εσ,02εσ; D . 0,02εσ,0。
( ) 6.如图示,直线MN 长为l 2,弧OCD 是以N 点为中心,l 为半径的半圆弧,N点有点电荷+q ,M 点有点电荷-q 。
今将一实验电荷+q 出发沿路径OCDP 移到无穷远处,设无穷远处的电势为零, 则电场力作功:A .A <0,且为有限常量;B .A >0,且为有限常量;C .A =∞;D .A =0。
大学物理复习题(电磁学)(DOC)

【课后习题】 第12章 一、填空题1、两个大小完全相同的带电金属小球,电量分别为2q 和-1q ,已知它们相距为r 时作用力为F ,则将它们放在相距3r 位置同时其电量均减半,相互作用力大小为____1/36________F 。
2、电场强度可以叙述为电场中某一点上单位正电荷所受的_____电场力___________;电场中某一点的电势可以叙述为:单位正电荷在该点所具有的__电势能_________。
3、真空环境中正电荷q 均匀地分布在半径为R 的细圆环上,在环环心O 处电场强度为____0________,环心的电势为__R q o πε4/_________。
4、高斯定理表明磁场是 无源 场,而静电场是有源场。
任意高斯面上的静电场强度通量积分结果仅仅取决于该高斯面内全部电荷的代数和。
现有图1-1所示的三个闭合曲面S 1、S 2、S 3,通过这些高斯面的电场强度通量计算结果分别为:⎰⎰⋅=Φ11S SE d ,⎰⎰⋅=Φ22S S E d ,⎰⎰⋅=Φ33S SE d ,则Φ1=___o q ε/_______;Φ2+Φ3=___o q ε/-_______。
5、静电场的场线只能相交于___电荷或无穷远________。
6、两个平行的无限大均匀带电平面,其电荷面密度分别如图所示,则A 、B 、C 三个区域的电场强度大小分别为:E A =_o εσ/4________;E B =_o εσ/________;E C =__o εσ/4_______。
7、由一根绝缘细线围成的边长为l 的正方形线框,使它均匀带电,其电荷线密度为λ,则在正方形中心处的电场强度的大小E =____0____________.8、初速度为零的正电荷在电场力的作用下,总是从__高____电势处向_低____电势处运动。
9、静电场中场强环流为零,这表明静电力是__保守力_________。
10、如图所示,在电荷为q 的点电荷的静电场中,将一电荷为q 0的试验电荷从a 点经任意路径移动到b 点,外力所作的功 W =___⎪⎪⎭⎫ ⎝⎛-12114r r Qq πε___________.11、真空中有一半径为R 的均匀带电半园环,带电量为Q ,设无穷远处为电势零点,则圆心O 处的电势为___R Q 04πε_________;若将一带电量为q 的点电荷从无穷远处移到O 点,电场力所作的功为__RqQ04πε__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电学
一、选择题:
1.图中所示曲线表示某种球对称性静电场的场强大小E 随径向距离r 变化的关系,请指出该电场是由下列哪一种带电体产生的: A .半径为R 的均匀带电球面; B .半径为R 的均匀带电球体; C .点电荷;
D .外半径为R ,内半径为R /2的均匀带电球壳体。
( ) 2.如图所示,在坐标( a ,0 )处放置一点电荷+q ,在坐标(a ,0)处放置另一点电荷-q 。
P 点是x 轴上的一点,坐标为(x ,0)。
当a x >>时,该点场强的大小为: A .
x q 04πε ; B .
3
0x qa
πε ;
C .
3
02x
qa πε ; D .2
04x
q πε 。
( )
3.在静电场中,下列说法中哪一种是正确的? A .带正电的导体,其电势一定是正值; B .等势面上各点的场强一定相等; C .场强为零处,电势也一定为零;
D .场强相等处,电势梯度矢量一定相等。
( ) 4.如图所示为一沿轴放置的无限长分段均匀带电直线,电荷线密度分别为()0<+x λ和
()0>-x λ,则o — xy 坐标平面上P 点(o ,a )
A .0;
B .a
i
02πελϖ;
C .a i 04πελϖ;
D .a
j i 02)
(πελϖϖ+。
( )
-a
x -Q +q P
5.如图,两无限大平行平板,其电荷面密度均为+σ,则图中三处的电场强度的大小分别为: A .
0εσ,0,0εσ; B .0,0
εσ,0; C .
02εσ,0εσ,02εσ; D . 0,0
2εσ
,0。
( ) 6.如图示,直线MN 长为l 2,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有点电荷+q ,M 点有点电荷-q 。
今将一实验电荷+q ,从O 点 出发沿路径OCDP 移到无穷远处,设无穷远处的电势为零, 则电场力作功:
A .A <0,且为有限常量;
B .A >0,且为有限常量;
C .A =∞;
D .A =0。
( ) 7.关于静电场中某点电势值的正负,下列说法中正确的是: A .电势值的正负取决于置于该点的实验电荷的正负; B .电势值的正负取决于电场力对实验电荷作功的正负; C .电势值的正负取决于电势零点的选取;
D .电势值的正负取决于产生电场的电荷的正负。
( ) 8.一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为d 处(d <R ),固定一电量为+q 的点电荷,用导线把球壳接地后,再把地线撤去。
选无穷远处为电势零点,则球心o 处的电势为:
A .0;
B .
d q 04πε
C .
