江苏省常州市2020届高三上学期期末考试数学试卷
2023-2024学年江苏省常州市高一上学期期末学业水平监测数学质量检测模拟试题(含解析)

2023-2024学年江苏省常州市高一上册期末学业水平监测数学试题一、单选题1.设全集U =R ,集合{}{}2|650,3A x x x B x x =++<=<-,则() U A B ð为().A .()3,1--B .[)3,5-C .[)3,1--D .∅【正确答案】C【分析】根据一元二次不等式求集合A ,再根据集合间的运算求解.【详解】由题意可得:{}{}{}2|65051,|3U A x x x x x B x x =++<=-<<-=≥-ð,则()[) 3,1U A B =--I ð.故选:C.2.若12cos 13α=,且α为第四象限角,则tan α的值为()A .125B .125-C .512D .512-【正确答案】D【分析】结合同角三角函数的基本关系式求得正确答案.【详解】由于12cos 13α=,且α为第四象限角,所以5sin 13α==-,sin 5tan cos 12ααα==-.故选:D3.下列幂函数中,既在区间()0,∞+上递减,又是奇函数的是().A .12y x=B .13y x =C .23y x -=D .13y x -=【正确答案】D【分析】根据幂函数的奇偶性和单调性依次判断选项即可得到答案.【详解】对选项A ,12y x =在()0,∞+为增函数,故A 错误.对选项B ,13y x =在()0,∞+为增函数,故B 错误.对选项C ,23y x -=在()0,∞+为减函数,设()123321f x xx -⎛⎫== ⎪⎝⎭,定义域为{}|0x x ≠,()()()11332211f x f x x x ⎡⎤⎛⎫-===⎢⎥⎪⎝⎭-⎢⎥⎣⎦,所以()f x 为偶函数,故C 错误.对选项D ,13y x -=在()0,∞+为减函数,设()11331f x xx -⎛⎫== ⎪⎝⎭,定义域为{}|0x x ≠,()()113311f x f x x x ⎛⎫⎛⎫-==-=- ⎪ ⎪-⎝⎭⎝⎭,所以()f x 为奇函数,故D 正确.故选:D4.已知扇形的圆心角为2rad ,面积为4,则扇形的周长为().A.B.C .6D .8【正确答案】D【分析】由弧度制下,扇形面积公式可得扇形半径,后可得扇形周长.【详解】设扇形半径为r ,因扇形面积为4,则212422r r ⨯⋅=⇒=.则扇形周长为228r r +=.故选:D5.设函数()123,0log ,0x x f x x x -⎧≤⎪=⎨>⎪⎩,若()3f a >,则实数a 的取值范围是().A .()1,10,8⎛⎫-∞-⋃ ⎪⎝⎭B .()1,18⎛⎫-∞-⋃ ⎪⎝⎭C .11,8⎛⎫- ⎪⎝⎭D .1,8⎛⎫-∞ ⎪⎝⎭【正确答案】A【分析】根据题意分类讨论,结合指、对数函数单调性解不等式即可.【详解】当0a ≤时,则()33af a -=>,即1a ->,解得1a <-;当0a >时,则()11221log 3log 8f a a =>=,解得108a <<;综上所述:实数a 的取值范围是()1,10,8⎛⎫-∞-⋃ ⎪⎝⎭.故选:A.6.函数()1xf x x =-的图象大致形状是()A .B .C.D.【正确答案】A【分析】本题为分段函数图像判断,写出分段函数,可根据特殊点进行判断.【详解】函数()1x f x x =-的定义域为1x ≠±,(),0111,011xx x x x f x xx x x x ⎧>≠⎪⎪-==⎨-⎪<≠-⎪--⎩且且(2)20f =>,排除BC 选项,(2)20f -=-<,排除D 选项.故选:A7.某工厂利用不超过64000元的预算资金拟建一长方体状的仓库,为节省成本,仓库依墙角而建(即仓库有两个相邻的侧面为墙面,无需材料),由于要求该仓库高度恒定,不靠墙的两个侧面按照其底边的长度来计算造价,造价为每米1600元,仓库顶部按面积计算造价,造价为每平方米600元.在预算允许的范围内,仓库占地面积最大为().A .36平方米B .48平方米C .64平方米D .72平方米【正确答案】C【分析】设不靠墙的两个侧面的长度分别为x y ,,由题有()160060064000x y xy ++≤,利用基本不等式可得答案.【详解】设不靠墙的两个侧面的长度分别为x y ,,由题有()640001600600600x y xy xy ≥++≥+.0t =>,则26003200640000t t +-≤()()2003408008t t t ⇒+-≤⇒<≤,即64xy ≤,当且仅当8x y ==时取等号.故选:C8.已知函数()()sin f x A x =+ωϕ(其中0A >,0ω>,π2ϕ<)的部分图象如图所示,将函数()f x 图象上所有点的横坐标变为原来的6倍后,再向左平移π2个单位长度,得到函数()g x 的图象,则函数()g x 的解析式可以是().A .()2cos3x g x =B .()π2sin 33x g x ⎛⎫=+ ⎪⎝⎭C .()2π2sin 33x g x ⎛⎫=+ ⎪⎝⎭D .()5π2sin 612x g x ⎛⎫=+ ⎪⎝⎭【正确答案】B【分析】先根据图象求得()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭,再根据三角函数图象变换求()g x .【详解】由函数()()sin f x A x =+ωϕ的图象可得:311ππ3π2,41264A T ==-=,可得2ππT ω==,解得2ω=,则()()2sin 2f x x ϕ=+∵函数()f x 图象过点π,26⎛⎫ ⎪⎝⎭,则ππ2sin 2266f ϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,即sin 13πϕ⎫⎛+= ⎪⎝⎭,由ππ,22ϕ⎛⎫∈- ⎪⎝⎭,可得ππ5π,366ϕ⎛⎫+∈- ⎪⎝⎭,故ππ32ϕ+=,解得π6ϕ=,故()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭,将函数()f x 图象上所有点的横坐标变为原来的6倍,得到1π2sin 36y x ⎛⎫=+ ⎪⎝⎭,再向左平移π2个单位长度,得到()1ππ1π2sin 2sin 32633g x x x ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.故选:B.方法点睛:1.函数y =A sin(ωx +φ)的解析式的确定(1)A 由最值确定,max min2y y A -=;(2)ω由周期确定;(3)φ由图象上的特殊点确定.提醒:根据“五点法”中的零点求φ时,一般先根据图象的升降分清零点的类型.2.在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向.二、多选题9.下列函数中,以3为最小值的函数有().A .63cos y x =-B .2427x x y +=-+C .229sin 4sin y x x=+D .e 94ex xy =+【正确答案】ABD【分析】对A :根据余弦函数的有界性分析运算;对B :换元结合二次函数分析运算;对C :换元结合对勾函数分析运算;对D :利用基本不等式分析运算.【详解】对A :∵[]cos 1,1x ∈-,则[]63cos 3,9y x =-∈,故63cos y x =-的最小值为3,当且仅当cos 1x =时取到最小值,A 正确;对B :令20x t =>,则()22242747233x x y t t t +=-+=-+=-+≥,故2427x x y +=-+的最小值为3,当且仅当2t =,即1x =时取到最小值,B 正确;对C :令(]2sin 0,1t x =∈,且94y t t=+在(]0,1上单调递减,故113|4t y y =≥=,故229sin 4sin y x x =+的最小值为134,C 错误;对D :e 934e x x y =+≥=,当且仅当e 94e x x =,即ln 6x =时等号成立,故e 94ex x y =+的最小值为3,D 正确.故选:ABD.10.下列不等式中,正确的有().A .1113332.12 1.8<<B .0.90.8.80.80.8 1.20<<C .420.5log 9log 5log 0.1<<D .π2π4πsinsin sin 777<<【正确答案】BCD【分析】对A :根据幂函数单调性分析判断;对B :根据幂函数和指数函数单调性分析判断;对C :根据对数运算结合对数函数单调性分析判断;对D :根据正弦函数的对称性和单调性分析判断.【详解】对A :13y x =在()0,∞+上单调递增,则1113332.12 1.8>>,A 错误;对B :0.8y x =在()0,∞+上单调递增,则0.8.80.8 1.20<,0.8x y =在R 上单调递减,则0.90.80.80.8<,故0.90.8.80.80.8 1.20<<,B 正确;对C :2121420.5222log 9log 3log 3,log 0.1log 10log 10--====,2log y x =在()0,∞+上单调递增,则222log 3log 5log 10<<,故420.5log 9log 5log 0.1<<,C 正确;对D :sin y x =关于直线π2x =对称,则4π4π3πsin sin πsin 777⎛⎫=-= ⎪⎝⎭,sin y x =在π0,2⎛⎫⎪⎝⎭上单调递增,且π2π3ππ,0,7772⎛⎫∈ ⎪⎝⎭,则π2π3πsin sin sin 777<<,故π2π4πsinsin sin 777<<,D 正确.故选:BCD.11.关于函数()π2sin 23f x x ⎛⎫=- ⎪⎝⎭的说法正确的有().A .()f x 的最小正周期为πB .()f x 的单调增区间为()π5ππ,π1212k k k ⎡⎤-+∈⎢⎥⎣⎦Z C .()f x 的图象的对称轴方程为()ππ212k x k =-∈Z D .关于x 的方程()1f x =的解集为π2π,12x x k k ⎧⎫=+∈⎨⎬⎩⎭Z 【正确答案】AC【分析】根据题意结合正弦函数的性质与图象分析运算.【详解】由题意可得:()ππ2sin 22sin 233f x x x ⎛⎫⎛⎫=-=-- ⎪ ⎪⎝⎭⎝⎭,对A :()f x 的最小正周期为2ππ2T ==,A 正确;对B :令()ππ3π2π22π232k x k k +≤-≤+∈Z ,解得()5π11πππ1212k x k k +≤≤+∈Z ,故()f x 的单调增区间为()5π11ππ,π1212k k k ⎡⎤++∈⎢⎥⎣⎦Z ,B 错误;对C :令()ππ2π32x k k -=-∈Z ,解得()ππ212k x k =-∈Z ,故()f x 的图象的对称轴方程为()ππ212k x k =-∈Z ,C 正确;对D :令()π2sin 213f x x ⎛⎫=--= ⎪⎝⎭,则π1sin 232x ⎛⎫-=- ⎪⎝⎭,故()ππ22π36x k k -=-∈Z 或()π7π22π36x k k -=+∈Z ,解得()ππ12x k k =+∈Z 或()3ππ4x k k =+∈Z ,可得关于x 的方程()1f x =的解集为ππ12x x k ⎧=+⎨⎩或3ππ,4x k k ⎫=+∈⎬⎭Z ,D 错误.故选:AC.12.设函数()f x 是定义在R 上的奇函数,对任意x ∈R ,都有()()11f x f x +=-,且当[]0,1x ∈时,()21x f x =-,若函数()()log a g x f x x =-(其中1a >)恰有3个不同的零点,则实数a 可能的取值有().A .5B .6C .7D .9【正确答案】BC【分析】根据题意分析函数()f x 的性质,将零点问题转化为()y f x =与log a y x =的交点问题,数形结合,列式运算即可.【详解】∵()()11f x f x +=-,则函数()f x 关于直线1x =对称,又∵函数()f x 是定义在R 上的奇函数,则()()()111f x f x f x +=-=--,即()()2f x f x +=-,则()()()()42f x f x f x f x +=-+=--=⎡⎤⎣⎦,故函数()f x 是以4为周期的周期函数,又∵()()()222f x f x f x +=---=--+,即()()220f x f x ++-+=,故函数()f x 关于点()2,0对称,令()()log 0a g x f x x =-=,则()log a f x x =,原题等价于()y f x =与log a y x =有3个交点,且()log 1a y x a =>的定义域为()0,∞+,如图所示,则可得log 51log 911a a a <⎧⎪>⎨⎪>⎩,解得59a <<,故B 、C 正确,A 、D 错误.故选:BC.方法点睛:利用数形结合求方程解应注意两点:(1)讨论方程的解(或函数的零点)可构造两个函数,使问题转化为讨论两曲线的交点问题,但用此法讨论方程的解一定要注意图象的准确性、全面性、否则会得到错解.(2)正确作出两个函数的图象是解决此类问题的关键,数形结合应以快和准为原则而采用,不要刻意去数形结合.三、填空题13.给定3个条件:①定义域为R ,值域为[]22-,;②最小正周期为2;③是奇函数.写出一个同时满足这3个条件的函数的解析式:__________.【正确答案】()2sin πf x x =(答案不唯一,满足题意即可)【分析】根据题意写出函数解析式即可,并根据函数性质分析判断.【详解】对于函数()2sin πf x x =的定义域为R ,()[]2sin π2,2f x x =∈-,即()f x 的值域为[]22-,,符合①;函数()2sin πf x x =的最小正周期2π2πT ==,符合②;()()()2sin π2sin πf x x x f x -=-=-=-,即()f x 是奇函数,符合③;综上所述:()2sin πf x x =符合题意.故答案为.()2sin πf x x =(答案不唯一,满足题意即可)14.已知函数()21xx a f x =+(0a >且1a ≠)为偶函数,则实数a 的值为__________.【分析】根据偶函数的定义即可求解.【详解】因为函数()21xx a f x =+(0a >且1a ≠)为偶函数,所以()2212121x x x xx x xa a a f x ---⋅-===+++,则有22x x a =,所以a =故答案为15.设函数()()2ln 1f x x x =++,使()()211f a f a +<-成立的充要条件是a I ∈(其中I 为某区间),则区间I =__________.【正确答案】()2,0-【分析】根据题意判断()f x 的单调性和奇偶性,根据函数性质解不等式即可.【详解】∵()()()()()22ln 1ln 1f x x x x x f x -=-+-+=++=,故函数()f x 在定义域内为偶函数,当0x ≥时,则()()2ln 1f x x x =++在[)0,∞+上单调递增,故()f x 在(],0-∞上单调递减,若()()211f a f a +<-,等价于211a a +<-,等价于()()22211a a +<-,整理得220a a +<,解得20a -<<,则使()()211f a f a +<-成立的充要条件是()2,0a ∈-,即()2,0I =-.故答案为.()2,0-16.某工厂生产一种溶液,按市场要求该溶液的杂质含量不得超过0.1%,这种溶液最初的杂质含量为3%,现进行过滤,已知每过滤一次杂质含量减少13,则至少经过______次过滤才能达到市场要求.(参考数据:lg 20.301≈,lg 30.477≈)【正确答案】9【分析】根据题意列不等式20.030.0013n⎛⎫≤ ⎪⎝⎭,运算求解即可.【详解】由题意可得:经过n 次过滤后该溶液的杂质含量为12130.03,33%nnn *⎛⎫⎛⎫-⨯=∈ ⎪ ⎪⎝⎭⎝⎭N ,则20.030.10.0013%n⎛⎫≤= ⎪⎝⎭,解得22331lg 30lg 3lg10lg 31log log 308.392230lg 2lg 3lg 3lg 2lg 3n ++≥=-=--=≈--,∵n *∈N ,则n 的最小值为9,故至少经过9次过滤才能达到市场要求.故9.方法点睛:函数有关应用题的常见类型及解决问题的一般程序:(1)常见类型:与函数有关的应用题,经常涉及物价、路程、产值、环保等实际问题,也可涉及角度、面积、体积、造价的最优化问题;(2)应用函数模型解决实际问题的一般程序:读题(文字语言)⇒建模(数学语言)⇒求解(数学应用)⇒反馈(检验作答);(3)解题关键:解答这类问题的关键是确切地建立相关函数解析式,然后应用函数、方程、不等式的有关知识加以综合解答.四、解答题17.