活塞式制冷压缩机的工作原理及结构

合集下载

活塞式压缩机的工作原理及结构组成及作用

活塞式压缩机的工作原理及结构组成及作用

活塞式压缩机的工作原理及结构组成及作用摘要活塞式压缩机是一种常见的压缩机类型,广泛应用于各个行业中。

本文将介绍活塞式压缩机的工作原理、结构组成以及作用,帮助读者更加深入地了解该设备。

引言活塞式压缩机是一种通过活塞的运动将气体压缩的设备。

它的主要原理是利用活塞在缸内的往复运动,改变气体的体积从而实现气体的压缩。

活塞式压缩机广泛应用于气体增压、空气压缩、液体泵送等领域。

本文将从工作原理、结构组成及作用三个方面进行介绍。

工作原理活塞式压缩机的工作原理基于气体体积与压力之间的关系。

当活塞向缸内移动时,气体被吸入缸内,体积增大,压力降低;当活塞向缸外移动时,气体被压缩,体积减小,压力增大。

通过这种往复运动,活塞将气体压缩至一定压力,然后将其排出。

结构组成活塞式压缩机主要由活塞、缸体、曲轴、连杆、气阀等部件组成。

1.活塞:活塞是活塞式压缩机的核心部件。

通过往复运动,活塞改变缸内气体的体积实现气体的压缩和释放。

2.缸体:缸体为活塞提供工作空间。

它通常由铸铁或铸钢制成,具有良好的耐压性能。

3.曲轴:曲轴与活塞通过连杆相连,将活塞的往复直线运动转化为曲轴的旋转运动。

4.连杆:连杆用于连接活塞和曲轴,将活塞的运动传递给曲轴。

它通常由高强度合金钢制成,具有较高的强度和刚性。

5.气阀:气阀用于控制气体的进出。

活塞移动时,气阀会根据压力差的变化自动打开或关闭,实现气体的吸入和排出。

作用活塞式压缩机的作用主要体现在以下几个方面:1.压缩气体:活塞式压缩机通过活塞的运动将气体进行压缩,提高气体的压力和密度。

2.储存能量:压缩后的气体具有较高的能量密度,可以储存供后续使用。

3.供应动力:活塞式压缩机可以将压缩后的气体用于驱动其他设备,提供动力支持。

4.提供稳定气流:活塞式压缩机可以通过控制压缩气体的输出来提供稳定的气流,满足不同应用的需求。

总结活塞式压缩机是一种重要的工业设备,通过活塞的运动实现气体的压缩和释放。

它的工作主要基于活塞的往复运动和气体的体积变化,结构由活塞、缸体、曲轴、连杆、气阀等组成。

活塞式压缩机设计手册

活塞式压缩机设计手册

活塞式压缩机设计手册前言活塞式压缩机是一种常见的机械设备,广泛应用于各个行业中。

它的设计与性能对于设备的工作效率和稳定性具有重要影响。

本手册将介绍活塞式压缩机的设计原理、结构及其应用,帮助读者更好地了解和应用活塞式压缩机。

一、活塞式压缩机的原理活塞式压缩机是一种通过活塞在缸体内往复运动实现气体的吸入和压缩的装置。

其工作原理主要包括吸入、压缩、排气三个过程。

活塞在缸体内往复运动时,通过活塞和活塞杆的连接作用,实现了气体的吸入和压缩。

这种运动方式使得活塞式压缩机具有高效、可靠的特点。

二、活塞式压缩机的结构活塞式压缩机由缸体、活塞、活塞杆、连杆、曲轴等组成。

其中,活塞和活塞杆在缸体内往复运动,完成气体的吸入和压缩;连杆将活塞的直线运动转换为曲轴的旋转运动,以便实现更高效的压缩。

活塞式压缩机的结构设计对于其性能和寿命有着重要的影响。

