复合场(电场和重力场)
等效法处理重力场和电场的复合场问题(最新整理)

等效法处理重力场和电场的复合场问题教学目标(一)知识与技能1.了解带电粒子在匀强电场中的运动——只受电场力,带电粒子做匀变速运动。
2.重点掌握物理中等效代换法3.把物体在重力场中运动的规律类比应用到复合场中分析解决问题。
(二)过程与方法培养学生综合运用力学和电学知识,分析解决带电粒子在复合场中的运动的能力。
(三)情感态度与价值观1.渗透物理学方法的教育:复合场与重力场类比。
2.培养学生综合分析问题的能力,体会物理知识的实际应用。
重点:带电粒子在复合场(重力场与电场)中的运动规律 难点:复合场的建立。
教学过程:复习提问:重力、电场力做功的特点?(强调类比法)我们今天就研究重力和电场力的这个相同点!一、等效法二、1、振动对称性:如图所示,在水平方向的匀强电场中的O 点,用长为l 的轻、软绝缘细线悬挂一质量为m 的带电小球,当小球位于B 点时处于静止状态,此时细线与竖直方向(即OA 方向)成θ角.现将小球拉至细线与竖直方向成2θ角的C 点,由静止将小球释放.若重力加速度为g ,则对于此后小球的受力和运动情况,下列判断中正确的是EE重力环境对比:小球在A —B —C 之间往复运动,则α 、β的关系为:A .α = βB .α > βA .小球所受电场力的大小为mg tan θB .小球到B 点的速度最大C .小球可能能够到达A 点,且到A 点时的速度不为零D .小球运动到A 点时所受绳的拉力最大2、“竖直上抛运动”在竖直向下的匀强电场中,以V 0初速度竖直向上发射一个质量为q 的带正电小球,求上升的最大高度。
3、“单摆”摆球质量为m ,带电量为+q ,摆线为绝缘细线,摆长为L 场强为E ,求单摆振动的周期。
g’=+g,所以T=2π=2m qE'g L 4、“竖直平面圆周运动”水平向右的匀强电场中,用长为R 的轻质细线在O A 处,AO 的连线与竖直方向夹角为370V 0,小球便在竖直面内运动,为使小球能在竖直面内完成圆周运动,这个初速度V 静止时对球受力分析如右图0=mg,43BAV 0初速度竖直m )最高点的最小速)为使小球能在竖“等效”场力G’==mg22)(Fmg 45与T 反向“等效”场加速度g’=g45与重力场相类比可知: 小球能在竖直面内完成圆周运动的临界速度位置在AO 连线B 处, 且最小的V B =Rg '从B 到A 运用动能定理: G’2R=m V 0 2-- m V B 22121mg2R=m V 0 2-- m gR 45212145 V 0 =25gR5、类平抛运动水平放置带电的两平行金属板,相距d,质量为mq ,仍以电性?,带电后,应根据极板电性不同分两种情况讨论(1)若上极板带正电,下极板带负电(如图a )微粒水平方向仍作匀速直线运动时间为t 重力和电场力均向下,竖直位移s=1/2(g+qU/md) t 微粒不再射出电场,则s>d/2,解得U>mgd/q.(2)若上极板带负电,下极板带正电(如图b )重力环境对比:平抛运动规律:分析方法上同,只是此时电场力向上,竖直位移s=1/2(qU/md-g) t 2,要使微粒不再射出电场,则s>d/2,解得U>3mgd/q.由于微粒不带电时能射出电场,故当重力大于电场力时,微粒一定能射出,满足条件。
等效法处理重力场和电场的复合场问题