求值:(1))1213250.02719-⎛⎫+-⎪⎝⎭;(2)2350.2log 27log 82log 10log 4⨯--.【正确答案】(1)4(2)7【分析】(1)根据指数幂的运算求解;(2)根据对数的运算求解.【详解】(1))()12131121233255351020.02710.31149310333---⎡⎤⎛⎫⎛⎫⎛⎫⎡⎤+-=+-=+-=+=⎢⎥ ⎪ ⎪⎪⎣⎦⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦.(2)()13322350.25555ln 3ln 23ln 33ln 2log 27log 82log 10log 42log 25log22log 212log 2927ln 2ln 3ln 2ln 3-⨯--=⨯-⨯-=⨯-++=-=.18.已知二次函数()21f x ax bx =++,且关于x 的不等式()0f x ≤的解集为1,12⎡⎤⎢⎥⎣⎦.(1)求实数a ,b 的值;(2)若不等式()22x xf m ≥⋅对[]1,1x ∈-恒成立,求实数m 的取值范围.【正确答案】(1)2,3a b ==-(2)(,3⎤-∞⎦【分析】(1)根据三个二次之间的关系列式运算;(2)换元12,22xt ⎡⎤=∈⎢⎥⎣⎦,根据恒成立问题利用参变分离可得123t m t +-≥对1,22t ⎡⎤∈⎢⎥⎣⎦时恒成立,再结合基本不等式运算求解.【详解】(1)由题意可得:方程210ax bx ++=的两根为1,12,且0a >则032112a b a a ⎧⎪>⎪⎪-=⎨⎪⎪=⎪⎩,解得23a b =⎧⎨=-⎩,故2,3a b ==-.(2)由(1)可得()2231f x x x =-+,令12,22xt ⎡⎤=∈⎢⎥⎣⎦,则2231t t mt -+≥对1,22t ⎡⎤∈⎢⎥⎣⎦时恒成立,故123t m t +-≥对1,22t ⎡⎤∈⎢⎥⎣⎦时恒成立,∵123323t t +-≥=,当且仅当12t t =,即1,222t ⎡⎤=∈⎢⎥⎣⎦时成立,∴3m ≤,即实数m的取值范围为(,3⎤-∞⎦.19.已知角θ是第二象限角,其终边与以坐标原点为圆心的单位圆交于点4,5P y ⎛⎫- ⎪⎝⎭.(1)求sin θ,cos θ,tan θ的值;(2)求()()πsin tan sin π2cos θθθθ⎛⎫-⋅+- ⎪⎝⎭-的值.【正确答案】(1)343sin ,cos ,tan 554θθθ==-=-(2)32-【分析】(1)利用三角函数的定义求出cos θ,再根据同角三角关系求sin θ,tan θ;(2)利用诱导公式化简函数的解析式,结合第一问即可得到结果.【详解】(1)由题意可得:4cos 5θ=-,且角θ是第二象限角,则3sin 3sin ,tan 5cos 4θθθθ====-,故343sin ,cos ,tan 554θθθ==-=-.(2)由(1)可得:3tan 4θ=-,则()()πsin tan sin πcos tan sin 2sin 322tan cos cos cos 2θθθθθθθθθθθ⎛⎫-⋅+- ⎪⋅+⎝⎭====--.20.某同学用“五点法”画函数()()sin f x A x =+ωϕ(其中A ,ω,ϕ为常数,且0A >,0ω>,π2ϕ<)在某一个周期内的图象时,列表并已经正确地填入了部分数据,如下表:x ωϕ+0π2π3π22πx5π1211π12()sin A x ωϕ+0505-0(1)请将上表数据补充完整,并求函数()f x 的解析式;(2)将()y f x =图象上所有点向左平移()0θθ>个单位长度,得到()y g x =的图象.若()y g x =图象的一个对称中心为7π,012⎛⎫⎪⎝⎭,求θ的最小值.【正确答案】(1)()π5sin 23f x x ⎛⎫=- ⎪⎝⎭,表格见详解;(2)π12【分析】(1)利用三角函数的性质可得,进而可补充表格并求出函数的解析式;(2)利用三角函数的平移变换原则可得π()5sin(22)3g x x θ=+-,根据整体代入法可得π22πZ,3x k k θ+-=∈,解方程即可求解.【详解】(1)根据表中的数据,得5A =,11π5ππ,212122T =-=2ππ,2T Tω∴=∴==,又5πππ2,1223ϕϕ⨯+=∴=-,函数的解析式为()5sin(2).3f x x π=-分别令π20,23π,x π-=,依次解得6π2,63π7,x π=数据补全如下表:x ωϕ+0π2π3π22πxπ65π122π311π127π6sin()A x ωϕ+0505-0所以函数的解析式为()5sin(23f x x π=-;(2)由(1)知π()5sin(2)3f x x =-得π()5sin(223g x x θ=+-,因为函数sin y x =图像的对称中心为Z ,0()k k π∈,令π22πZ,3x k k θ+-=∈,解得ππ,Z 26k x k θ=+-∈.因为函数()y g x =图像的一个对称中心为7π(,0)12,所以ππ7π,Z 2612k k θ+-=∈,解得π5π,Z 212k k θ=-∈.由0θ>可知,当1k =时,θ取得最小值为π12.21.已知()f x 为偶函数,()g x 为奇函数,定义域均为R ,且()()1233x xf xg x +-+=-.(1)求()f x ,()g x 的解析式;(2)判断()g x 在R 上的单调性,并用函数单调性的定义证明;(3)解关于x 的不等式()28029g x x +<.【正确答案】(1)()33x xf x -=+,()33x xg x -=-.(2)函数()33x x g x -=-在R 上单调递增,证明见详解.(3)(11---+【分析】(1)根据函数的奇偶性,利用解方程组法即可求解;(2)利用指数函数的单调性判断函数为R 上的增函数,然后利用定义即可证明;(3)结合(2)的结论,利用函数的单调性列出不等式解之即可求解.【详解】(1)由()()1233x xf xg x +-+=-①可得:()()1233x x f x g x -+-+-=-,又因为()f x 为偶函数,()g x 为奇函数,所以()()1233x xf xg x -+--=②,①+②可得:()33x xf x -=+,则()33x xg x -=-,所以()33x xf x -=+,()33x xg x -=-.(2)函数()33x x g x -=-在R 上单调递增,证明如下:设任意的12,R x x ∈,且12x x <,则2111221212121212331()()3333(33)(33)(1)33x x x x x x x x x x x x x x g x g x --++--=--+=--=-+,因为12x x <,所以12121330,103x xx x +-<+>,则12()()0g x g x -<,所以12()()<g x g x ,故函数()33x x g x -=-在R 上单调递增.(3)因为()33x x g x -=-,所以180(2)999g =-=,则不等式()28029g x x +<可化为()22(2)g x x g +<,由(2)可知:函数()33x x g x -=-在R 上单调递增,所以222x x +<,解得:11x -<<-,所以不等式()28029g x x +<为(11---+.22.已知函数()()2log 1f x x =+,()g x 是定义在R 上的奇函数,且当01x ≤≤时,()()g x f x =,且对任意x ∈R ,都有()()20g x g x ++=.(1)求使得()()tan 13tan 10f x f x -+-<成立的x 的取值集合;(2)求证:()g x 为周期为4的周期函数,并直接写出....()g x 在区间[]22-,上的解析式;(3)若不等式()()2sin sin 4e e y yg x x a --++<+对任意,x y ∈R 恒成立,求实数a 的取值范围.【正确答案】(1)()ππ,π6k k k ⎛⎫+∈ ⎪⎝⎭Z (2)证明见详解,()()(]()[]()[)()[)2222log 3,1,2log 1,0,1log 1,1,0log 3,2,1x x x x g x x x x x ⎧-+∈⎪+∈⎪=⎨--+∈-⎪⎪-+∈--⎩(3)211log 5,2⎛⎫-++∞ ⎪⎝⎭【分析】(1)根据题意结合对数函数、正切函数运算求解;(2)根据题意结合周期的定义分析证明,再根据函数()g x 的性质求解析式;(3)先利用换元令[]sin 1,1t x =∈-,结合二次函数求得2172sin sin 44x x ≤-++≤,再根据()g x 的性质求()2sin sin 4g x x -++的最大值,再利用基本不等式求得e e 2y y -+≥,结合恒成立问题分类讨论分析求解.【详解】(1)由题意可得:()()()()()2222log ta ta n 13t n log 3tan log an 13tan 0x f x f x x x -+=+=<-,则2tan 03tan 03tan 1x x x >⎧⎪>⎨⎪<⎩,解得0tan 3x <<,则()πππ6k x k k <<+∈Z ,故使得()()tan 13tan 10f x f x -+-<成立的x 的取值集合()ππ,π6k k k ⎛⎫+∈ ⎪⎝⎭Z .(2)∵()()20g x g x ++=,即()()2g x g x +=-,则()()()()42g x g g g x x x =--=⎡⎤⎣-⎦+=+,∴()g x 为周期为4的周期函数,又∵()g x 是定义在R 上的奇函数,则()()()2g x g x g x +=-=-,即()()2g x g x =-,当(]1,2x ∈时,则[)20,1x -∈,故()()()()222log 21log 3g g x x x x -=-+=-+=;又∵()g x 是定义在R 上的奇函数,则有:当[)1,0x ∈-时,则(]0,1x -∈,故()()()2log 1g x g x x -=---+=;当[)2,1x ∈--时,则(]1,2x -∈,故()()()2log 3g x g x x -=--+=;综上所述:当[]2,2x ∈-时,则()()(]()[]()[)()[)2222log 3,1,2log 1,0,1log 1,1,0log 3,2,1x x x x g x x x x x ⎧-+∈⎪+∈⎪=⎨--+∈-⎪⎪-+∈--⎩.(3)对于2sin sin 4m x x =-++,令[]sin 1,1t x =∈-,则22117424m t t t ⎛⎫=-++=--+ ⎪⎝⎭的对称轴为12t =,故当12t =时,24m t t =-++取到最大值174,故当1t =-时,24m t t =-++取到最小值2,故2172sin sin 44x x ≤-++≤,由(2)可知:()g x 在[)2,1--上单调递减,在11,4⎡⎤-⎢⎥⎣⎦上单调递增,且()()221512,20,log 2log 5044g g g ⎛⎫-=--===-+> ⎪⎝⎭,故当12,4x ⎡⎤∈-⎢⎥⎣⎦时,则()g x 的最大值为22log 5-+,又∵()g x 为周期为4的周期函数,则当172,4x ⎡⎤∈⎢⎥⎣⎦时,则()g x 的最大值为22log 5-+,∴()2sin sin 4g x x -++的最大值为22log 5-+,则()22log 5e e y ya --+<+对任意y ∈R 恒成立,又∵e e 2y y -+≥=,当且仅当e e y y -=,即0y =时等号成立,则有:当0a ≤时,则()22log 5e e y ya --+>+,不合题意,舍去;当0a >时,则22log 52a -+<,解得211log 52a >-+,综上所述:实数a 的取值范围为211log 5,2⎛⎫-++∞ ⎪⎝⎭.结论点睛:(1)对()(),,x M y N f x g y ∀∈∀∈≥,则()()min max f x g y ≥⎡⎤⎡⎤⎣⎦⎣⎦;(2)对()(),,x M y N f x g y ∀∈∃∈≥,则()()min min f x g y ≥⎡⎤⎡⎤⎣⎦⎣⎦;(1)对()(),,x M y N f x g y ∃∈∀∈≥,则()()max max f x g y ≥⎡⎤⎡⎤⎣⎦⎣⎦;(1)对()(),,x M y N f x g y ∃∈∃∈≥,则()()max min f x g y ≥⎡⎤⎡⎤⎣⎦⎣⎦.。
江苏省常州市武进高级中学2020-2021学年高一数学文上学期期末试题含解析

江苏省常州市武进高级中学2020-2021学年高一数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 函数y=xcosx+sinx的图象大致为()A.B.C.D.参考答案:D【考点】3O:函数的图象.【分析】给出的函数是奇函数,奇函数图象关于原点中心对称,由此排除B,然后利用区特值排除A 和C,则答案可求.【解答】解:由于函数y=xcosx+sinx为奇函数,故它的图象关于原点对称,所以排除选项B,由当x=时,y=1>0,当x=π时,y=π×cosπ+sinπ=﹣π<0.由此可排除选项A和选项C.故正确的选项为D.故选:D.2. 已知,则的值等于_____ 。
参考答案:略3. 某企业的生产总值连续两年持续增加,第一年的增长率为,第二年的增长率为,则这两年该企业生产总值的年均增长率为().A.B.C. D.参考答案:D解:设该企业生产总值的年增长率为,则,解得:.故选:.4. 抽查10 件产品,设事件A 为至少有2 件次品,则A 的对立事件为A. 至多有2 件次品B. 至多有1 件次品C. 至多有2 件正品D. 至少有2 件正品参考答案:B∵至少有n个的否定是至多有n﹣1个又∵事件A:“至少有两件次品”,∴事件A的对立事件为:至多有一件次品.故选B5. 在△ABC中,是它的三条边,若,则△ABC是直角三角形,然而,若,则△ABC是锐角三角形,若,则△ABC是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.由的值确定参考答案:A略6. 已知=,则sin2α的值为()A.B.﹣C.D.﹣参考答案:B【考点】GI:三角函数的化简求值.【分析】根据二倍角公式和根据同角三角函数关系式即可求解.【解答】解:由=,可得:2cos2α=cos()得:4cos22α=cos2()∵cos2()=2cos2()﹣1,即1﹣sin2α=2cos2()∴8cos22α=1﹣sin2α由cos22α+sin22α=1.∴8(1﹣sin22α)=1﹣sin2α解得:sin2α=.故选:B.7. 已知中,,则等于()A. B. C.D.参考答案:由正弦定理,选C.8. 如果集合A=中只有一个元素,则的值是()A.0 B.0 或1 C.1 D.不能确定参考答案:B解:若集合A={x|ax2+2x+1=0,a∈R}只有一个元素,则方程ax2+2x+1=0有且只有一个解当a=0时,方程可化为2x+1=0,满足条件;当a≠0时,二次方程ax2+2x+1=0有且只有一个解则△=4-4a=0,解得a=1故满足条件的a的值为0或1故选B.9. 已知函数的最大值为2,则a的值为()A.±1 B.-1 C.1 D.不存在参考答案:A10. 如图,四棱锥S—ABCD的底面为正方形,SD底面ABCD,则下列结论中不正确的是(A)AC⊥SB(B)AB∥平面SCD(C)SA与平面SBD所成的角等于SC与平面SBD所成的角(D)AB与SC所成的角等于DC与SA所成的角参考答案: D二、 填空题:本大题共7小题,每小题4分,共28分11. 已知{a n }是等差数列,d 为其公差,S n 是其前n 项和,若只有S 4是{S n }中的最小项,则可得出的结论中正确的是 .1 d >0 ②a 4<0 ③a 5>0 ④S 7<0 ⑤S 8>0.参考答案:①②③④【考点】8F :等差数列的性质.【分析】由已知条件得到a 5>0,a 4<0.进一步得到d >0,然后逐一判断结论得答案. 【解答】解答:解:由已知条件得到a 5>0,a 4<0 ∴d>0故①②③正确∵=7a 4<0④正确,=4(a 4+a 5)无法判断其正负,故⑤错误∴正确的结论是①②. 故答案为:①②③④.【点评】点评:本题考查命题的真假判断与应用,考查了等差数列的性质及求和公式的灵活应用,关键在于得到公差d 的符号,是中低档题.12. 已知集合A=[1,4),B=(﹣∞,a ),若A ?B ,则实数a 的取值范围为 .参考答案:a≥4【考点】集合的包含关系判断及应用.【分析】集合A=[1,4),B=(﹣∞,a ),A ?B ,根据子集的定义可求.【解答】解:由题意,集合A=[1,4)表示大于等于1而小于4的数,B=(﹣∞,a )表示小于a 的数,∵A ?B , ∴a≥4 故答案为a≥413. 已知函数图象关于直线对称,若当时恒成立,则的取值范围_________参考答案:14. 若集合 M=,则M的子集个数为个参考答案:略15. 已知θ∈R ,则直线的倾斜角的取值范围是___________.参考答案:略16. 函数的图象为,则①图象关于直线对称;②图象关于点对称;③函数在区间内是增函数;④由的图象向右平移个长度单位可以得到图象.以上结论中正确的序号是__ __参考答案:①②③略17. 正方体的全面积是,它的顶点都在球面上,这个球的表面积是___________.参考答案:三、解答题:本大题共5小题,共72分。