三、活塞式压缩机的应用活塞式压缩机广泛应用于空气压缩机、制冷设备、液压机械及工业设备中。

以空气压缩机为例,活塞式压缩机通过将空气吸入缸体并压缩,使得压缩空气达到所需的工作压力。

制冷设备中,活塞式压缩机则通过压缩制冷剂,实现制冷循环过程。

在液压机械及其他工业设备中,活塞式压缩机则用于提供压力和动力。

四、活塞式压缩机设计要点活塞式压缩机的设计要点包括以下几个方面:1. 缸体与活塞的匹配在活塞式压缩机的设计中,缸体和活塞的匹配是一个关键环节。

合理的缸体和活塞匹配可以减小摩擦损失和泄漏,提高工作效率。

因此,在设计过程中需要进行充分的计算和测试,并选择合适的材料。

2. 活塞杆的设计活塞杆是将活塞与连杆连接的重要部件。

在活塞式压缩机的设计中,活塞杆的刚性和强度对于设备的安全运行和寿命至关重要。

设计时需要保证活塞杆的强度满足工作条件,并通过适当的润滑和冷却措施减小摩擦损失。

3. 连杆设计连杆是活塞与曲轴连接的关键部件。

在活塞式压缩机的设计中,连杆的设计要考虑到力学特性和可靠性。

合理的连杆设计可以减小振动和冲击,降低设备失效的风险。

活塞式制冷压缩机理想工作过程

活塞式制冷压缩机理想工作过程

活塞式制冷压缩机理想工作过程
活塞式制冷压缩机是一种常见的压缩机类型,广泛应用于空调、制冷设备等领域。

本文将介绍活塞式制冷压缩机的理想工作过程。

活塞式制冷压缩机的理想工作过程分为四个步骤:吸入、压缩、冷却和排出。

首先是吸入阶段。

在吸入阶段,活塞向下运动,扩大了气缸内的容积。

随着容积的增大,外界空气以低压进入气缸内,形成吸入气体。

同时,进气阀门打开,有利于气体的吸入。

接下来是压缩阶段。

在压缩阶段,活塞向上运动,减小了气缸内的容积。

气体在此过程中被压缩,温度和压力逐渐增加。

进气阀门关闭,以防止气体的逆流。

然后是冷却阶段。

在冷却阶段,压缩的气体进入冷凝器。

在冷凝器中,通过散热器的冷却,气体的温度降低,通过与周围环境的热交换,将热量散发到外部。

最后是排出阶段。

在排出阶段,冷却后的气体进入膨胀阀。

膨胀阀的作用是控制气体的流量,并将气体导入蒸发器。

在膨胀器中,气体通过蒸发过程吸收蒸发器内的热量,从而降低蒸发器内的温度。

通过这样的一系列过程,活塞式制冷压缩机将工质从低温低压状态转变为高温高压状态。

这样的状态将有利于制冷系统的运行。

需要注意的是,上述过程是基于理想条件下的描述。

实际情况中,压缩机的工作过程可能受到不同因素的影响,如摩擦、压力损失等。

因此,在实际工作中需要对这些因素进行考虑和优化,以提高制冷系统的效率和性能。

活塞式制冷压缩机是一种重要的制冷设备。

了解其理想工作过程有助于我们更好地理解制冷系统的运作原理,为相关领域的设计和应用提供指导。

风冷活塞式冷水机组,结构部件及工作原理,制冷与压缩机油循环

风冷活塞式冷水机组,结构部件及工作原理,制冷与压缩机油循环

风冷活塞式冷水机组,结构部件及工作原理,制冷与压缩机油循环风冷活塞式冷水机组是一种通过压缩机将制冷剂从低温低压状态压缩成高温高压状态,然后通过冷凝器散热、膨胀阀膨胀、蒸发器吸收热量的机械制冷设备。