等效法处理重力场和电场的复合场问题作者:赵鹏飞来源:《理科考试研究·高中》2014年第11期物体仅在重力场中的运动是最常见、最基本的运动,但是对处在匀强电场中的带电物体而言,它的周围不仅有重力场,还有匀强电场,同时研究这两种场对物体运动的影响,问题就会变得复杂一些.此时,若能将重力场与电场合二为一,用一个全新的“复合场”(可形象称之为“等效重力场”)来代替,不仅能得到“柳暗花明”的效果,同时也是一种思想的体现.那么,如何实现这一思想方法呢?一、概念的全面类比为了方便后续处理方法的迁移,必须首先搞清“等效重力场”中的部分概念与之前的相关概念之间关系.具体对应如下:等效重力场是重力场、电场叠加而成的复合场等效重力是重力、电场力的合力等效重力加速度等于等效重力与物体质量的比值等效“最低点”是物体自由时能处于稳定平衡状态的位置等效“最高点”是物体圆周运动时与等效“最低点”关于圆心对称的位置等效重力势能等于等效重力大小与物体沿等效重力场方向“高度”的乘积二、等效重力场中的典型模型1.类平抛运动例1如图1所示,倾角α=37°的光滑绝缘斜面处于水平向右的匀强电场中,电场强度E=103N/C,有一个质量为m=3×10-3kg的带电小球,以速度v=1 m/s沿斜面匀速下滑,求:(1)小球带何种电荷?电荷量为多少?(2)在小球匀速下滑的某一时刻突然撤去斜面,此后经t=0.2 s小球的位移是多大?(g取10 m/s2)解析(1)由于小球匀速运动,所受重力与电场力的合力和斜面对小球的支持力平衡,如图2可知,小球必带正电,且tanα=Eqmg,所以;q=mgtanαE=2.25×10-5C.从“等效重力场”观点看,实际上就是小球所受等效重力与斜面对小球的支持力平衡,故等效重力大小、等效重力加速度大小可分别表示为G′=mg′=mgcosα、g′=gcosα.(2)撤去斜面后,小球仅受等效重力作用,且具有与等效重力方向垂直的初速度,所以小球做类平抛运动,处理的基本方法是运动的分解.如图3,小球在x轴方向做匀速直线运动,在y轴方向做“自由落体运动”,则有x=vty=12g′t2,其中v=1 m/s, t=0.2 s,g′=gcosα=1045m/s2=12.5 m/s2.解得y=0.25 m,所以t=0.2 s内的总位移大小为s=x2+y2=0.32 m.考虑到分析习惯,实际处理时可将上述示意图顺时针转过α角,让小球的运动和重力场中的平抛运动更接近.2.单摆类问题例2如图4所示,一条长为L的细线,上端固定,下段拴一质量为m的带电小球,将它置于一匀强电场中,电场强度大小为E,方向水平向右.已知当细线偏离竖直位置的夹角为α时,小球处于平衡状态,如果使细线的偏转角由α增大到φ,然后将小球由静止开始释放,则:(1)φ应为多大,才能使细线到达竖直位置时小球的速度恰好为零?(2)若α≤5°,那么(1)问中带电小球由静止释放至到达竖直位置需要多少时间?解析(1)从“等效重力场”观点看,小球原来的平衡位置是它的等效“最低点”,初始释放点M和几何最低点N是小球在等效“最低点”两侧做机械振动的两个端点,如图4所示,它们应该关于等效“最低点”对称,所以φ=2α;(2)α≤5°时,小球的振动可近似看成简谐运动,由静止释放至到达竖直位置需要的时间为周期的一半,即t=T2=2πLg′2=πLg′其中g′=G′m=mgcosαm=gcosα,所以小球从释放至第一次到达竖直位置的时间为t=πLcosαg.与传统的处理方法相比较,等效重力场法回避了复杂的数学表达式化简和三角函数变换的过程,达到了事半功倍的效果.3.竖直平面内圆周运动例3光滑绝缘的圆形轨道竖直放置,半径为R,在其最低点A处放一质量为m的带电小球,整个空间存在匀强电场,小球受到的的电场力大小为33mg,方向水平向右,现给小球一个水平向右的初速度v0,使小球沿轨道向上运动,若小球刚好能做完整的圆周运动,求v0大小.解析小球同时受到重力和电场力作用,可认为小球处在等效重力场中.小球所受的等效重力大小为G′=mg′=(mg)2+(33mg)2=233mg,其中g′=233g,且如图5又有tanθ=33mgmg=33,即θ=30°,也就是等效重力的方向与竖直方向成30°.