2020届高三上学期期末教学质量检测数学理试题含答案及评分标准

理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
全卷满分150分,考试时间120分钟。
考生注意事项: 1.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.答第Ⅱ卷时,必须答题卡上作答.在试题卷上作答无效. 参考公式:如果事件A 、B 互斥,那么()()()P A B P A P B +=+ 如果事件A 、B 相互独立,那么()()()P AB P A P B =棱柱的体积公式V Sh =,其中S 、h 分别表示棱柱的底面积、高.第Ⅰ卷(选择题 共40分)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个选项符合题目要求. 1.12i i +=A .i --2B .i +-2C .i -2D .i +22.集合{||2|2}A x x =-≤,2{|,12}B y y x x ==--≤≤,则A B =IA .RB .{|0}x x ≠C .{0}D .∅3.若抛物线22y px =的焦点与双曲线22122x y -=的右焦点重合,则p 的值为 A .2- B .2 C .4- D .44.不等式10x x->成立的一个充分不必要条件是 A .10x -<<或1x > B .1x <-或01x << C .1x >- D .1x > 5.对于平面α和共面的两直线m 、n ,下列命题中是真命题的为 A .若m α⊥,m n ⊥,则//n α B .若//m α,//n α,则//m nC .若m α⊂,//n α,则//m nD .若m 、n 与α所成的角相等,则//m n6.平面四边形ABCD 中0AB CD +=u u u r u u u r r ,()0AB AD AC -=⋅u u u r u u u r u u u r,则四边形ABCD 是A .矩形B .菱形C .正方形D .梯形 7.等比数列{}n a 中5121=a ,公比21-=q ,记12n n a a a ∏=⨯⨯⨯L (即n ∏表示 数列{}n a 的前n 项之积),8∏ ,9∏,10∏,11∏中值为正数的个数是 A . 1 B . 2 C . 3 D . 48.定义域R 的奇函数()f x ,当(,0)x ∈-∞时()'()0f x xf x +<恒成立,若3(3)a f =,(log 3)(log 3)b f ππ=⋅,()c f =-2-2,则A .a c b >>B .c b a >>C .c a b >>D . a b c >>第Ⅱ卷(非选择题,共110分)二 填空题:本题共6小题,共30分,把答案填在答题卷相应的位置上.9.某校有4000名学生,各年级男、女生人数如表,已知在全校学生中随机抽取一名奥运火炬手,抽到高一男生的概率是0.2,现用分层抽样的方法在全校抽取100名奥运志愿者,则在高二抽取的学生人数为______.10.如果实数x 、y 满足条件101010x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩,那么2x y -的最大值为______.11.在ABC ∆中角A 、B 、C 的对边分别是a 、b 、c ,若(2)cos cos b c A a C -=, 则cos A =________. 12.右图给出的是计算201614121+⋅⋅⋅+++的值 的一个程序框图,其中判断框内应填入的条件是i >___?13.由数字0、1、2、3、4组成无重复数字的 五位数,其中奇数有 个. 14.若一个正三棱柱的三视图如下图所示,则这 个正三棱柱的体积为__________.三.解答题(本大题共6小题,共80分 解答应写出文字说明、证明过程或演算步骤) 15.(本小题共12分)已知函数()sin cos f x x x =+,()f x '是()f x 的导函数. (1)求函数()()'()g x f x f x =⋅的最小值及相应的x 值的集合; (2)若()2()f x f x '=,求tan()4x π+的值.16.(本题满分12分)近年来,政府提倡低碳减排,某班同学利用寒假在两个小区逐户调查人们的生活习惯是否符合低碳观念.若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳题12图 主视图 俯视图左视图族”.数据如下表(计算过程把频率当成概率).(1)如果甲、乙来自A小区,丙、丁来自B小区,求这4人中恰有2人是低碳族的概率;(2)A小区经过大力宣传,每周非低碳族中有20%的人加入到低碳族的行列.如果2周后随机地从A小区中任选25个人,记X表示25个人中低碳族人数,求()E X.17.(本小题满分14分)已知点(4,0)M、(1,0)N,若动点P满足6||MN MP NP=⋅u u u u r u u u r u u u r.(1)求动点P的轨迹C;(2)在曲线C上求一点Q,使点Q到直线l:2120x y+-=的距离最小.18.(本小题满分14分)已知梯形ABCD中,AD∥BC,2π=∠=∠BADABC,42===ADBCAB,E、F分别是AB、CD上的点,EF∥BC,xAE=.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图).G是BC的中点,以F、B、C、D为顶点的三棱锥的体积记为()f x.(1)当2=x时,求证:BD⊥EG;(2)求()f x的最大值;(3)当()f x取得最大值时,求异面直线AE与BD所成的角的余弦值.19.(本题满分14分)数列{}na中112a=,前n项和2(1)n nS n a n n=--,1n=,2,….(1)证明数列1{}nnSn+是等差数列;(2)求nS关于n的表达式;(3)设3n nnb S=1,求数列{}nb的前n项和nT.20.(本题满分14分)二次函数()f x满足(0)(1)0f f==,且最小值是14-.A小区低碳族非低碳族频率p0.50.5B小区低碳族非低碳族频率p0.80.2(1)求()f x 的解析式;(2)设常数1(0,)2t ∈,求直线l : 2y t t =-与()f x 的图象以及y 轴所围成封闭图形的面积是()S t ;(3)已知0m ≥,0n ≥,求证:211()()24m n m n +++≥.答案及评分标准:8~1:CCDD ;CBB A ;9.30;10.1;11.12;12.10;13.36;14.以下是各题的提示:1.21222i i i i i i+-+==-.2.[0,4]A =,[4,0]B =-,所以{0}A B =I .3.双曲线22122x y -=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =.4.画出直线y x =与双曲线1y x=,两图象的交点为(1,1)、(1,1)--,依图知10x x->10x ⇔-<<或1x >(*),显然1x >⇒(*);但(*)⇒/1x >.5.考查空间中线、面的平行与垂直的位置关系的判断.6.由0AB CD +=u u u r u u u r r ,得AB CD DC =-=u u u r u u u r u u u r,故平面四边形ABCD 是平行四边形,又()0AB AD AC -=⋅u u u r u u u r u u u r ,故0DB AC =⋅u u u r u u u r,所以DB AC ⊥,即对角线互相垂直.7.等比数列{}n a 中10a >,公比0q <,故奇数项为正数,偶数项为负数,∴110∏<,100∏<,90∏>,80∏>,选B .8.设()()g x xf x =,依题意得()g x 是偶函数,当(,0)x ∈-∞时()'()0f x xf x +<,即'()0g x <恒成立,故()g x 在(,0)x ∈-∞单调递减,则()g x 在(0,)+∞上递增,3(3)(3)a f g ==,(log 3)(log 3)(log 3)b f g πππ==⋅,2(2)(2)(2)c f g g =--=-=.又log 3123π<<<,故a c b >>. 9.依表知400020002000x y z ++=-=,0.24000x=,于是800x =, 1200y z +=,高二抽取学生人数为112003040⨯=.10.作出可行域及直线l :20x y -=,平移直线l 至可行域的点(0,1)-时2x y -取得最大值.11.由(2)cos cos b c A a C -=,得2cos cos cos b A c A a C =+,2sin cos sin cos sin cos B A C A A C =+,故2sin cos sin()B A A C =+,又在ABC ∆中sin()sin 0A C B +=>,故1cos 2A =,12.考查循环结构终止执行循环体的条件.13.1132336636C C A =⨯=⋅⋅.14.由左视图知正三棱柱的高2h =,设正三棱柱的底面边长a ,=,故4a =,底面积142S =⨯⨯=,故2V Sh === 15.解:(1)∵()sin cos f x x x =+,故'()cos sin f x x x =-, …… 2分∴()()'()g x f x f x =⋅(sin cos )(cos sin )x x x x =+-22cos sin cos 2x x x =-=, ……… 4分∴当22()x k k Z ππ=-+∈,即()2x k k Z ππ=-+∈时,()g x 取得最小值1-,相应的x 值的集合为{|,}2x x k k Z ππ=-+∈. ……… 6分评分说明:学生没有写成集合的形式的扣1分. (2)由()2()f x f x '=,得sin cos 2cos 2sin x x x x +=-,∴cos 3sin x x =,故1tan 3x =, …… 10分 ∴11tan tan34tan()2141tan tan 143x x x πππ+++===--. …… 12分 16.解:(1)设事件C 表示“这4人中恰有2人是低碳族”. …… 1分2222112222222222()0.50.20.50.50.20.80.50.8P C C C C C C C =+⨯⨯⨯+⋅⋅⋅⋅⋅⋅⋅⋅0.010.160.160.33=++=. …… 4分 答:甲、乙、丙、丁这4人中恰有2人是低碳族的概率为0.33; …… 5分(2)设A 小区有a 人,两周后非低碳族的概率20.5(120%)0.32a P a⨯⨯-==.故低碳族的概率10.320.68P =-=. ………… 9分 随机地从A 小区中任选25个人,这25个人是否为低碳族相互独立,且每个 人是低碳族的概率都是0.68,故这25个人中低碳族人数服从二项分布,即17~(25,)25X B ,故17()251725E X =⨯=. ………… 12分 17.解:(1)设动点(,)P x y ,又点(4,0)M 、(1,0)N ,∴(4,)MP x y =-u u u r ,(3,0)MN =-u u u u r ,(1,)NP x y =-u u u r. ……… 3分由6||MN MP NP =⋅u u u u r u u u r u u u r,得3(4)x --= ……… 4分∴222(816)4(21)4x x x x y -+=-++,故223412x y +=,即22143x y +=, ∴轨迹C 是焦点为(1,0)±、长轴长24a =的椭圆; ……… 7分 评分说明:只求出轨迹方程,没有说明曲线类型或交代不规范的扣1分. (2)椭圆C 上的点Q 到直线l 的距离的最值等于平行于直线l :2120x y +-=且与椭圆C 相切的直线1l 与直线l 的距离.设直线1l 的方程为20(12)x y m m ++=≠-. ……… 8分由22341220x y x y m ⎧+=⎨++=⎩,消去y 得2242120x mx m ++-= (*). 依题意得0∆=,即0)12(16422=--m m ,故216m =,解得4m =±.当4m =时,直线1l :240x y ++=,直线l 与1l 的距离5d ==当4m =-时,直线1l :240x y +-=,直线l 与1l 的距离d ==由于55<,故曲线C 上的点Q 到直线l 的距离的最小值为5.…12分 当4m =-时,方程(*)化为24840x x -+=,即2(1)0x -=,解得1x =.由1240y +-=,得32y =,故3(1,)2Q . ……… 13分 ∴曲线C 上的点3(1,)2Q 到直线l 的距离最小. ……… 14分18.(法一)(1)证明:作EF DH ⊥,垂足H ,连结BH ,GH , ∵平面AEFD ⊥平面EBCF ,交线EF ,DH ⊂平面EBCF , ∴⊥DH 平面EBCF ,又⊂EG 平面EBCF ,故DH EG ⊥, ∵12EH AD BC BG ===,//EF BC ,90ABC ∠=o . ∴四边形BGHE 为正方形,故BH EG ⊥.又BH 、DH ⊂平面DBH ,且BH DH H =I ,故⊥EG 平面DBH . 又⊂BD 平面DBH ,故BD EG ⊥.(2)解:∵AE EF ⊥,平面AEFD ⊥平面EBCF ,交线EF ,AE ⊂平面AEFD .∴AE ⊥面EBCF .又由(1)⊥DH 平面EBCF ,故//AE DH ,∴四边形AEHD 是矩形,DH AE =,故以F 、B 、C 、D 为顶点的三棱 锥D BCF - 的高DH AE x ==,又114(4)8222BCF S BC BE x x ∆==⨯⨯-=-⋅. ∴三棱锥D BCF -的体积()f x =13BFC S DH ∆⋅13BFC S AE ∆=⋅2128(82)333x x x x =-=-+2288(2)333x =--+≤.∴当2x =时,()f x 有最大值为83.(3)解:由(2)知当()f x 取得最大值时2AE =,故2BE =,由(2)知//DH AE ,故BDH ∠是异面直线AE 与BD 所成的角. 在Rt BEH ∆中222422BH BE EH AD =+=+=,由⊥DH 平面EBCF ,BH ⊂平面EBCF ,故DH BH ⊥ 在Rt BDH ∆中222823BD BH DH AE =+=+=,∴3cos 323DH BDH BD ∠===. ∴异面直线AE 与BD 所成的角的余弦值为33. 法二:(1)证明:∵平面AEFD ⊥平面EBCF ,交线EF ,AE ⊂平面AEFD ,EF AE ⊥,故AE ⊥平面EBCF ,又EF 、BE ⊂平面EBCF ,∴AE ⊥EF ,AE ⊥BE ,又BE ⊥EF ,取EB 、EF 、EA 分别为x 轴、y轴、z 轴,建立空间坐标系E xyz -,如图所示. 当2x =时,2AE =,2BE =,又2AD =,122BG BC ==. ∴(0,0,0)E ,(0,0,2)A ,(2,0,0)B ,(2,2,0)G ,(0,2,2)D .∴(2,2,2)BD =-u u u r ,(2,2,0)EG =u u u r,∴440BD EG ⋅=-+=u u u r u u u r.∴BD EG ⊥u u u r u u u r,即BD EG ⊥;(2)解:同法一;(3)解:异面直线AE 与BD 所成的角θ等于,AE BD <>u u u r u u u r或其补角.又(0,0,2)AE =-u u u r , 故3cos ,3|||2444|AE BD AE BD AE BD <>===-++⋅⋅u u u r u u u ru u u r u u u r u u u r u u u r ∴3cos 3θ=,故异面直线AE 与BD 所成的角的余弦值为33. 19.(1)证明:由2(1)n n S n a n n =--,得21()(1)(2)n n n S n S S n n n -=---≥.∴221(1)(1)n n n S n S n n ---=-,故111(2)1n n n nS S n n n -+-=≥-.…2分 ∴数列由1{}n n S n+是首项11221S a ==,公差1d =的等差数列; …… 4分 (2)解:由(1)得112(1)11n n S S n d n n n+=+-=+-=.……… 6分∴21n n S n =+; ………8分(3)由(2),得3n n nb S =1=321n n n +g 1=111(1)1n n n n =-++.…… 10分∴数列{}n b 的前n 项和1211111111122311n n n T b b b b n n n n -=++++=-+-++-+--+L L …12分 1111n n n =-=++. ……… 14分 20.解:(1)由二次函数()f x 满足(0)(1)0f f ==.设()(1)(0)f x ax x a =-≠,则221()()24af x ax ax a x =-=--. ……………… 2分 又()f x 的最小值是14-,故144a -=-.解得1a =.∴2()f x x x =-; ………………4分(2)依题意,由22x x t t -=-,得x t =,或1x t =-.(1t -p t)……6分由定积分的几何意义知3232222002()[()()]()|3232t tx x t t S t x x t t dx t x tx =---=--+=-+⎰…… 8分(3)∵()f x 的最小值为14-,故14m -,14n ≥-. …… 10分∴12m n +-≥-,故12m n ++. ……… 12分∵1()02m n +,102m n ++≥≥, ……… 13分∴11()()22m n m n +++≥=,∴211()()24m n m n +++≥. ……… 14分。