R
q 04πε D .
)11(40
R d q -πε。
( )
9.平行板电容器两极板(看作很大的平板)间的相互作用力F 与两极板间的电压U 的关系是:
A .U F ∝;
B .U F 1∝
; C .21U
F ∝; D .2
U F ∝。
a
c
+σ
+σ
10.一“无限大”平行板电容器,极板面积为S ,若插入一厚度与极板间距相等而面积为
2
S
、相对介电常数为εr 的各向同性均匀电介质板,如图所示,则插入介质后的电容值与原来的电容值之比
C C
为: A .εr ; B .
r
1
ε;
C .
2
1
r +ε; D .
1
2
r +ε。
( ) 11.用力F 把电容器中的电介质拉出,在图a 和图b 两种情况下,电容器中储存的静电能量将
A .均增加;
B .均减少;
C .a 中增加,b 中减少;
D .a 中减少,b 中增加。
( ) 12.如图所示,两同心金属球壳,它们离地球很远,内球壳用细导线 穿过外球壳上的绝缘小孔与地连接,外球壳上带有正电荷,则内球壳: A .不带电荷; B .带正电荷; C .带负电荷;
D .内球壳外表面带负电荷,内表面带等量正电荷。
( ) 二、填空题:
1.已知某静电场的电势函数为a
x A U +-=,式中A 和a 均为常数,则电场中任意点的电
场强度=E ϖ。
2.如图所示,把一块原来不带电的金属板B ,移近一块已带有正电荷Q 的金属板A ,平行放置,设两板面积都是S ,板间距离为d ,且S >>d 2,A 、B 间为真空, 则两板间电势差U AB = ;
S/2
(a)
(b) 充电后仍与
电源连接
充电后与 电源断开
S S
当B 板接地时,='AB
U 。
三、计算题:
2.有一半径为R ,带电+Q 的导体球,在静电平衡时,求球内、 球外任一点的电势U 内、U 外。
3.均匀带电的细线ab 弯成半圆弧形状,圆弧半径为R ,电荷
线密度为λ;若选无穷处为电势零点,试求圆心o 处的电势。
4.一平行板电容器,其极板面积为S ,两板间距离为d ( S d <<
),中间充满相对介电
常数为εr 的各向同性均匀电介质。
设两极板上带电量分别为+Q 和-Q ,求: (1) 电容器的电容;(2) 电容器储存的能量。
5.半径为R 的导体带电Q ,球外套一个内半径为R 1,外半 径为R 2的同心介质球壳(相对介电常数为εr ),求:(1) 电场强 度的分布:(2) P 点的电势U P ;(3) 介质球壳中储存的能量。
电学答案
一、选择题:
1.A 2.B 3..D 4.B 5.A 6.D 7.C 8.D 9.D 10.C 11.D 12.C 二、填空题: 1.i a x A ϖ2
)
(+-
; 2.s Qd 02ε,s Qd 0ε; 3.0; 三、计算题:
2.解:0=内E , 2
041
r Q E πε=
外 ;
R
Q
r E r E U R
R
r
41d d πε=
⋅+
⋅=
⎰
⎰
∞
ρρρ
ρ外内内 r
Q r E U r
41d πε=
⋅=⎰
∞
ρρ外外
r
b
3.解: 取圆弧上一微小弧段,其所对应的圆心角为d θ, 则:θd d R s = ,θλλd d d R s q ==, 0
004d 4d 4d d πεθ
λπεθλπε==
=
R R R
q u
∴ 0
4d ελ
π
=
=
⎰
u u 4.解:(1)已知两极板分别带电量+Q 和-Q ,两板间电位移大小为:S
Q D = 场强大小为:S
Q D
E r 0r 0εεεε=
=
两极板间电势差:S
Qd
Ed U r 0εε==
电容:d
S U Q C r 0εε==
(2)电场能量:S
d
Q C Q W r 02222εε== 5.解:1) 由于电场分布具有球对称性,根据高斯定理
⎰
∑=
⋅S
S Q s D 内)
(i
d ρρ
R r <时,∵导体内电场强度处处为零 ∴ E 1=0;
R r R >>1时, ,42
Q r
D =π ,42r Q D π= ;4ˆ2
02r
r Q E περρ=
12R r R >>时, ,42
Q r D =π ,42
r Q D π= ;4ˆ2r 03r
r Q E επερρ=
2R r >时, ,42
Q r
D =π ,42r Q D π= .4ˆ2
04r r
Q E περρ=
2) ∵ ⎰
∞
⋅=P
l E U ρ
ρd P
∴ ⎰⎰⎰⎰
∞
+++=
2
1
2
1
P
d d d d 4321P R R R
R R R
r r E r E r E r E U )1
1111(42
2r 1r 10R R R R R Q +-+-=
εεπε 3) 静电场的能量: ,d e e ⎰⎰⎰
=
V
w W v 2r 0e 2
1
E w εε=
在介质球壳中,取半径从r 到r +⊿r 之间球壳的体积为体积元, 则 r r V d 4d 2π= )1
1(
8d 4)4(
2
2
1r
022
22
r 0r
0e 2
1
R R Q r r r
Q W R R -==⎰
επεπεπεεε。