故图6中B为等效“最低点”,C为等效“最高点”.小球能做完整圆周运动的临界条件是恰能通过等效“最高点”C,在C点等效重力提供向心力,即Fn=G′=mv2cR,可得vc=g′R=233gR,对小球从A运动到C的过程应用动能定理-mg′(R+Rcosθ)=12mv2c-12mv20.代入相关物理量解得 v0=2(3+1)gR此处,借助等效重力势能的概念使用等效机械能守恒定律也可以求解,不过需要准确理解等效重力场中“参考面”和“高度”的含义.。
复合场知识点总结

复合场知识点总结在物理学中,复合场是一个重要且富有挑战性的概念。
复合场通常指的是电场、磁场和重力场中的两个或多个同时存在于同一空间区域的情况。
理解和掌握复合场的相关知识,对于解决许多物理问题至关重要。
首先,让我们来了解一下电场。
电场是由电荷产生的,它对处在其中的电荷有力的作用。
电场强度是描述电场强弱和方向的物理量,用E 表示。
电场强度的定义式为 E =F / q,其中 F 是电荷所受的电场力,q 是电荷量。
磁场则是由电流或磁体产生的。
磁场对运动电荷或电流有力的作用,这个力被称为洛伦兹力或安培力。
磁感应强度 B 用来描述磁场的强弱和方向。
当电场和磁场同时存在时,就形成了电磁场。
在电磁场中,带电粒子的运动情况较为复杂。
如果带电粒子的初速度与电场和磁场的方向都垂直,那么它将做匀速圆周运动。
此时,洛伦兹力提供向心力,即qvB = mv²/ r,由此可以得出半径 r = mv /(qB) 。
重力场是我们日常生活中最为熟悉的场之一,物体在重力场中会受到重力的作用。
重力的大小 G = mg,其中 m 是物体的质量,g 是重力加速度。
在复合场中,带电粒子的运动情况取决于电场、磁场和重力场的强度、方向以及带电粒子的初速度、电荷量和质量等因素。
如果电场力和重力平衡,而磁场力不为零,带电粒子将在磁场中做匀速圆周运动。
例如,在速度选择器中,电场力和洛伦兹力平衡,只有速度满足特定条件的带电粒子才能通过。
当电场力、磁场力和重力三力平衡时,带电粒子将做匀速直线运动。
这种情况在实际问题中也较为常见。
还有一种情况是,带电粒子在复合场中的运动轨迹是复杂的曲线。
解决这类问题时,通常需要将带电粒子的运动分解为沿着电场、磁场和重力场方向的分运动,然后分别进行分析和计算。
在解决复合场问题时,我们需要熟练运用牛顿运动定律、动能定理、能量守恒定律等物理规律。
例如,当带电粒子在复合场中做非匀变速运动时,动能定理和能量守恒定律往往能发挥重要作用。
复合场解题方法

重点知识点复合场:1.复合场:同时存在电场和磁场的区域,同时存在磁场和重力场的区域,同时存在电场、磁场和重力的区域,都叫做叠加场,也称为复合场。
三种场力的特点:①重力的大小为mg,方向竖直向下。
重力做功与路径无关,其数值除与带电粒子的质量有关外,还与始、终位置的高度差有关。
②电场力的大小为qE,方向与电场强度E及带电粒子所带电荷的性质有关。
电场力做功与路径无关,其数值除与带电粒子的电荷量有关外,还与始、终位置的电势差有关。
③洛伦兹力的大小跟速度与磁场方向的夹角有关,当带电粒子的速度与磁场方向平行时,F洛=0;当带电粒子的速度与磁场方向垂直时,F洛=qvB。
洛伦兹力的方向垂直于速度v和磁感应强度B所决定的平面。
无论带电粒子做什么运动,洛伦兹力都不做功。
注:注意:电子、质子、α粒子、离子等微观粒子在叠加场中运动时,一般都不计重力。
但质量较大的质点(如带电尘粒)在叠加场中运动时,不能忽略重力。