2024-2025学年江苏省常州市高三上册期初调研数学质量检测试卷(附解析)

2024-2025学年江苏省常州市高三上学期期初调研数学质量检测试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知,则下列选项中正确的是( ){{}2,P x y Q y y x ====A .B .C .D .P Q =RQ P⊆P Q =∅P Q⊆2.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边经过点,则αx (4,3)P -( )3sin 22πα⎛⎫+= ⎪⎝⎭A .B .C .D .2425-725-72524253.已知向量满足,且在上的投影向量为,则向量与向量的夹,a b 4,10a b ==a b 15b -a b 角为( )A .B .C .D .π6π32π35π64.荀子《劝学》中说:“不积跬步,无以至千里;不积小流,无以成江海.”在“进步率”和“退步率”都是的前提下,我们可以把看作是经过365天的“进步值”,看1%()36511%+()36511%-作是经过365天的“退步值”,则大约经过( )天时,“进步值”大约是“退步值”的100倍(参考数据:,)lg101 2.0043≈lg 99 1.9956≈A .100B .230C .130D .3655.已知,则( ).sin (α−β)=13,cosαsinβ=16cos (2α+2β)=A .B .C .D .791919-79-6.已知函数在区间上是减函数,则实数的取值范围是( )()213x axf x -⎛⎫= ⎪⎝⎭[]0,1a A .B .(],2-∞(],0-∞C .D .[)2,+∞[)0,+∞7.已知函数是R 上的偶函数,且,当时,()1f x +()()220f x f x ++-=(]0,1x ∈,函数f (x )在区间的零点个数为( )()25log 22f x x ⎛⎫=-+ ⎪⎝⎭[]3,3-A .7B .8C .9D .108.已知函数满足,,则()f x ()112f =()()()()()2,,f x f y f x y f x y x y =++-∈R ( )()2024f =A .B .C .D .121414-12-二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.9.已知随机变量服从正态分布,则以下选项正确的是( )X ()2,4X N :A .若,则B .若,则2Y X =+()4E Y =24Y X =+()8D Y =C .D .()()04P X P X ≤=≥()()14124P X P X ≤≤=-≥10 )①;tan 25tan 3525tan 35+︒︒︒︒②;()2sin 35cos 25cos35cos 65︒︒+︒︒③;1tan151tan15+︒-︒④.1tan151tan15-︒+︒A .①B .②C .③D .④11.已知函数及其导函数,若存在使得,则称是的一个()f x ()f x '0x ()()00f x f x '=0x ()f x “巧值点”.下列选项中有“巧值点”的函数是( )A .B .C .D .2()f x x=()xf x e-=()ln f x x=()tan f x x=三、填空题:本题共3小题,每小题5分,共15分.12.曲线在处的切线恰好是曲线的切线,则实数.e xy =0x =()ln y x a =+a =13.已知函数的图象与直线在上有个交点,则实()6sin sin 3f x x x =+()y f x =y m =[0,2π]4数的取值范围为.m14.已知函数其中,,的部分图象如下图所示,(()sin()f x A x ωϕ=+0A >0ω>ππ22ϕ-<<若在区间上有且仅有两个零点,则实数的取值范围为.()f x (,)m m -m四、解答题:本题共5小题,共77分.除特别说明外,解答应写出文字说明、证明过程或演算步骤.15.已知都是锐角,且,.,αβ3sin 5α=()1tan 3αβ-=-(1)求的值;()sin αβ-(2)求的值.cos β16.第三次人工智能浪潮滚滚而来,以ChatGPT 发布为里程碑,开辟了人机自然交流的新纪元.ChatGPT 所用到的数学知识,开辟了人机自然交流的新纪元. ChatGPT 所用到的数学知识并非都是遥不可及的高深理论,条件概率就被广泛应用于ChatGPT 中.某数学素养提升小组设计了如下问题进行探究:现有完全相同的甲,乙两个箱子(如图),其中甲箱装有2个黑球和4个白球,乙箱装有2个黑球和3个白球,这些球除颜色外完全相同.某人先从两个箱子中任取一个箱子,再从中随机摸出一球.(1)求摸出的球是黑球的概率;(2)若已知摸出的球是黑球,请用概率公式判断该球取自哪个箱子的可能性更大.17.已知三棱锥平面,为的中点,,P ABC PA -⊥,,2,1ABC AB BC AC PA AB ⊥===E PB 为延长线上一点.Q BA(1)证明:;AE CP ⊥(2)当二面角的长.A PQ C --BQ 18.已知函数.()()()2ln 2,ln 1,f x x a x a x g x x x x a a =+-+=--+∈R(1)讨论的单调性;()f x (2)若有两个零点,求的取值范围;()g x a (3)若对任意恒成立,求的取值范围.()()1ln f x g x a x+≥+1x ≥a 19.设为大于3的正整数,数列是公差不为零的等差数列,从中选取项组成一个新n {}n a m 数列,记为,如果对于任意的,均有,那么我们{}m b ()1,2,,2i i m =- ()()120ii ii b b b b ++--<称数列为数列的一个数列.{}m b {}ma n -(1)若数列为,写出所有的数列;{}n a 1,2,3,4,4m ={}n a n -(2)如果数列公差为,证明:;{}n a 1,21m k =+1m b b k-≥(3)记“从数列中选取项组成一个新数列为数列的数列”的概率为,证明:{}n a m {}m b {}n a n -m P .13m P ≤1.B【分析】化简集合,即可根据集合间关系求解.【详解】由得,由可得,{P x y =={}1P x x =≥-{}2Q y y x =={}0Q y y =≥故,其它都不正确.Q P ⊆故选:B 2.B【分析】先利用诱导公式和恒等变换进行化简,再利用任意角三角函数求解即可.【详解】由题意得,所以.故4cos 5α=-23167sin 2cos 212cos 1222525πααα⎛⎫+=-=-=-⨯=- ⎪⎝⎭选:B.3.C【分析】先利用投影向量求出数量积,利用夹角公式可得答案.【详解】依题意,在上的投影向量为,则,a b 215||a b b b b ⋅=-21||205a b b ⋅=-=- 于是,而,则,201cos ,4102||||a b a b a b ⋅-〈〉===-⨯,[0,π]a b 〈〉∈ 2π,3a b 〈〉=所以向量与向量的夹角为.ab 2π3故选:C 4.B【分析】设大约经过天“进步值”大约是“退步值”的倍,依题意可得,根据指n 100 1.011000.99nn=数对数的关系及换底公式计算可得.【详解】设大约经过天“进步值”大约是“退步值”的倍,n 100此时“进步值”为,“退步值”为,即,()11% 1.01nn+=()11%0.99nn-= 1.011000.99nn =所以,则,1.011011000.9999nn⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭10199log 100n =所以天.lg100lg1002230101lg101lg99 2.0043 1.9956lg 99n ==≈≈--故选:B 5.B【分析】根据给定条件,利用和角、差角的正弦公式求出,再利用二倍角的余弦公sin()αβ+式计算作答.【详解】因为,而,因此,sin(α−β)=sinαcosβ−cosαsinβ=131cos sin 6αβ=sinαcosβ=12则,sin(α+β)=sinαcosβ+cosαsinβ=23所以.cos(2α+2β)=cos2(α+β)=1−2sin 2(α+β)=1−2×(23)2=19故选:B方法点睛:三角函数求值的类型及方法(1)“给角求值”:一般所给出的角都是非特殊角,从表面来看较难,但非特殊角与特殊角总有一定关系.解题时,要利用观察得到的关系,结合三角函数公式转化为特殊角的三角函数.(2)“给值求值”:给出某些角的三角函数值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角,有时要压缩角的取值范围.6.B【分析】根据函数由复合而成,结合复合函数的单调性判()213x axf x -⎛⎫= ⎪⎝⎭21(),3t y t x ax==-断在区间上是增函数,即可求得答案.2t x ax =-[]0,1【详解】由题意知函数由复合而成,()213x axf x -⎛⎫= ⎪⎝⎭21(,3t y t x ax==-在R 上是单调递减函数,故由在区间上是减函数,1()3ty =()213x axf x -⎛⎫= ⎪⎝⎭[]0,1可知在区间上是增函数,故,2t x ax =-[]0,10,02aa ≤∴≤即实数的取值范围是,a (],0-∞故选:B 7.C【分析】根据的对称轴和对称中心,结合函数的图象即可判断的零点个数.()f x ()f x 【详解】因为函数是R 上的偶函数,所以,()1f x +()()11f x f x -+=+所以关于直线对称,()f x 1x =因为,时,()()220f x f x ++-=x =2()()40f f =-由,当时,,故,()()220f x f x ++-=0x =()()220f f +=()20f =又关于直线对称,所以,()f x 1x =()()()()002400f f f f =-==-=,由对称性可得在上的大致图象如下图所示,()f x []3,3-则在区间的零点个数为9.()f x []3,3-故选:C.8.D【分析】依据题意先赋值代入等量关系式求出,再赋值得1,0x y ==()01f =1y =,进而依据此计算规则逐步求出,即求出是周()()()11f x f x f x =++-()()6f x f x +=()f x 期为6的周期函数,再依据此计算规则结合和求出,进而结合周期即()01f =()112f =()2f 可求解.()2024f 【详解】取代入,1,0x y ==()()()()2f x f y f x y f x y =++-得即,由题解得,()()()()()2101121f f f f f =+=()()21010f f ⎡⎤-=⎣⎦()01f =令代入得,1y =()()()()2f x f y f x y f x y =++-()()()11f x f x f x =++-故,()()()()()()()654321f x f x f x f x f x f x f x +=+-+=-+=-+++=所以是周期为6的周期函数,()f x又,,所以,()01f =()112f =()()()12102f f f =-=-所以,1(2024)(33762)(2)2f f f =⨯+==-故选:D.思路点睛:依次赋值和代入分别得到1,0x y ==1y =()()()()2f x f y f x y f x y =++-和,再依据所得条件推出即函数周期为6()01f =()()()11f x f x f x =++-()()6f x f x +=和,进而根据周期性和即可求解.()122f =-()2f ()2024f 9.AC【分析】利用期望与方差的性质结合正态分布的性质计算一一判定选项即可.【详解】A 选项:,故A 正确;()()()224E Y E X E X =+=+=B 选项:,故B 错误;()()()24416D Y D X D X =+==C 选项:由正态分布密度曲线知其关于对称,2X =利用对称性知,故C 正确;()()04P X P X ≤=≥D 选项:因为,()()()()()()11441,401P X P X P X P X P X P X ≤+≤≤+≥=≥=≤≠≤所以,,故D 错误.()()14241P X P X ≤≤+≥≠故选:AC 10.ABC 【分析】利用即可得①正确;,进而()()tan tan tan 1tan tan αβαβαβ+=+-cos 65sin 25=利用正弦和角公式即可得②正确;由与正切的和差角公式即可得③正确④错误.tan 451=【详解】对于①,由于,()()tan tan tan 1tan tan αβαβαβ+=+-所以tan 25tan 3525tan 35++()()tan 25351tan 25tan 3525tan 35tan 2535⎡⎤=+-=+=⎣⎦对于②,由于,cos 65sin 25=所以()()2sin 35cos 25cos35cos 652sin 35cos 25cos35sin 252sin 60+=+==对于③,因为, tan 451= 1tan15tan 45tan15tan 601tan151tan 45tan15︒︒︒︒︒︒++===--对于④,因为, tan 451= 1tan15tan 45tan15tan 301tan151tan 45tan15︒︒︒︒︒︒-+-===+故选:ABC 11.AC【分析】直接利用“巧值点”的定义,一一验算即可.【详解】对于A :∵,∴,令,即,解得:x =0或2()f x x =()2f x x '=()()f x f x ='22x x =x =2,故有“巧值点”.对于B :∵,∴,令,即,无解,故没有“巧值点”()x f x e -=()x f x e -'=-()()f x f x ='x x e e --=-.对于C :∵,∴,令,即,由和的图()ln f x x =1()f x x '=()()f x f x ='1ln x x =()ln f x x =1()f x x '=像可知,二者图像有一个交点,故有一个根,故有“巧值点”.()()f x f x ='对于D :∵,∴,令,即,可得,()tan f x x =21()cos f x x '=()()f x f x ='21tan cos x x =sin 22x =无解,故没有“巧值点”.故选:AC数学中的新定义题目解题策略:(1)仔细阅读,理解新定义的内涵;(2)根据新定义,对对应知识进行再迁移.12.2【分析】求出在处的切线方程,设出的切点联立方程组可解得.e xy =0x =()ln y x a =+2a =【详解】对于,易知,切线斜率为,切点为;e x y =e x y '=0e 1k ==(0,1)则曲线在处的切线为,e xy =0x =1y x =+显然,设切点,()1g x x a '=+()()00,ln x x a +由,解得.()00011ln 1x a x a x ⎧=⎪+⎨⎪+=+⎩012x a =-⎧⎨=⎩故213.(()5-- 【分析】对函数求导,联系余弦函数在上的单调性分析导函数的正负,()f x '()f x [0,2π]'()f x 由此得到函数的单调性,数形结合即可求解.