结构部件:1. 压缩机:负责将制冷剂压缩成高压高温状态。

2. 冷凝器:通过散热器将高温高压的制冷剂冷却,使其变成高压液体。

3. 膨胀阀:控制制冷剂的流量,并将高压液体制冷剂膨胀为低压低温的液体制冷剂。

4. 蒸发器:吸收周围的热量,使制冷剂从低压低温状态变成低压蒸气状态。

工作原理:1. 制冷剂从蒸发器进入压缩机,被压缩机压缩成高压高温气体。

2. 高温高压气体流入冷凝器,通过冷凝器的散热效应,制冷剂冷却成高压液体。

3. 高压液体通过膨胀阀,压力减小,流入蒸发器。

4. 在蒸发器中,低压液体制冷剂吸收周围的热量,使其蒸发为低压蒸气。

5. 低压蒸气回到压缩机,开始下一个循环。

制冷机油循环:制冷机油主要用于润滑和冷却压缩机的运动部件,以确保压缩机的正常运行。

油循环是通过压缩机中的油泵实现的。

1. 油泵将冷却的油从油箱吸入,通过油管输送到压缩机各个部件。

2. 油在压缩机的运动部件和其他摩擦部件上形成一层油膜,提供润滑和冷却作用。

3. 油在运动部件上吸收热量,然后通过冷却器冷却,再通过油泵再次循环,确保油的温度保持在适当的范围内。

4. 通过油滤器过滤油中的杂质,保持油的清洁度,延长机组的使用寿命。

总结:风冷活塞式冷水机组通过压缩机将制冷剂压缩,经过冷凝器、膨胀阀和蒸发器的流程,实现制冷循环。

同时,通过制冷机油循环,保证压缩机的运转正常,并提供润滑和冷却作用。

10第10讲 活塞式制冷压缩机

10第10讲  活塞式制冷压缩机

活塞式制冷压缩机示意图
活塞压缩机实物图
开 启 式 活 塞 压 缩 机
半 封 闭 活 塞 制 冷 压 缩 机
2.活塞式压缩机的特点
1)优点
①能适应较广阔的压力范围和制冷量要求;② 热效率高,单位耗电 量相对较少,特别是偏离设计工况运行时更明显;③ 对材料要求低, 加工比较容易,造价较低廉;④ 技术谁较为成熟,生产谁积累了丰富 的经验;⑤ 装置系统比较简单。 2)缺点 ①因受到活塞往复惯性力的影响,转速受到限制,不能过高,因此单 机输气量大时,机器就显得笨重; ② 机构复杂,易损件多,维修工作 量大; ③ 由于受到各种力、力矩的作用,运转时振动较大; ④ 输气 不连续,气体压力有波动。
化学工业出版社
3.1.1 压缩机

目前国内外广泛应用的制冷机有:蒸气压缩式制冷机、吸收式制冷机 和蒸气喷射式制冷机。 根据工作原理不同压缩机可以分为容积式和速度式两大类

3.1.1.1 活塞式制冷压缩机
活塞式制冷压缩机示意图
1.活塞式制冷压缩机的基本结构和工作原理 结构:机体、曲轴、连杆组件、活塞组件、气 缸及吸排气阀 原理:压缩过程;排气过程;膨胀过程;吸气 过程。
第三章
蒸气压缩式制冷机
3.1 蒸气压缩制冷设备
蒸气压缩式制冷机包括以下设备:
①制冷压缩机 制冷压缩机由原动机拖动工作,是制冷循环的 动力,它及时抽出蒸发器内蒸气,维持低温。同时通过压缩作用 提高制冷剂蒸气的压力和温度,创造将制冷剂蒸气的热量向外界 环境介质转移的条件。
②冷凝器 冷凝器是一个热交换设备,作用是利用环境冷却介 质空气或水,将来自制冷压缩机的高温高压制冷剂蒸气的热量带 走,使高温高压制冷剂蒸气冷却冷凝成高压常温的制冷剂液体。