2.带电粒子在电磁组合场中运动时的处理方法:1.电磁组合场电磁组合场是指由电场和磁场组合而成的场,在空间同一区域只有电场或只有磁场,在不同区域中有不同的场。
2.组合场中带电粒子的运动带电粒子在电场内可做加速直线运动、减速直线运动、类平抛运动、类斜抛运动,需要根据粒子进入电场时的速度方向、所受电场力,再南力和运动的关系来判定其运动形式。
粒子在匀强磁场中可以做直线运动,也可以做匀速圆周运动和螺旋运动,但在高中阶段通常涉及的是带电粒子所做的匀速圆周运动,通常需要确定粒子在磁场内做圆周运动进出磁场时的位置、圆心的位置、转过的圆心角、运动的时间等。
在电磁组合场问题中,需要通过连接点的速度将相邻区域内粒子的运动联系起来,粒子在无场区域内是做匀速直线运动的。
解决此类问题的关键之一是画好运动轨迹示意图。
3.粒子在正交电磁场中做一般曲线运动的处理方法:如图所示,一带正电的粒子从静止开始运动,所受洛伦兹力是一变力,粒子所做的运动是一变速曲线运动,若用动力学方法来处理其运动时,可将其运动进行如下分解:①初速度的分解因粒子初速度为零,可将初速度分解为水平向左和水平向右的两等大的初速度,令其大小满足②受力分析按上述方法将初速度分解后,粒子在初始状态下所受外力如图所示。
5.18(读背)等效法处理重力场和电场的复合场问题

难点分析:为了方便后续处理方法的迁移,必须首先搞清“等效重力场”中的部分概念与复合之前的相关概念之间关系。
具体对应如下:等效重力场: 重力场、电场叠加而成的复合场。
等效重力: 重力、电场力的合力。
等效重力加速度: 等效重力与物体质量的比值。
等效“最低点”: 物体自由时能处于稳定平衡状态的位置。
等效“最高点”: 物体圆周运动时与等效“最低点”关于圆心对称的位置。
等效重力势能: 等效重力大小与物体沿等效重力场方向“高度”的乘积。
突破策略在解答重力不可忽略的带电物体在匀强电场中运动问题及相关的能量问题时,我们常采用的方法是:把物体的运动分解成沿重力和电场力方向的两个分运动,然后根据要求解答有关的问题。
用该种方法处理一些电场问题时,显的烦琐。
根据匀强电场和重力场的等效性,如果把重力场和匀强电场两场的问题转化为一个场的问题——建立“等效重力场”来处理该类有些题目,就会显得简洁,而且便于理解。
“等效重力场”建立方法当一个质量为m 、带电量为q 的物体同时处在重力场和场强为E 的匀强电场中,可将两场叠加为一个等效的重力场。
等效重力场的“重力加速度”可表示为qEg g m'=+,g '的方向与重力mg 和电场力qE 合力的方向一致;若合力的方向与重力mg 方向夹角为θ,则g 也可表示为cos gg θ=。
解题应用解圆周运动例. 如图所示,在沿水平方向的匀强电场中有一固定点O ,用一根长度0.40m L =的绝缘细绳把质量为0.10kg m =、带有正电荷的金属小球悬挂在O 点,小球静止在B 点时细绳与竖直方向的夹角为37θ=。
现将小球拉至位置A 使细线水平后由静止释放,求:⑴小球通过最低点C 时的速度的大小; ⑵小球在摆动过程中细线对小球的最大拉力。
(210m/s g =,sin 370.60=,cos370.80=)解析: ⑴建立“等效重力场”如图8所示,“等效重力加速度”g ', 方向:与竖直方向的夹角30,大小: 1.25cos 37gg g '==由A 、C 点分别做绳OB 的垂线,交点分别为A'、C',由动能定理得带电小球从A 点运动到C 点等效重力做功21m ()(cos sin )2OA OC Cg L L mg L mv θθ''''-=-= 代入数值得 1.4C v ≈m/s(2)当带电小球摆到B 点时,绳上的拉力最大,设该时小球的速度为B v ,绳上的拉力为F ,则21sin 2B mg L L mv θ'-=() ① 2B v F mg mL'-=②联立①②两式子得 2.25F =N 。