()f x 【详解】函数的导函数为()6sin sin 3f x x x =+,()()32()6cos 3cos36cos 3cos 212cos 3cos 3cos 4cos 1f x x x x x x x x x x =+=++=-=-'当时,,则在上单调递增,π03x ≤<()24cos 100cos 0x f x x ⎧->⇒>⎨>⎩'()f x π03x ≤<当时,,则在上单调递减,ππ32x ≤<()24cos 100cos 0x f x x ⎧-<⇒<⎨>⎩'()f x ππ32x ≤<当时,,则在上单调递增,π2π23x ≤<()24cos 100cos 0x f x x ⎧-<⇒>⎨<⎩'()f x π2π23x ≤<当时,,则在上单调递减,2ππ3x ≤<()24cos 100cos 0x f x x ⎧->⇒<⎨<⎩'()f x 2ππ3x ≤<当时,,则在上单调递减,4ππ3x ≤<()24cos 100cos 0x f x x ⎧->⇒<⎨<⎩'()f x 4ππ3x ≤<当时,,则在上单调递增,4π3π32x ≤<()24cos 100cos 0x f x x ⎧-<⇒>⎨<⎩'()f x 4π3π32x ≤<当时,,则在上单调递减,3π5π23x ≤<()24cos 100cos 0x f x x ⎧-<⇒<⎨>⎩'()f x 3π5π23x ≤<当时,,则在上单调递增,5π2π3x ≤≤()24cos 100cos 0x f x x ⎧->⇒>⎨>⎩'()f x 5π2π3x ≤≤所以,在上,当时,取得极大值为时,极小值为;[]0,ππ2π,33x =()f x π2x =5在上,当时,取得极大值为,当时,极小值为(]π,2π3π2x =()f x 5-4π5π,33x =-所以函数的图象与直线在上有个交点,则实数()6sin sin 3f x x x =+()y f x =y m =[0,2π]4的取值范围为,m (()5⋃--故(()5⋃--14.5π7π,66⎛⎤⎥⎝⎦【分析】由图像可求出函数,然后根据求解函数的零点存在的值并结合区()πsin 6f x x ⎛⎫=- ⎪⎝⎭间上只有两个零点,从而求解.(),m m -【详解】由图象对称性可知,函数的图象与轴正半轴第一个交点的横坐标为,()f x x π6由图可知为其对称轴,则,解出,2π3x =2π12πππ44362T ω=⋅=-=1ω=由于,故,,则,,因为,所以πsin 06A ϕ⎛⎫+= ⎪⎝⎭ππ6k ϕ+=Z k ∈ππ6k ϕ=-Z k ∈ππ22ϕ-<<,π6ϕ=-于是,由于,故,因此,()πsin 6f x A x ⎛⎫=- ⎪⎝⎭()π10sin 62f A ⎛⎫=-=- ⎪⎝⎭1A =()sin 6f x x π⎛⎫=- ⎪⎝⎭易知,115ππ7ππ06666f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭因为在,上有且仅有两个零点,所以.()f x (,)m m -5π7π66m <≤故答案为.5π7π,66⎛⎤ ⎥⎝⎦15.(1)2【详解】试题分析:(1)因为都是锐角,而,可得 ,由,αβ()1tan 3αβ-=-()sin 0αβ-<同角三角函数基本关系式得2)凑角可得 ,()sin αβ-=()cos cos βααβ⎡⎤=--⎣⎦由两角差的余弦公式展开,代值即可得解.试题解析:(1)因为,所以,,0,2παβ⎛⎫∈ ⎪⎝⎭22ππαβ-<-<又因为,所以.()1tan 03αβ-=-<02παβ-<-<利用同角三角函数的基本关系可得,且,()()22sin cos 1αβαβ-+-=()()sin 1cos 3αβαβ-=--解得.()sin αβ-=(2)由(1)可得,.()cos αβ-===因为为锐角,,所以.α3sin 5α=4cos 5α==所以 ()cos cos cos βααβ⎡⎤=--=⎣⎦()()cos sin sinααβααβ-+-4355⎛=⨯= ⎝16.(1)1130(2)该球取自乙箱的可能性更大【分析】(1)利用全概率公式求摸出的球是黑球的概率;(2)利用贝叶斯公式求黑球来自甲、乙箱的概率,比较它们的大小,即可得结论.【详解】(1)记事件A 表示“球取自甲箱”,事件表示“球取自乙箱”,事件B 表示“取得黑球”,A 则,()()()()1212||2635P A P A P B A P B A =====由全概率公式得: .()()()()()||P B P A P B A P A P B A =+111211232530=⨯+⨯=(2)该球取自乙箱的可能性更大,理由如下:该球是取自甲箱的概率()()()()11|523|111130P A P B A P A B P B ⨯===,该球取自乙箱的概率()()()()12|625|111130P A P B A P A B P B ⨯===因为所以该球取自乙箱的可能性更大.()()||P A B P A B <,17.(1)证明见解析(2)或332【分析】(1)利用线面垂直的性质证明线线垂直即可.(2)建立空间直角坐标系,利用二面角的向量求法建立方程,求解参数即可.【详解】(1)因为平面平面,所以,PA ⊥,ABC BC ⊂ABC PA BC ⊥又,,平面,所以平面,AB BC ⊥PA AB A = ,PA AB ⊂PAB ⊥BC PAB 因为面,所以,又因为为的中点,,AE ⊂PAB BC AE ⊥E PB 1==PA AB 所以,因为,平面,AE PB ⊥BC PB B = ,BC PB ⊂PBC 所以平面,因为平面,所以;AE ⊥PBC PC ⊂PBC AE CP ⊥(2)如图,以为原点,建立空间直角坐标系,B 设,()()()),0.0,0,0,,0,0,1,1,BQ t B Q t P C=取平面的法向量,APQ ()1,0,0m =设平面的法向量,CPQ (),,n x y z =因为,)),0,1,1QC t PC =-=--由,则,令,解得,00QC n PC n ⎧⋅=⎪⎨⋅=⎪⎩0ty y z -=--=x t=)1y z t ==-所以,由)()1n t t =-cos ,m n m n m n ⋅〈〉==得,解得或,故或.22990t t -+=3t =32t =3BQ =32BQ =18.(1)答案见解析(2)()0,1(3),0]∞-(【分析】(1)函数求导,根据参数进行分类,讨论函数的单调性即得;a (2)将函数有两个零点,转化为与有两个交点问题,利用导数()g x ()ln h x x x x =-1y a =-研究并作出函数的图象,即得的取值范围;()h x a (3)由原不等式恒成立转化为恒成立,设,就参1ln 0a x x a x ---+≥()1ln ax x x a x ϕ=---+数分类讨论,找到使恒成立时的情况,即得的取值范围.a ()0x ϕ≥a 【详解】(1)的定义域为,()f x ()0,∞+()()()()()2221222x a x a x x a af x x a x x x-++--=+-+='=.当时,时,时,;0a ≤()0,1x ∈()()01,f x x ∞'<∈+;()0f x '>当时,时,;2a =()0,x ∞∈+()0f x '≥当时,时,;时;02a <<,12a x ⎛⎫∈ ⎪⎝⎭()0f x '<()0,1,2a x ∞⎛⎫∈⋃+ ⎪⎝⎭()0f x '>当时,时;时;2a >1,2a x ⎛⎫∈ ⎪⎝⎭()0f x '<()0,1,2a x ∞⎛⎫∈⋃+ ⎪⎝⎭()0f x '>综上,时,的递减区间是,递增区间是;0a ≤()f x ()0,1()1,∞+时,的递增区间是,无递减区间;2a =()f x ()0,∞+时,的递增区间是和,递减区间是;02a <<()f x 0,2a ⎛⎫ ⎪⎝⎭()1,∞+,12a ⎛⎫ ⎪⎝⎭时,的递增区间是和,递减区间是.2a >()f x ()0,1,2a ∞⎛⎫+ ⎪⎝⎭1,2a ⎛⎫ ⎪⎝⎭(2)令得,()0g x =ln 1x x x a -=-设,则,()ln h x x x x =-()ln h x x'=当时,在上递减;当时,在上递()0,1x ∈()()0,h x h x '<()0,1()1,x ∞∈+()()0,h x h x '>()1,∞+增,则.()()min 11,h x h ==-又因时,时,作出函数的图象,0x +→()0,h x x ∞-→→+(),h x ∞→+()ln h x x x x =-由图可得,要使直线与函数的图象有两个交点,须使,1y a =-()h x 110a -<-<即,故的取值范围是.01a <<a ()0,1(3)由得,()()1ln f x g x a x+≥+2ln 0x x x x ax a ---+≥因,即得,(*),1x ≥1ln 0a x x a x ---+≥易得时,不等式成立,1x =设,,()1ln ax x x a x ϕ=---+1x >则,22221(1)()1a x x a x x ax x x x x ϕ----'=--==当时,,函数在上单调递增,故,(*)恒成立;0a ≤()0x ϕ'>()ϕx (1,)+∞()(1)0x ϕϕ>=当时,设,0a >2()p x x x a =--则方程有两根,,可得20x x a --=12,x x 12121,0x x x x a +==-<120,1,x x <>当时,,则,在上单调递减;21x x <<()0p x <()0x ϕ'<()ϕx 2(1,)x 又,所以当时,,不满足条件,()10ϕ=21x x <<()0x ϕ<综上,的取值范围是.a ,0]∞-(思路点睛:本题主要考查函数的零点和不等式恒成立问题,属于难题.对于函数零点的探究,一般考虑参变分离法,不易分离变量的则考虑根据参数,分析讨论函数的图象性质判断求解;对于由不等式恒成立的求参问题,一般是分离变量后,将其转化为求函数的最值问题解决,对于不易转化时,可以通过构造函数,根据参数范围,讨论函数不等式何时恒成立.19.(1)2,3,1,4;3,2,4,1(2)证明见解析(3)证明见解析【分析】(1)根据“数列”的定义求解即可;n -(2)由题知,为的最大值或最小值的一个排列,则有为的最大值1,m m b b -{}m b 21,m m bb --{}1m b -或最小值的一个排列,分类讨论即可证明;(3)由(2)知,数列任意元子集必存在2个数列,则任意取项的排列数为,{}n a m n -m A mn 而为数列的数列的个数为,所以.{}m b {}n a n -2C m n 2C 21A !3m nm m n P m ==≤【详解】(1)由数列的定义知,的数列为:2,3,1,4;3,2,4,1.n -{}n a n -(2)对于项的数列一个数列,m {}n a n -{}12321:,,,,,,m m m m b b b b b b b --⋯因为对于,均有,()1,2,,2i i m =- ()()120i i i i b b b b ++--<所以,{}{}1212min ,max ,i i i i i b b b b b ++++<<所以不是所有项中的最大值或最小值,i b {}m b 所以为的最大值或最小值的一个排列,1,m m b b -{}m b 考虑中去掉后的数列,{}m b mb{}112321:,,,,,m m m b b b b b b ---⋯同理若数列为数列的一个数列,{}1m b -{}n a n -则有为的最大值或最小值的一个排列,21,m m b b --{}1m b -以此类推,当时,21m k =+①若为最大值,则为最小值,则,m b 1m b -24312431m m m m m b b b b b b b b b ---->>>>>>>>>> 所以,;()()()122431111m m m m m k b b b b b b b b k ----=-+-++-≥+++=个②若为最大值,则为最小值,则,1m b -m b 24312431m m m m m b b b b b b b b b ----<<<<<<<<<< 所以,,()()()11335211m m m k b b b b b b b b k --=-+-++-≥++= 个综上,.1m b b k-≥(3)由(2)知,数列任意元子集必存在2个数列,{}n a m n -因此任意取项的排列数为,而为数列的数列的个数为,m A m n {}m b {}n a n -2C m n 所以,2C 2A !m nm m n P m ==因为,2,Z m m >∈所以,,3m ≥m ∈Z 所以.221!3!3m P m =≤=关键点睛:解答本题的关键在于理解数列的定义,证明第(2)问中,由定义得出所以n -,且为的最大值或最小值的一个排列是解题关键;{}{}1212min ,max ,i i i i i b b b b b ++++<<1,m m b b -{}m b 证明(3)时,得出数列任意元子集必存在2个数列是解题关键.{}n a m n -。
2023-2024学年江苏省苏州市高三(上)期末数学试卷【答案版】

2023-2024学年江苏省苏州市高三(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合U =R ,集合M ={x |log 2x <1},N ={x |x >1},则集合{x |0<x ≤1}=( ) A .M ∪NB .M ∩NC .(∁U M )∩ND .(∁U N )∩M2.设i 为虚数单位,复数z 满足(3﹣i )z =4+2i ,则|z |=( ) A .√2B .√3C .2D .43.2023年9月28日,沪宁沿江高速铁路开通运营,形成上海至南京间的第二条城际高速铁路,沪宁沿江高速铁路共设8座车站(如图).为体验高铁速度,游览各地风光,甲乙两人准备同时从南京南站出发,甲随机选择金坛、武进、江阴、张家港中的一站下车,乙随机选择金坛、武进、江阴、张家港、常熟中的一站下车.已知两人不在同一站下车,则甲比乙晚下车的概率为( )A .320B .14C .120D .384.已知函数f (x )=cos (ωx +π3)+1(ω>0)的最小正周期为π,则f (x )在区间[0,π2]上的最大值为( ) A .12B .1C .32D .25.在梯形ABCD 中,AD ∥BC ,∠ABC =π2,BC =2AD =2AB =2,以下底BC 所在直线为轴,其余三边旋转一周形成的面围成一个几何体,则该几何体的体积为( ) A .2π3B .4π3C .5π3D .2π6.在平面直角坐标系xOy 中,已知A 是圆C 1:x 2+(y ﹣3)2=1上的一点,B ,C 是圆C 2:(x ﹣4)2+y 2=4上的两点,则∠BAC 的最大值为( ) A .π6B .π3C .π2D .2π37.已知正实数a ,b ,c 满足2a+1a=2a ﹣a ,3b+1b =3b ﹣b ,4c+1c=4c ﹣c ,则a ,b ,c 的大小关系为( )A .c <b <aB .a <b <cC .a <c <bD .b <a <c8.若sin π10是函数f (x )=ax 3﹣bx +1(a ,b ∈N *)的一个零点,则f (1)=( )A .2B .3C .4D .5二、选择题:本题共4小题,每小题5分,共20分。
人教版数学高三期末测试精选(含答案)8

【答案】C
x 0,
9.设点
P(
x,
y)
在不等式组
2x
y
0,
表示的平面区域上,则 z
x y 3 0
(x 1)2 y2 的
最小值为( )
A.1
B. 5 5
C. 2
D. 2 5 5
【来源】辽宁省沈阳市东北育才学校 2019 届高三第五次模拟数学(文)试题
【答案】D
10.已知各项均为正数的等比数列an 单调递增,且 a1 a3 36,a1 a2 a3 26 ,
人教版数学高三期末测试精选(含答案)
学校:___________姓名:___________班级:___________考号:___________
评卷人 得分
一、单选题
1.在 ABC 中,内角 A , B , C 所对的边分别为 a , b , c .若 ABC 的面积为
b2 c2 a2 ,则角 A =(
A. ab ac
B. c b a 0
C. cb2 ab2
D. ac a c 0
【来源】2019 年上海市格致中学高三上学期第一次检测数学试题
【答案】C
6.已知 a,b ∈ R,则 a > |b|是 a|a| > b|b|的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
则 Ð B =___________. 【来源】重庆市綦江实验中学校 2017-2018 学年高一下学期半期考试数学(理)试题.
【答案】150
23.已知等差数列an 的公差为 2,若 a1,a3 ,a4 成等比数列,则 a2 ________.