活塞式压缩机的工作原理及结构

活塞式压缩机的工作原理及结构

活塞式压缩机的工作原理及结构活塞式压缩机是一种常见的压缩机类型,用于将气体压缩为更高的压力。

它的工作原理基于活塞在气缸内做往复运动,从而压缩气体。

本文将介绍活塞式压缩机的工作原理及结构。

一、活塞式压缩机的工作原理活塞式压缩机的工作原理可以简单地概括为四个步骤:吸气、压缩、冷却和排气。

首先是吸气过程。

当活塞向下运动时,气缸内的压力降低,使气体通过进气阀进入气缸。

进气阀在活塞向上运动时关闭,防止气体逆流。

接下来是压缩过程。

当活塞向上运动时,气缸内的容积减小,从而将气体压缩。

随着活塞的上升,气体的压力不断增加,直到达到所需的压力水平。

然后是冷却过程。

由于气体被压缩,温度也相应升高。

为了防止过热,活塞式压缩机通常配备有冷却系统,通过冷却系统将压缩的气体冷却到合适的温度。

最后是排气过程。

当活塞下降到最低点时,排气阀打开,压缩的气体通过排气阀释放出去。

然后,活塞开始向上运动,循环再次开始。

二、活塞式压缩机的结构活塞式压缩机通常由以下几个主要部分组成:气缸、活塞、活塞环、气缸盖、气缸体、阀门等。

气缸是活塞式压缩机的主要工作部件之一,通常由铸铁或铝合金制成。

气缸内部分为进气区和排气区,通过进、排气阀来控制气流。

活塞是活塞式压缩机的运动部件,负责往复运动并压缩气体。

活塞通常由铸铁或铝合金制成,并与气缸内的内壁配合紧密,以防止气体泄漏。

活塞环是位于活塞上的密封件,有助于减少气体泄漏。

它通常由耐磨材料制成,并与气缸内壁配合以保持密封性能。

气缸盖用于封闭气缸的一端,并作为活塞运动的导向和支撑部件。

它需要具备良好的密封性能和刚性,以确保活塞的正常运行。

气缸体是气缸的主要组成部分,承受气缸内部的压力。

它通常由铸铁或铝合金制成,并需要具备足够的强度和耐磨性。

总结:活塞式压缩机通过活塞的往复运动将气体压缩为更高的压力,实现气体的压缩和输送。

它的工作原理简单明了,结构紧凑可靠。

活塞式压缩机广泛应用于空气压缩、气体输送和工业生产等领域,具有重要的实际应用价值。

活塞式制冷压缩机的四个过程

活塞式制冷压缩机的四个过程

活塞式制冷压缩机的四个过程活塞式制冷压缩机是一种常见的压缩机类型,广泛应用于制冷、空调等领域。

它通过四个不同的过程来完成压缩和冷却的工作。

下面将详细介绍这四个过程。

第一个过程是吸气过程。

在这个过程中,制冷压缩机的活塞向后运动,扩大了活塞腔容积。

此时,制冷剂从外部低压侧(蒸发器)进入。

在吸入过程中,活塞运动快速,吸入阀门打开,制冷剂被抽入压缩机内部。

这个过程中,温度低、压力低。

第二个过程是压缩过程。

在这个过程中,活塞开始向前运动,缩小了活塞腔容积。

同步,压缩腔的温度和压力开始上升。

制冷剂受到了压缩,分子间的间距变小,分子与分子之间发生了碰撞,从而使制冷剂的温度和压力上升。

这个过程中,温度高、压力高。

第三个过程是冷却过程。

在这个过程中,压缩机通过冷却系统将压缩的制冷剂降温。

制冷剂进入冷凝器,通过冷却器冷却。

在冷却过程中,制冷剂的温度和压力开始下降。

冷却后,制冷剂会变成液体状态。

第四个过程是放气过程。

在这个过程中,活塞继续向前运动,改变了活塞腔的容积,使得放气阀门打开。

此时,高压制冷剂被排出到外部高压侧(冷凝器)。

放气过程中,制冷剂的温度和压力继续下降。

这四个过程循环进行,不断地完成制冷剂的压缩和冷却。

通过这个过程,制冷压缩机能够将低温低压的制冷剂压缩成高温高压的制冷剂,从而实现制冷的效果。

同时,通过冷却过程,制冷剂的温度也会降低,以便下一个循环的吸气过程。

总之,活塞式制冷压缩机的四个过程(吸气、压缩、冷却、放气)共同完成了制冷剂的压缩和冷却,从而实现了制冷的目的。

在应用领域广泛的制冷压缩机中,活塞式制冷压缩机以其简单、可靠的特点得到了广泛的应用。

它在制冷领域的发展中起到了重要的作用。

氨制冷设备的构造及制冷工作原理

氨制冷设备的构造及制冷工作原理

浅谈氨制冷设备的构造及制冷工作原理一、制冷系统的制冷工作原理:主要由压缩机、冷凝器、储氨器、油分离器、节流阀、氨液分离器、蒸发器、中间冷却器、紧急泄氨器、集油器、各种阀门、压力表和高低压管道组成。

其中,制冷系统中的压缩机、冷凝器、节流阀和蒸发器(冷库排管)是四个最基本部件。

它们之间用管道依次连接,形成一个封闭的系统,制冷剂氨在系统中不断循环流动,发生状态变化,与外界进行热量交换,其工作过程是:液态氨在蒸发器中吸收被冷却物的热量之后,汽化成低压低温的氨气,被压缩机吸入,压缩成高压高温的氨气后排入冷凝器,在冷凝器中被冷却水降温放热冷凝为高压氨液,经节流阀节流为低温低压的氨液,再次进入蒸发器吸热气化,达到循环制冷的目的。

这样,氨在系统中经过蒸发、压缩、冷凝、节流四个基本过程完成一个制冷循环。

在实际的制冷系统中,完成一次制冷循环,制冷剂需要通过上述四大件外,还通过许多辅助设备,这些设备是为了提高运行的经济性、可靠性和安全性而设置的。

以双级压缩机制冷系统为例,完成一次制冷循环,氨必须依次通过低级氨压机、一级油分离器、中间冷却器、高级氨压机、二级油分离器、冷凝器、储氨器、节流阀、氨液分离器、调节站、蒸发器、再回到低级氨压缩机,这样才完成一次循环,实际制冷工艺流程是较为复杂的。