【来源】安徽省阜阳三中 2018-2019 学年高二上学期第一次调研考试数学(文)试题
期末测试卷(二)-2020-2021学年高一数学必修第一册单元提优卷(人教A版(2019))(含答案)

2020-2021学年高一数学第一册单元提优卷(人教A 版(2019))期末测试卷(二)(满分:150分,测试时间:120分钟)一、单选题1.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =A .–4B .–2C .2D .42.【2020·广东省高三月考(文)】命题“10,ln 1x x x∀>≥-”的否定是A .10ln 1x x x ∃≤≥-,B .10ln 1x x x ∃≤<-,C .10ln 1x x x∃>≥-,D .10ln 1x x x∃><-,.3.【2020·北京市八一中学高三月考】函数()()213f x ax a x =---在区间[)1,-+∞上是增函数,则实数a 的取值范围是A .1,3⎛⎤-∞ ⎥⎝⎦B .(],0-∞C .10,3⎛⎤ ⎥⎝⎦D .10,3⎡⎤⎢⎥⎣⎦4.【2020·福建省福州第一中学高三其他(理)】已知函数()f x 的定义域为[0,2],则()()21f xg x x =-的定义域为A .[)(]0,11,2B .[)(]0,11,4C .[)0,1D .(]1,45.设函数要想得到函数sin21y x =+的图像,只需将函数cos2y x =的图象()A .向左平移4π个单位,再向上平移1个单位B .向右平移4π个单位,再向上平移1个单位C .向左平移2π个单位,再向下平移1个单位D .向右平移2π个单位,再向上平移1个单位6.【2020·北京高三月考】已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f =A .16B .8C .4D .27.已知3sin(3)cos()0πθπθ-++-=,则sin cos cos 2θθθ=()A .3B .﹣3C .38D .38-8.【2020·南昌市八一中学】已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =-的图象可能A .B .C .D .9.【2020年新高考全国Ⅰ卷】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A .1.2天B .1.8天C .2.5天D .3.5天10.【2020年高考北京】已知函数()21x f x x =--,则不等式()0f x >的解集是A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞11.【2020年高考全国Ⅱ卷理数】若2x −2y <3−x −3−y ,则A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y |>0D .ln|x −y |<012.【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是A .1(,))2-∞-+∞ B .1(,)(0,2-∞-C .(,0)-∞D .(,0))-∞+∞ 二.填空题13.【2020年高考北京】函数1()ln 1f x x x =++的定义域是____________.14.【2020年高考江苏】已知2sin ()4απ+=23,则sin 2α的值是____________.15.【2020·江苏省高三月考】已知函数()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩,若()()2f a f a =+,则1f a ⎛⎫⎪⎝⎭的值是____________.16.【2020·六盘山高级中学高三其他(理)】设函数2()2cos ()sin(284f x x x ππ=+++,(0,3π)∈x 则下列判断正确的是____________.①.函数的一条对称轴为6x π=②.函数在区间5,24ππ⎡⎤⎢⎥⎣⎦内单调递增③.0(0,3π)x ∃∈,使0()1f x =-④.∃∈R a ,使得函数()y f x a =+在其定义域内为偶函数三.解答题17.(本题满分10分)已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.18.(本题满分12分)已知集合,2|2162xA x ⎧⎫⎪⎪=<<⎨⎬⎪⎪⎩⎭,{|3221}B x a x a =-<<+.(1)当0a =时,求A B ;(2)若A B φ⋂=,求a 的取值范围.19.(本题满分12分)已知函数()21sin sin cos 2f x x x x =+-,x ∈R .(1)求函数()f x 的最大值,并写出相应的x 的取值集合;(2)若()26f α=,3,88ππα⎛⎫∈-⎪⎝⎭,求sin 2α的值.20.(本题满分12分)已知函数()0.52log 2axf x x -=-为奇函数.(1)求常数a 的值;(2)若对任意10,63x ⎡⎤∈⎢⎥⎣⎦都有()3f x t >-成立,求t 的取值范围.21(本题满分12分)【江苏省盐城市第一中学2020届高三下学期6月调研考试数学试题某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()253,02()50,251x x W x x x x⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元).(Ⅰ)求()f x 的函数关系式;(Ⅱ)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?22.(本题满分12分)已知函数2()2sin cos 0)f x x x x ωωωω=+->的最小正周期为π.(1)求函数()f x 的单调增区间;(2)将函数()f x 的图象向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图象,若()y g x =在[0,](0)b b >上至少含有10个零点,求b 的最小值.2020-2021学年高一数学第一册单元提优卷期末测试卷(二)(满分:150分,测试时间:120分钟)一、单选题1.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =A .–4B .–2C .2D .4【答案】B求解二次不等式240x -≤可得{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得|2a B x x ⎧⎫=≤-⎨⎩⎭.由于{}|21A B x x ⋂=-≤≤,故12a-=,解得2a =-.故选B .2.【2020·广东省高三月考(文)】命题“10,ln 1x x x∀>≥-”的否定是A .10ln 1x x x ∃≤≥-,B .10ln 1x x x ∃≤<-,C .10ln 1x x x ∃>≥-,D .10ln 1x x x∃><-,【答案】D【解析】因为全称命题的否定是特称命题,所以命题“0x ∀>,1ln 1x x ≥-”的否定为“0x ∃>,1ln 1x x<-”.故选D .3.【2020·北京市八一中学高三月考】函数()()213f x ax a x =---在区间[)1,-+∞上是增函数,则实数a 的取值范围是A .1,3⎛⎤-∞ ⎥⎝⎦B .(],0-∞C .10,3⎛⎤ ⎥⎝⎦D .10,3⎡⎤⎢⎥⎣⎦【答案】D【解析】若0a =,则()3f x x =-,()f x 在区间[)1,-+∞上是增函数,符合.若0a ≠,因为()f x 在区间[)1,-+∞上是增函数,故0112a a a>⎧⎪-⎨≤-⎪⎩,解得103a <≤.综上,103a ≤≤.故选:D .4.【2020·福建省福州第一中学高三其他(理)】已知函数()f x 的定义域为[0,2],则()()21f xg x x =-的定义域为A .[)(]0,11,2 B .[)(]0,11,4 C .[)0,1D .(]1,4【答案】C【解析】函数()f x 的定义域是[0,2],要使函数()()21f xg x x =-有意义,需使()2f x 有意义且10x -≠.所以10022x x -≠⎧⎨≤≤⎩,解得01x ≤<.故答案为C .5.设函数要想得到函数sin21y x =+的图像,只需将函数cos2y x =的图象()A .向左平移4π个单位,再向上平移1个单位B .向右平移4π个单位,再向上平移1个单位C .向左平移2π个单位,再向下平移1个单位D .向右平移2π个单位,再向上平移1个单位【答案】B【解析】cos 2sin(2)sin 2()24y x x x ππ==+=+,因此把函数cos 2y x =的图象向右平移4π个单位,再向上平移1个单位可得sin 21y x =+的图象,故选B6.【2020·北京高三月考】已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f =A .16B .8C .4D .2【答案】B【解析】因为(1)2()f x f x +=,且(5)3(3)4f f =+,故()()324442f f =+,解得()48f =.故选:B7.已知3sin(3)cos()0πθπθ-++-=,则sin cos cos 2θθθ=()A .3B .﹣3C .38D .38-【答案】D 【解析】∵3sin(3)cos()0πθπθ-++-=,∴3sin cos 0θθ--=,即cos 3sin θθ=-,∴sin cos cos 2θθθ2222sin cos sin (3sin )3cos sin (3sin )sin 8θθθθθθθθ⋅-===----.故选:D .8.【2020·南昌市八一中学】已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =-的图象可能A .B .C .D .【答案】C【解析】由函数sin (0)y ax b a =+>的图象可得201,23b a πππ<<<<,213a ∴<<,故函数log ()a y xb =-是定义域内的减函数,且过定点(1,0)b +.结合所给的图像可知只有C 选项符合题意.故选:C .9.【2020年新高考全国Ⅰ卷】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rt I t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A .1.2天B .1.8天C .2.5天D .3.5天【答案】B【解析】因为0 3.28R =,6T =,01R rT =+,所以 3.2810.386r -==,所以()0.38rt t I t e e ==,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为1t 天,则10.38()0.382t t t e e +=,所以10.382t e =,所以10.38ln 2t =,所以1ln 20.691.80.380.38t =≈≈天.故选:B .10.【2020年高考北京】已知函数()21x f x x =--,则不等式()0f x >的解集是A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞【解析】因为()21xf x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞.故选:D .11.【2020年高考全国Ⅱ卷理数】若2x −2y <3−x −3−y ,则A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y |>0D .ln|x −y |<0【答案】A【解析】由2233x y x y ---<-得:2323x x y y ---<-,令()23ttf t -=-,2x y = 为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->Q ,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -Q 与1的大小不确定,故CD 无法确定.12.【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是A .1(,))2-∞-+∞ B .1(,(0,2-∞-C .(,0)-∞D .(,0))-∞+∞ 【答案】D【解析】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根即可,令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩,当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意;当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意;当0k >时,如图3,当2y kx =-与2y x =相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =k >.综上,k 的取值范围为(,0))-∞+∞ .故选:D .二.填空题13.【2020年高考北京】函数1()ln 1f x x x =++的定义域是____________.【答案】(0,)+∞【解析】由题意得010x x >⎧⎨+≠⎩,0x ∴>故答案为:(0,)+∞14.【2020年高考江苏】已知2sin ()4απ+=23,则sin 2α的值是____________.【答案】13【解析】22221sin ()(cos sin )(1sin 2)4222παααα+=+=+Q 121(1sin 2)sin 2233αα∴+=∴=故答案为:1315.【2020·江苏省高三月考】已知函数()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩,若()()2f a f a =+,则1f a ⎛⎫ ⎪⎝⎭的值是____________.【答案】2【解析】由2x ≥时,()28f x x =-+是减函数可知,当2a ≥,则()()2f a f a ≠+,所以02a <<,由()(+2)f a f a =得22(2)8a a a +=-++,解得1a =,则21(1)112f f a ⎛⎫==+= ⎪⎝⎭.故答案为:2.16.【2020·六盘山高级中学高三其他(理)】设函数2()2cos ()sin(2)84f x x x ππ=+++,(0,3π)∈x 则下列判断正确的是_____.①.函数的一条对称轴为6x π=②.函数在区间5,24ππ⎡⎤⎢⎥⎣⎦内单调递增③.0(0,3π)x ∃∈,使0()1f x =-④.∃∈R a ,使得函数()y f x a =+在其定义域内为偶函数【答案】④【解析】函数()1cos 2sin 21244f x x x x ππ⎛⎫⎛⎫=++++=+ ⎪ ⎪⎝⎭⎝⎭,当(0,3π)∈x 时,当6x π=时,23x π=不能使函数取得最值,所以不是函数的对称轴,①错;当5,24x π⎡⎤∈π⎢⎥⎣⎦时,52,2x ⎡⎤∈ππ⎢⎥⎣⎦,函数先增后减,②不正确;若()1f x =-,那么cos 2x =不成立,所以③错;当3 2a =π时,()12f x a x +=函数是偶函数,④正确,三.解答题17.(本题满分10分)已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.【答案】(1)证明见解析;(2)1.【解析】证明:(1)∵()()222223220a b b a b a ab b a b +-+=-+=-≥,∴()2232a b b a b +≥+.(2)∵0a >,0b >,∴2ab a b =+≥2ab ≥1≥,∴1≥ab .当且仅当1a b ==时取等号,此时ab 取最小值1.18.(本题满分12分)已知集合,|2162x A x ⎧⎫⎪⎪=<<⎨⎬⎪⎪⎩⎭,{|3221}B x a x a =-<<+.(1)当0a =时,求A B ;(2)若A B φ⋂=,求a 的取值范围.【答案】(1)1|12A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭;(2)3,[2,)4⎛⎤-∞-⋃+∞ ⎥⎝⎦.【解析】(1)1|42A x x ⎧⎫=-<<⎨⎬⎩⎭,0a =时,{|21}B x x =-<<,∴1|12A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭(2)∵A B φ⋂=,∴当B φ=时,3221a a -≥+,即3a ≥,符合题意;当B φ≠时,31213242a a a <⎧⎪⎨+≤--≥⎪⎩或,解得34a ≤-或23a ≤<,综上,a 的取值范围为3,[2,)4⎛⎤-∞-⋃+∞ ⎥⎝⎦.19.(本题满分12分)已知函数()21sin sin cos 2f x x x x =+-,x ∈R .(1)求函数()f x 的最大值,并写出相应的x 的取值集合;(2)若()26f α=,3,88ππα⎛⎫∈- ⎪⎝⎭,求sin 2α的值.【答案】(1)()f x 的最大值为22,此时x 的取值集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)4sin 26α=.【解析】(1)因为()()211cos 2111sin sin cos sin 2sin 2cos 222222x f x x x x x x x -=+-=+-=-22sin 2cos cos 2sin sin 224424x x x πππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,当()2242x k k Z πππ-=+∈,即()38x k k Z ππ=+∈时,函数()y f x =取最大值2,所以函数()y f x =的最大值为22,此时x 的取值集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)因为()26f α=,则sin 2246πα⎛⎫-= ⎪⎝⎭,即1sin 243πα⎛⎫-= ⎪⎝⎭,因为3,88ππα⎛⎫∈- ⎪⎝⎭,所以2,422πππα⎛⎫-∈- ⎪⎝⎭,则cos 243πα⎛⎫-= ⎪⎝⎭,所以sin 2sin 2sin 2cos cos 2sin 444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1432326+=+⋅=.20.(本题满分12分)已知函数()0.52log 2ax f x x -=-为奇函数.(1)求常数a 的值;(2)若对任意10,63x ⎡⎤∈⎢⎥⎣⎦都有()3f x t >-成立,求t 的取值范围.【答案】(1)1a =-;(2)(),1-∞【解析】(1)因为函数()0.52log 2ax f x x -=-为奇函数,所以()()220.50.50.52224log log log 0224ax ax a x f x f x x x x-+-+-=+==----,所以222414a x x-=-,即21a =,1a =或1-,当1a =时,函数()0.50.52log log 12x f x x -==--,无意义,舍去,当1a =-时,函数()0.52log 2x f x x +=-定义域(-∞,-2)∪(2,+∞),满足题意,综上所述,1a =-。
江苏省常州市2022-2023学年高三上学期期末考试(延期)数学含答案

2022~2023学年高三年级模拟试卷数学(满分:150分考试时间:120分钟)2023.2一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的选项中只有一个选项符合要求.1.设集合A ={x |x <2},B |x -1x -3≤,则(∁R A )∩B =()A.(1,2)B.[1,2]C.[2,3)D.[2,3]2.命题“∀x >0,x >1x ”的否定为()A.∃x >0,x ≤1x B.∃x ≤0,x ≤1x C.∀x >0,x ≤1x D.∀x ≤0,x ≤1x 3.若复数z =a +3i 3+i (a ∈R )是纯虚数,则z =()A.-1 B.-i C.-a i D.3i 4.已知两个单位向量a ,b 满足(2b -a )⊥(2a -b ),则a 与b 的夹角的余弦值为()A.-45 B.-25 C.25 D.455.已知正三棱柱ABCA 1B 1C 1与以△ABC 的外接圆为底面的圆柱的体积相等,则正三棱柱与圆柱的侧面积的比值为()A.12B.2πC.π2D.26.设C 0n (x +2)n -C 1n (x +2)n -1+C 2n (x +2)n -2-…+(-1)n C n n =a 0x n +a 1xn -1+…+a n -1x +a n ,则a 1+a 2+…+a n -1=()A.2n -1-2B.2n -1-1C.2n -2D.2n -17.下表提供了某厂进行技术改造后生产产品过程中记录的产量x (单位:吨)与相应的生产能耗y (单位:吨标准煤)的几组对应数据:x /吨3456y /吨标准煤 2.534 4.5已知该厂技术改造前100吨产品的生产能耗为90吨标准煤,试根据以上数据求出的线性回归方程,预测该厂技术改造后100吨产品的生产能耗比技术改造前降低了()参考公式:在线性回归方程y =a +b x 中,b =∑ni =1x i y i -nxy ∑n i =1x 2i -nx 2,a =y -b x ,其中x ,y为样本平均值.A .19.65吨标准煤B .29.65吨标准煤C .70.35吨标准煤D .90吨标准煤8.已知函数f(x)x ≤1,x >1,则f(f(x))=1解的个数为()A .2B .3D .5二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.某次测试,经统计发现测试成绩服从正态分布,函数P(x)=12π×10e -(x -90)2200(x ∈R )的图象为其正态密度曲线,则下列说法正确的是()A.这次测试的平均成绩为90B.这次测试的成绩的方差为10C.分数在110分以上的人数与分数在80分以下的人数相同D.分数在120分以上的人数与分数在60分以下的人数大致相同10.已知双曲线x 216-y 29=1的左、右焦点分别是F 1,F 2,点P 在双曲线的右支上,则下列说法正确的是()A.若直线PF 1的斜率为k ,则|k |∈[0,34)B.使得△PF 1F 2为等腰三角形的P 有且仅有四个C.点P 到两条渐近线的距离乘积为14425D.已知点Q (7,5),则F 2P +PQ 的最小值为511.已知函数f (x )=2x -tan x ,则下列结论正确的是()A.函数f (x )不是周期函数B.函数f (x )的图象只有一个中心对称点C.函数f (x )的单调递减区间为(2k π-π4,2k π+π4),k ∈Z D.曲线y =f (x )(-π2<x <π2)只有一条过点(1,0)的切线12.若棱长为a 的正方体ABCDA 1B 1C 1D 1的顶点都在半径为R 的球面上,球面上点P 与球心O 分别位于平面ABCD 的两侧,且四棱锥PABCD 是侧棱长为l 的正四棱锥.记正四棱锥PABCD 的侧棱与直线AB 所成的角为α,与底面ABCD 所成的角为β,则下列说法正确的是()A.15°<α<45° B.15°<β<45° C.R =32a D.l =45a 三、填空题:本题共4小题,每小题5分,共20分.13.数据23,76,45,37,58,16,28,15,53,24,42,36的25百分位数是________.14.在平面直角坐标系xOy 中,点P 到直线x =-2与到点F (2,0)的距离相等,点Q 在圆(x -10)2+y 2=25上,则PQ 的最小值为________.15.已知函数f (x )=e x -e -x e x +e-x +x 2,则不等式f (x +1)+f (x -1)<2x 2+2的解集为________.16.已知数列{a n }中,a 1=1,n 2a n +1=2(n +1)2a n .记b n =12a n +1-a n ,则{a n }的通项公式a n =________;{b n }的前n 项和T n =________.四、解答题:本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分10分)设甲袋中有3个白球和4个红球,乙袋中有1个白球和2个红球.现从甲袋中任取2个球放入乙袋,再从乙袋中任取2个球.(1)记从甲袋中取出的2个球中恰有X 个白球,求随机变量X 的概率分布和数学期望;(2)求从乙袋中取出的2个球中恰有1个红球的概率.18.(本小题满分12分)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 1+a 2=b 3,15a 1+a 9=b 6.(1)求数列{a n }和{b n }的通项公式;(2)记c n=log2b n+1的前n项和S n.19.(本小题满分12分)已知锐角三角形ABC的内角A,B,C的对边分别为a,b,c,边AB上的高CD为1,且c2=ab cos C.(1)求证:1tan A+1tan B=1tan C;(2)求AB的最小值.20.(本小题满分12分)如图,在边长为4的等边三角形ABC中,平行于BC的直线分别交线段AB,AC于点M,N.将△AMN沿着MN折起至△A1MN,使得二面角A1MNB是直二面角.(1)若平面A1MN∩平面A1BC=l,求证:l∥BC;(2)若三棱锥A1AMN的体积为1,求二面角NA1MB的正弦值.21.(本小题满分12分)已知点P(2,-1)在椭圆C:x2a2+y2b2=1(a>b>0)上,C的长轴长为42,直线l:y=kx+m与C交于A,B两点,直线PA,PB的斜率之积为14.(1)求证:k为定值;(2)若直线l与x轴交于点Q,求QA2+QB2的值.22.(本小题满分12分)已知函数f (x )=-13x 3+ax 2+3ax +1-a 2,a ∈R .(1)若a =1,求函数f (x )的单调区间;(2)设函数f (x )有两个极值点x 1,x 2,若过点(x 1,f (x 1)),(x 2,f (x 2))的直线恒在函数g (x )=x ·e x -ln x +x 图象的下方,求实数a 的取值范围.2022~2023学年高三年级模拟试卷(常州)数学参考答案及评分标准1.C2.A3.B4.D5.D6.C7.A8.A9.AD 10.ABC 11.AD 12.BC 13.23.514.315.(-∞,0)16.n 22n -1(2n -1)2n +117.解:(1)X 的可能取值为0,1,2,P (X =0)=C 24C 27=27,P (X =1)=C 13C 14C 27=47,P (X =2)=C 23C 27=17,所以随机变量X 的概率分布为X 012P 274717所以随机变量X 的数学期望为E (X )=0×27+1×47+2×17=67.(5分)(2)记事件B :从乙袋中取出的2个球中恰有1个红球,(1)中X =0,1,2正好为“从甲袋中任取2个球”的样本空间,由全概率公式,得P (B )=∑2i =0P(X =i)P(B|X =i)=27×C 14C 25+47×C 12C 13C 25+17×C 13C 12C 25=1935,所以从乙袋中取出的2个球中恰有1个红球的概率为1935.(10分)18.解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q.因为a 1=b 1=1,a 1+a 2=b 3,15a 1+a 9=b 6,所以2+d =q 2≠0,16+8d =q 5,所以q 3=16+8d 2+d=8,所以q =2,d =2.从而a n =2n -1,b n =2n -1.(6分)(2)易知c n =log 2b n +1=log 22n =n ,所以c 2n a n a n +1=n 2(2n -1)(2n +1)=n 24n 2-1=14[1+1(2n -1)(2n +1)]=14+18(12n -1-12n +1),所以S n =c 21a 1a 2+c 22a 2a 3+…+c 2n a n a n +1=n 4+18(11-13+13-15+…+12n -1-12n +1),即S n =n 4+n 4(2n +1)=2n 2+2n 8n +4=n 2+n 4n +2.(12分)19.解:(1)由c 2=ab cos C 及正弦定理得sin 2C =sin A sin B cos C ,所以sin C sin A sin B =cos C sin C.因为锐角三角形中,A +B =π-C ,所以sin (A +B)=sin (π-C)=sin C ,所以sin A cos B +cos A sin B sin A sin B =cos C sin C ,所以1tan A +1tan B =1tan C .(5分)(2)因为CD =1,所以AD =1tan A ,BD =1tan B ,所以AB =AD +BD =1tan C .又因为tan C =tan (∠ACD +∠BCD)=tan ∠ACD +tan ∠BCD 1-tan ∠ACD·tan ∠BCD =AD +BD 1-AD·BD ,所以AD +BD =1-AD·BD AD +BD ,(9分)所以(AD +BD)2=1-AD·BD ≥1-(AD +BD 2)2,当且仅当AD =BD 时等号成立,所以54(AD +BD)2≥1,所以AB =AD +BD ≥255.所以AB 的最小值为255.(12分)20.(1)证明:因为MN ∥BC ,MN ⊄平面A 1BC ,BC ⊂平面A 1BC ,所以MN ∥平面A 1BC ,又因为MN ⊂平面A 1MN ,平面A 1MN ∩平面A 1BC =l ,所以l ∥BC.(4分)(2)解:取BC 的中点D ,连接AD 交MN 于点O ,连接OA 1.在正三角形ABC 中,MN ∥BC ,D 为BC 的中点,所以O 为MN 的中点,AM =AN ,所以OD ⊥MN ,A 1M =AM =AN =A 1N ,从而OA 1⊥MN.因为二面角A 1MNB 是直二面角,即平面A 1MN ⊥平面BMN ,平面A 1MN ∩平面BMN =MN ,OA 1⊂平面A 1MN ,所以OA 1⊥平面BMN ,即OA 1⊥平面ABC.(8分)设OA =OA 1=x ,则MN BC =OA AD =x 23,所以MN =2x 3.因为三棱锥A 1AMN 的体积为1,所以13×12MN·OA·OA 1=1,即13×x 3·x 2=1,所以x =3.(9分)以O 为原点,OM ,OD ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Oxyz ,易得平面A 1MN 的一个法向量为n 1=(0,1,0),M (1,0,0),A 1(0,0,3),B (2,3,0),所以MB →=(1,3,0),MA 1=(-1,0,3),设平面A 1MB 的法向量为n 2=(x ,y ,z )·n 2=0,1·n 2=0,+3y =0,x +3z =0,取z =1,则x =3,y =-1,所以平面A 1MB 的一个法向量为n 2=(3,-1,1),n 1·n 2|n 1||n 2|=-11×3+1+1=-55,即二面角NA 1MB 的正弦值为255.(12分)21.解:(1)因为C 的焦点在x 轴上且长轴为42,则2a =42,故可设椭圆C 的方程为x 28+y 2b 2=1(22>b >0).因为点P (2,-1)在椭圆C 上,所以48+1b 2=1,解得b 2=2,所以椭圆C 的方程为x 28+y 22=1.(3分)kx +m ,+y 22=1,整理得(1+4k 2)x 2+8kmx +4m 2-8=0,设A (x 1,y 1),B (x 2,y 2)1+x 2=-8km 1+4k 2,1x 2=4m 2-81+4k 2,所以k 1k 2=y 1+1x 1-2·y 2+1x 2-2=(kx 1+m +1)(kx 2+m +1)(x 1-2)(x 2-2)=k 2x 1x 2+k (m +1)(x 1+x 2)+(m +1)2x 1x 2-2(x 1+x 2)+4=14,所以(4k 2-1)x 1x 2+(4km +4k +2)(x 1+x 2)+4(m 2+2m )=0,所以(4k 2-1)4m 2-81+4k 2+(4km +4k +2)-8km 1+4k2+4(m 2+2m )=0,整理得(2k -1)(2k +1+m )=0,因为直线l 不经过点P ,所以2k +1+m ≠0,故2k -1=0,即k =12为定值.(7分)(2)因为直线l :y =12x +m ,所以Q (-2m ,0),=12x +m ,+y 22=1,得2x 2+4mx +4m 2-8=0,即x 2+2mx +2m 2-4=0,1+x 2=-2m ,1x 2=2m 2-4,所以|OA →|2+|QB →|2=(x 1+2m )2+y 21+(x 2+2m )2+y 22=(x 1+2m )2+14(x 1+2m )2+(x 2+2m )2+14(x 2+2m )2=54[(x 1+2m )2+(x 2+2m )2]=54[x 21+x 22+4m (x 1+x 2)+8m 2]=54[(x 1+x 2)2+4m (x 1+x 2)-2x 1x +8m 2]=54[(-2m )2-2m ·4m -2(2m 2-4)+8m 2]=10.(12分)22.解:(1)因为a =1,f (x )=-13x 3+x 2+3x ,f ′(x )=-x 2+2x +3=0,令f ′(x )=0,得x =-1,3.x (-∞,-1)-1(-1,3)3(3,+∞)f ′(x )-0+0-f (x )递减极小值递增极大值递减所以函数f (x )的单调递增区间为(-1,3),单调递减区间为(-∞,-1),(3,+∞).(4分)(2)因为函数f (x )有两个极值点x 1,x 2,所以f ′(x )=-x 2+2ax +3a =0有两个不相等的解x 1,x 2,Δ=4a 2+12a >0,所以a >0或a <-3,x 21=2ax 1+3a ,则x 31=2ax 21+3ax 1,所以f (x 1)=-13(2ax 21+3ax 1)+ax 21+3ax 1+1-a 2,=a 3x 21+2ax 1+1-a 2=a 3(2ax 1+3a )+2ax 1+1-a 2=(23a 2+2a )x 1+1,同理f (x 2)=(23a 2+2a )x 2+1,则过点(x 1,f (x 1)),(x 2,f (x 2))的直线方程为y =(23a 2+2a )x +1.(7分)由题意知(23a 2+2a )x +1<x ·e x -ln x +x ,对任意x ∈(0,+∞)恒成立,等价于23a 2+2a <x ·e x -ln x +x -1x,对任意x ∈(0,+∞)恒成立.先证:e x≥x+1,当且仅当x=0时成立.令g(x)=e x-x-1,g′(x)=e x-1,所以g(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以当且仅当x=0时,g(x)的最小值为g(0)=0,所以e x+ln x-ln x+x-1x≥x+ln x+1-ln x+x-1x=2,当且仅当x+ln x=0时取等号,令t(x)=x+ln x,t(1)=1>0,t(1e)=1e-1<0,t(x)的图象是连续不间断的,所以存在x0∈(1e,1),使x0+ln x0=0,所以e x+ln x-ln x+x-1x的最小值为2.(10分)所以23a2+2a<2,因为a>0或a<-3,所以实数a的取值范围是(0,21-32)∪(-21-32,-3).(12分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学试题(满分160分,考试时间120分钟)参考公式:锥体的体积公式V =13Sh,其中S 是锥体的底面积,h 为锥体的高.样本数据x 1,x 2,…,x n 的方差s 2=1n(x i -x -)2,其中x -=1nx i .一、 填空题:本大题共14小题,每小题5分,共70分.(第3题) 1. 已知集合A ={-1,0,1},B ={x|x 2>0},则A ∩B =________. 2. 若复数z 满足z ·i =1-i(i 是虚数单位),则z 的实部为________. 3. 如图是一个算法的流程图,则输出S 的值是________.4. 函数y =2x-1的定义域是________.5. 已知一组数据17,18,19,20,21,则该组数据的方差是________.6. 某校开设5门不同的选修课程,其中3门理科类和2门文科类,某同学从中任选2门课程学习,则该同学“选到文科类选修课程”的概率为________.7. 已知函数f(x)=⎩⎪⎨⎪⎧1x -1,x ≤0,-x 23,x >0,则f(f(8))=________.8. 函数y =3sin(2x +π3),x ∈[0,π]取得最大值时自变量x 的值为________.9. 在等比数列{a n }中,若a 1=1,4a 2,2a 3,a 4成等差数列,则a 1a 7=________. 10. 已知cos (π2-α)cos α=2,则tan 2α=________.11. 在平面直角坐标系xOy 中,双曲线C :x 2a 2-y2b 2=1(a >0,b >0)的右顶点为A ,过A作x 轴的垂线与C 的一条渐近线交于点B.若OB =2a ,则C 的离心率为________.12. 