制冷学原理是一个能量转化过程。

即电能转化机械能,机械能转化为热能,热能又通过氨的作用进行冷热交换,完成制冷的过程。

二、活塞式压缩机的基本结构及其工作原理:活塞式压缩机是目前广泛应用于大中型冷库的制冷机型。

我局安装的就是一台6AW10型单级氨压缩机和一台8ASJ10型双级氨压缩机,均由大连冷冻机厂生产的。

活塞式压缩机主要由机体、曲轴、连杆、活塞、进排气阀组、安全阀、能量调节机构、润滑系统和直连式电动机配装而成的。

6AW10型压缩机的总体结构是:“6”表示压缩机有6个缸(3个排气缸、3个吸气缸),“A”表示以氨做制冷剂,“W”表示汽缸排列的样式如同字母W型,“10”表示汽缸直径为10厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

活塞式制冷压缩机的工作原理及结构
1、活塞压缩机的分类按使用的制冷剂来分,有氨压缩机和氟利昂压缩机两种。

按压缩级数来分,有单级压缩和双级压缩两种。

按汽缸中心线的位置分,有直立式、V型、W型和S(扇)型。

按压缩机的总体结构来分,有开启式、半封闭式、全封闭式三种。

2、活塞式压缩机的工作过程1)理想工作过程在分析活塞式压缩机的工作过程中,可以先把实际过程简化成理想过程。

简化时假定:a、压缩机没有余隙容积;b、吸、排气过程没有容积损失;c、压缩过程是理想的绝热过程;d、无泄漏损失。

这样,压缩机的理想工作过程可用图2-1所示的P需要变频器,影响油压b、压缩机间隙运行压缩机经济性降低d、顶开吸气阀片11 卸载机构的液力传动机构,主要由油缸、油活塞、拉杆、弹簧、转动环、顶杆等组成。

拉杆上的凸环嵌在汽缸套外部的转动环中。

卸载机构的工作原理:卸载启动的原理:注意事项:高、低压级油缸有所区别,见图2-11;压缩机左右两侧汽缸外的转动环上斜槽方向不同。

(8)油泵及润滑系统飞溅润滑:借助曲轴连杆机构的运动,把曲轴箱中的润滑油甩向需要润滑的表面,或是让飞溅起来的油按设定的路线流过需要润滑的表面。

压力润滑:利用油泵加压的润滑油通过输油管路输送到需要润滑的摩擦面。

这种供油方式油压稳定,油量充足,润滑安全可靠。

图2-12 润滑系统油路
的流向:曲轴箱中的润滑油经过装在曲轴箱底部的滤网式(粗)油过滤器和三通阀后被油泵吸入,提高压力后,经梳片式(精)滤油器滤去杂质后分成两路:一路去后主轴承座,润滑主轴颈,并通过主轴颈内的油道去相邻的一个曲柄销润滑该曲柄销上的连杆大头轴瓦,再通过连杆体中的油孔输送到连杆小头衬套,润滑活塞销。

这一路在后轴承座上设有油压调节阀,一部分油经过油压调节阀旁通流回到曲轴箱;另一路进入轴封箱,润滑和冷却轴封摩擦面并形成油封,然后进入前主轴承,润滑主轴颈及相邻曲柄销;此外再从轴封箱引出一路,供给卸载装置的油分配阀,作为能量调节机构的液压动力。

油泵:常用内啮合转子式油泵(简称转子泵),由曲轴驱动,对旋转方向有要求。

压缩机电机的旋转方向是由油泵转向决定的。

曲轴箱压力过低(汽蚀)或油泵磨损过大,都会影响油压的建立,蒸发温度低于-45℃时常采用外置油泵注意事项:精滤器的操作;油压的调整;油压不足时的分析和检修。

(9)安全阀安全阀设置在吸气腔与排气腔之间,是一种压差式安全阀。

当排气压力与吸气压力的差值超过规定值时,阀芯自动起跳,使吸、排气腔相通,高压气体泄向低压腔,起保护压缩机的作用;当压差减小低于规定值时,阀芯自动关闭。

注意事项:安全阀压力调整后,用锁紧螺母锁紧,拧上阀帽后铅封,禁止随意调整设定值;安全阀起跳后,很容易造成泄漏。

因此,起跳后须检修后才能再度使用。

相关文档
最新文档