已知函数f(x)=|lg(x -2)|,互不相等的实数a ,b 满足f(a)=f(b),则a +4b 的最小值为________.13. 在平面直角坐标系xOy 中,圆C :x 2-2ax +y 2-2ay +2a 2-1=0上存在点P 到点(0,1)的距离为2,则实数a 的取值范围是________.14. 在△ABC 中,∠A =π3,点D 满足AD →=23AC →,且对任意x ∈R ,|xAC →+AB →|≥|AD →-AB →|恒成立,则cos ∠ABC =________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知a =1,cos B =33. (1) 若A =π3,求sin C 的值;(2) 若b =2,求c 的值.16.(本小题满分14分)如图,在四棱锥PABCD 中,PA ⊥平面ABCD ,四边形ABCD 是矩形,AP =AD ,点M ,N 分别是线段PD ,AC 的中点.求证:(1) MN ∥平面PBC ; (2) PC ⊥AM.如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,椭圆右顶点为A ,点F 2在圆A :(x -2)2+y 2=1上.(1) 求椭圆C 的标准方程;(2) 点M 在椭圆C 上,且位于第四象限,点N 在圆A 上,且位于第一象限,已知AM →=-132AN →,求直线F 1M 的斜率.18. (本小题满分16分)请你设计一个包装盒,ABCD 是边长为10 2 cm 的正方形硬纸片(如图1),切去阴影部分所示的四个全等的等腰三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图2中的点P ,正好形成一个正四棱锥形状的包装盒(如图2),设正四棱锥PEFGH 的底面边长为x(cm).(1) 若要求包装盒侧面积S 不小于75 cm 2,求x 的取值范围;(2) 若要求包装盒容积V(cm 3)最大,试问x 应取何值?并求出此时包装盒的容积.19. (本小题满分16分)已知函数f(x)=(ax 2+2x)ln x +a 2x 2+1(a ∈R).(1) 若曲线y =f(x)在x =1处的切线的斜率为2,求函数f(x)的单调区间;(2) 若函数f(x)在区间(1,e)上有零点,求实数a 的取值范围.(e 为自然对数的底数,e ≈2.718 28…)设m 为正整数,若两个项数都不小于m 的数列{A n },{B n }满足:存在正数L ,当n ∈N *且n ≤m 时,都有|A n -B n |≤L ,则称数列{A n },{B n }是“(m ,L)接近的”.已知无穷等比数列{a n }满足8a 3=4a 2=1,无穷数列{b n }的前n 项和为S n ,b 1=1,且S n (b n +1-b n )b n b n +1=12,n ∈N *.(1) 求数列{a n }通项公式;(2) 求证:对任意正整数m ,数列{a n },{a 2n +1}是“(m ,1)接近的”;(3) 给定正整数m(m ≥5),数列⎩⎨⎧⎭⎬⎫1a n ,{b 2n +k}(其中k ∈R)是“(m ,L)接近的”,求L 的最小值,并求出此时的k(均用m 表示).(参考数据:ln 2≈0.69)数学附加题(满分40分,考试时间30分钟)21. 【选做题】 在A ,B ,C 三小题中只能选做两题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-2:矩阵与变换)已知点(a ,b)在矩阵A =⎣⎢⎡⎦⎥⎤1324对应的变换作用下得到点(4,6).(1) 写出矩阵A 的逆矩阵; (2) 求a +b 的值.B. (选修4-4:坐标系与参数方程)求圆心在极轴上,且过极点与点P(23,π6)的圆的极坐标方程.C. (选修4-5:不等式选讲) 求函数y =x -2x +6x +1的最小值.【必做题】第22,23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 批量较大的一批产品中有30%的优等品,现进行重复抽样检查,共取3个样品,以X表示这3个样品中优等品的个数.(1) 求取出的3个样品中有优等品的概率;(2) 求随机变量X的概率分布及数学期望E(X).23. 设集合A={1,2},A n={t|t=a n·3n+a n-1·3n-1+…+a1·3+a0,其中a i∈A,i =0,1,2,…,n},n∈N*.(1) 求A1中所有元素的和,并写出集合A n中元素的个数;(2) 求证:能将集合A n(n≥2,n∈N*)分成两个没有公共元素的子集B s={b1,b2,b3,…,b s}和C l={c1,c2,c3,…,c l},s,l∈N*,使得b21+b22+…+b2s=c21+c22+…+c2l成立.数学参考答案及评分标准1. {-1,1}2. -13. 104. [0,+∞)5. 26. 7107. -158. π12 9. 6410. -2 2 11. 2 12. 14 13. ⎣⎢⎡⎦⎥⎤1-172,0∪⎣⎢⎡⎦⎥⎤1,1+172 14. 5132615. 解:(1) 在△ABC 中,0<B <π,则sin B >0. 因为cos B =33,所以sin B =1-cos 2B =1-(33)2=63.(3分) 在△ABC 中,A +B +C =π,所以sin C =sin[π-(A +B)]=sin(A +B),(5分) 所以sin C =sin(π3+B)=sin π3cos B +cos π3sin B =32×33+12×63=3+66.(8分)(2) 由余弦定理得b 2=a 2-2accos B +c 2,则(2)2=1-2c ·33+c 2,(10分) 所以c 2-233c -1=0,(c -3)(c +33)=0.(12分)因为c +33>0,所以c -3=0,即c = 3.(14分) 16.证明:(1) 取PC ,BC 的中点E ,F ,连结ME ,EF ,FN , 在三角形PCD 中,点M ,E 为PD ,PC 的中点, 所以EM ∥CD ,EM =12CD.在三角形ABC 中,点F ,N 为BC ,AC 的中点, 所以FN ∥AB ,FN =12AB.因为四边形ABCD 是矩形,所以AB ∥CD ,AB =CD ,从而EM ∥FN ,EM =FN ,所以四边形EMNF 是平行四边形.(4分)所以MN ∥EF ,又EF ⊂平面PBC ,MN ⊄平面PBC ,所以MN ∥平面 PBC.(6分) (2) 因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以PA ⊥CD. 因为四边形ABCD 是矩形,所以AD ⊥CD.(8分)因为PA ∩AD =A ,PA ⊂平面PAD ,AD ⊂平面PAD ,所以CD ⊥平面PAD. 又AM ⊂平面PAD ,所以CD ⊥AM.(10分)因为AP =AD ,点M 为PD 的中点,所以AM ⊥PD. 因为PD ∩CD =D ,PD ⊂平面PCD ,CD ⊂平面PCD ,所以AM ⊥平面PCD.(12分)又PC ⊂平面PCD ,所以PC ⊥AM.(14分)17. 解:(1) 圆A :(x -2)2+y 2=1的圆心A(2,0),半径r =1,与x 轴交点坐标为(1,0),(3,0).点F 2在圆A :(x -2)2+y 2=1上,所以F 2(1,0),从而a =2,c =1,所以b =a 2-c 2=22-12=3,所以椭圆C 的标准方程为x 24+y23=1.(4分)(2) 由题可设点M(x 1,y 1),0<x 1<2,y 1<0,点N(x 2,y 2),x 2>0,y 2>0, 则AM →=(x 1-2,y 1),AN →=(x 2-2,y 2). 由AM →=-132AN →知,点A ,M ,N 共线.(5分)由题知直线AM 的斜率存在,可设为k(k >0),则直线AM 的方程为y =k(x -2).由⎩⎪⎨⎪⎧y =k (x -2),(x -2)2+y 2=1,得⎩⎪⎨⎪⎧x =2+1+k 21+k2,y =k 1+k 21+k2或⎩⎪⎨⎪⎧x =2-1+k 21+k2,y =-k 1+k 21+k2,所以N(2+1+k 21+k 2,k 1+k21+k2).(7分)由⎩⎪⎨⎪⎧y =k (x -2),x 24+y 23=1,得(3+4k 2)x 2-16k 2x +16k 2-12=0,解得⎩⎪⎨⎪⎧x =2,y =0或⎩⎪⎨⎪⎧x =8k 2-63+4k2,y =-12k 3+4k2,所以M(8k 2-63+4k 2,-12k3+4k2).(10分)代入AM →=-132AN →得(8k 2-63+4k 2-2,-12k 3+4k 2)=-132(1+k 21+k 2,k 1+k 21+k 2),即(4k 2-9)(52k 2+51)=0,又k >0,解得k =32,(13分)所以M(1,-32),又F 1(-1,0),可得直线F 1M 的斜率为-321-(-1)=-34.(14分)18. 解:(1) 在图1中连结AC ,BD 交于点O ,设BD 与FG 交于点M ,在图2中连结OP.因为ABCD 是边长为10 2 cm 的正方形,所以OB =10(cm).由FG =x ,得OM =x 2,PM =BM =10-x2.(2分)因为PM >OM ,即10-x 2>x2,所以0<x <10.(4分)因为S =4×12FG ·PM =2x(10-x 2)=20x -x 2,(6分)由20x -x 2≥75,得5≤x ≤15,所以5≤x<10.答:x 的取值范围是5≤x <10.(8分)(2) 在Rt △OMP 中,因为OM 2+OP 2=PM 2, 所以OP =PM 2-OM 2=(10-x 2)2-(x 2)2=100-10x ,V =13·FG 2·OP =13x 2100-10x =13100x 4-10x 5,0<x <10.(10分) 设f(x)=100x 4-10x 5,0<x <10,所以f ′(x)=400x 3-50x 4=50x 3(8-x). 令f ′(x)=0,解得x =8或x =0(舍去),(12分) 列表:x (0,8) 8 (8,10) f ′(x) +0 -f(x)极大值所以当x =8时,函数f(x)取得极大值,也是最大值,(14分) 所以当x =8时,V 的最大值为12853.答:当x =8 cm 时,包装盒容积V 最大为12853(cm 3).(16分)19. (1) 函数f(x)的定义域为(0,+∞),f ′(x)=(2ax +2)ln x +(ax 2+2x)·1x +ax =2(ax +1)ln x +2ax +2=2(ax +1)(ln x+1),(2分)则f ′(1)=2(a +1)=2,所以a =0.(3分)此时f(x)=2xln x +1,定义域为(0,+∞),f ′(x)=2(ln x +1),令f ′(x)>0,解得x >1e ;令f ′(x)<0,解得x <1e;所以函数f(x)的单调增区间为(1e ,+∞),单调减区间为(0,1e).(6分)(2) 函数f(x)=(ax 2+2x)ln x +a 2x 2+1在区间[1,e]上的图象是一条不间断的曲线.由(1)知f ′(x)=2(ax +1)(ln x +1),1) 当a ≥0时,对任意x ∈(1,e),ax +1>0,ln x +1>0,则f ′(x)>0,所以函数f(x)在区间[1,e]上单调递增,此时对任意x ∈(1,e),都有f(x)>f(1)=a2+1>0成立,从而函数f(x)在区间(1,e)上无零点;(8分)2) 当a <0时,令f ′(x)=0,得x =1e 或-1a ,其中1e<1,①若-1a ≤1,即a ≤-1,则对任意x ∈(1,e),f ′(x)<0,所以函数f(x)在区间[1,e]上单调递减,由题意得f(1)=a 2+1>0,且f(e)=ae 2+2e +a 2e 2+1<0,解得-2<a <-2(2e +1)3e 2,其中-2(2e +1)3e 2-(-1)=3e 2-4e -23e 2>0,即-2(2e +1)3e2>-1, 所以a 的取值范围是-2<a ≤-1;(10分)②若-1a ≥e ,即-1e ≤a <0,则对任意x ∈(1,e),f ′(x)>0,所以函数f(x)在区间[1,e]上单调递增,此时对任意x ∈(1,e),都有f(x)>f(1)=a2+1>0成立,从而函数f(x)在区间(1,e)上无零点;(12分)③若1<-1a <e ,即-1<a <-1e ,则对任意x ∈(1,-1a ),f ′(x)>0,所以函数f(x)在区间[1,-1a ]上单调递增,对任意x ∈(1,-1a ],都有f(x)>f(1)=a2+1>0成立;(1分)对任意x ∈(-1a ,e),f ′(x)<0,函数f(x)在区间[-1a ,e]上单调递减,由题意得f(e)=ae 2+2e +a 2e 2+1<0,解得a <-2(2e +1)3e2, 其中-2(2e +1)3e 2-(-1e )=3e -4e -23e 2=-e -23e 2<0,即-2(2e +1)3e 2<-(-1e ), 所以a 的取值范围是-1<a <-2(2e +1)3e 2.(15分) 综上,实数a 的取值范围是-2<a <-2(2e +1)3e2.(16分) 20. 解:(1) 设等比数列{a n }公比为q ,由8a 3=4a 2=1得8a 1q 2=4a 1q =1, 解得a 1=q =12,故a n =12n .(3分)(2) |a n -(a 2n +1)|=⎪⎪⎪⎪⎪⎪12n -(14n +1)=⎪⎪⎪⎪⎪⎪(12n -12)2+34=(12n -12)2+34.(5分)对任意正整数m ,当n ∈N *,且n ≤m 时,有0<12m ≤12n ≤12,则(12n -12)2+34<14+34=1,即|a n -(a 2n +1)|≤1成立, 故对任意正整数m ,数列{a n },{a 2n +1}是“(m ,1)接近的”.(8分) (3) 由S n (b n +1-b n )b n b n +1=12,得到S n (b n +1-b n )=12b n b n +1,且b n ,b n +1≠0,从而b n +1-b n ≠0,于是S n =b n b n +12(b n +1-b n ).(9分)当n =1时,S 1=b 1b 22(b 2-b 1),b 1=1,解得b 2=2;当n ≥2时,b n =S n -S n -1=b n b n +12(b n +1-b n )-b n -1b n2(b n -b n -1),又b n ≠0,整理得b n +1+b n -1=2b n ,所以b n +1-b n =b n -b n -1,因此数列{b n }为等差数列. 因为b 1=1,b 2=2,则数列{b n }的公差为1,故b n =n.(11分)根据条件,对于给定正整数m(m ≥5),当n ∈N *且n ≤m 时,都有⎪⎪⎪⎪⎪⎪1a n-(b 2n +k )=|2n -(n 2+k)|≤L 成立, 即-L +2n-n 2≤k ≤L +2n-n 2①对n =1,2,3,…,m 都成立.(12分)考查函数f(x)=2x -x 2,f ′(x)=2x ln 2-2x ,令g(x)=2xln 2-2x ,则g ′(x)=2x (ln 2)2-2,当x >5时,g ′(x)>0,所以g(x)在[5,+∞)上是增函数.因为g(5)=25ln 2-10>0,所以当x >5时,g(x)>0,则f ′(x)>0, 所以f(x)在[5,+∞)上是增函数.注意到f(1)=1,f(2)=f(4)=0,f(3)=-1,f(5)=7,故当n =1,2,3,…,m 时,-L +2n -n 2的最大值为-L +2m -m 2,L +2n -n 2的最小值为L -1.(14分)欲使满足①的实数k 存在,必有-L +2m-m 2≤L -1,则L ≥2m-m 2+12,因此L 的最小值2m -m 2+12,此时k =2m -m 2-12.(16分)数学附加题参考答案及评分标准21. A. 解:(1) A -1=⎣⎢⎢⎡⎦⎥⎥⎤-2 321-12.(4分) (2) 点(a ,b)在矩阵A =⎣⎢⎡⎦⎥⎤1324对应的变换作用下得到点(4,6),所以A ⎣⎢⎡⎦⎥⎤a b =⎣⎢⎡⎦⎥⎤46,(6分)所以⎣⎢⎡⎦⎥⎤a b =A -1⎣⎢⎡⎦⎥⎤46=⎣⎢⎢⎡⎦⎥⎥⎤-2 321-12⎣⎢⎡⎦⎥⎤46=⎣⎢⎡⎦⎥⎤11,(8分) 所以a =1,b =1,得a +b =2.(10分)B. 解:因为所求圆的圆心在极轴上,且过极点,故可设此圆的极坐标方程是ρ=2rcos θ.因为点P(23,π6)在圆上,所以23=2rcos π6,解得r =2. 因此所求圆的极坐标方程是ρ=4cos θ.(10分)C. 解:函数y =x -2x +6x +1的定义域为[0,+∞),x +1>0.(2分) x -2x +6x +1=(x +1)2-4(x +1)+9x +1=(x +1)+9x +1-4≥2(x +1)·9x +1-4=2, 当且仅当x +1=9x +1,即x =4时取到“=”.(8分) 所以当x =4时,函数y =x -2x +6x +1的最小值为2.(10分) 22. 解:(1) 记“取出的3个样品中有优等品”为事件A ,则A 表示“取出的3个样品中没有优等品”,P(A)=(1-0.3)3=3431 000,所以P(A)=1-P(A)=1-3431 000=6571 000.(3分) 答:取出的3个样品中有优等品的概率是6571 000.(4分) (2) X ~B(3,0.3),P(X =k)=C k 30.3k (1-0.3)3-k ,k =0,1,2,3,(6分) 随机变量X 的分布如表:P 3431 000 4411 000 1891 000 271 000(8分) E(X)=0×3431 000+1×4411 000+2×1891 000+3×271 000=910. 答:随机变量X 的数学期望是910.(10分) 23. 解:(1) A 1={t|t =a 1·3+a 0,其中a i ∈A ,i =0,1}={4,5,7,8}.所以A 1中所有元素的和为24,集合A n 中元素的个数为2n +1.(2分)(2) 取s =l =2n .下面用数学归纳法进行证明.①当n =2时,A 2={13,14,16,17,22,23,25,26},(3分) 取b 1=13,b 2=17,b 3=23,b 4=25,c 1=14,c 2=16,c 3=22,c 4=26,有b 1+b 2+b 3+b 4=c 1+c 2+c 3+c 4=78,且b 21+b 22+b 23+b 24=c 21+c 22+c 23+c 24=1 612成立.(4分)即当n =k +1时也成立.(9分)综上可得:能将集合A n ,n ≥2分成两个没有公共元素的子集B s ={ b 1,b 2,b 3,…,b s }和C l ={c 1,c 2,c 3,…,c l },s ,l ∈N *,使得b 21+b 22+…+b 2s =c 21+c 22+…+c 2l 成立.(10分)。