电场和重力场的复合场的解题模板

电场和重力场的复合场的解题模板电场和重力场是物理学中重要的概念,它们在自然界中起着重要的作用。
而复合场则是将电场和重力场结合在一起进行研究的一种方法。
在本文中,我将按照从简到繁、由浅入深的方式来探讨电场和重力场的复合场的解题模板,以便读者能够更深入地理解这一主题。
一、简介在物理学中,电场和重力场分别描述了电荷和物体受到的力。
电场是由带电粒子产生的力场,在空间中存在电势差,使得带电粒子在其中受到力的作用。
重力场则是由物体的质量产生的力场,使得其他物体受到重力的作用。
二、电场和重力场的解题模板1. 定义所给的物理情境和所求解的问题。
我们要明确所给的物理情境和所求解的问题。
一个带电粒子在同时存在电场和重力场的环境中运动,我们需要求解其受力和运动轨迹。
2. 确定电场和重力场的表达式。
接下来,我们需要确定电场和重力场的具体表达式。
对于电场,我们可以使用电势和电荷的关系来计算。
对于重力场,我们可以使用万有引力定律来计算。
在此基础上,我们可以得到电场和重力场的叠加,得到复合场的表达式。
3. 计算受力和运动轨迹。
有了复合场的表达式后,我们可以根据带电粒子的电荷和重力作用的质量计算出受力。
根据受力和质量的关系,可以得到带电粒子的加速度。
进一步,我们可以求解其运动轨迹,包括位置、速度和加速度的函数关系等。
4. 分析结果并讨论。
在得到计算结果之后,我们需要对结果进行分析和讨论。
计算出的运动轨迹是否符合物理规律?是否符合预期?是否存在其他因素会对结果产生影响?这些都是我们需要思考和讨论的问题。
三、个人观点和理解电场和重力场的复合场是物理学研究中的一个重要领域,它涉及到多个学科的知识和方法。
在解题过程中,我们需要根据具体情境确定所求问题,然后使用合适的表达式计算受力和运动轨迹。
通过这样的解题模板,我们可以更好地理解电场和重力场的复合场,并应用到实际问题中去。
总结:本文以电场和重力场的复合场为主题,按照从简到繁、由浅入深的方式探讨了解题模板。
带电粒子在电场和重力场复合场中的运动

R
得 T=6F=6(mg-qE)
B
解:若qE﹥mg,则重力与电场力的合力等效重力 竖直向上,最低点B速度最小,重力提供向心力。 由牛顿第二定律: F=qE-mg F)A点速度最大,合力提供向心力
由牛顿第二定律: T-F=mv22/R 由动能定理: 2FR=mv22/2-mv12/2
解:若qE﹤mg,则重力与电场力的合力等效重力 竖直向下,最高点A速度最小,重力提供向心力。
由牛顿第二定律: F=mg-qE F=mv12/R
得 v1=((mg-qE)R/m)1/2 (2)B点速度最大,合力提供向心力
A
E
由牛顿第二定律: T-F=mv22/R
由动能定理: 2FR=mv22/2-mv12/2
设此题中等效重力加速度为 g′ 由题意可知等效重力mg′=mg/cosα
将g′代入周期公式得: T周=2π l cosa/g
[拓展2] 若将原题中电场E突然反向,求细线 偏离竖直方向的最大偏角?(α小于45o)
解:电场E反向,由受力可知摆动的等效最 低点在竖直偏左α角处,等效摆的摆角为2 α,再由对称性可知,小球偏离竖直方向的 最大夹角为3 α。
等效:
题中电场力为恒力,且与重力同向 可将两者合力 F=qE+mg
等效成重力 G‵ =mg ‵ 即 g‵ =g+qE/m
用g‵替换结论中的g就可快速得到 [例2]的结果:
最高点有最小速度v= R(gqE/m)
小球运动到最低点时有最大拉力 T=6mg‵ =6(mg+qE)
思考1:如果粒子带负电,大小为q, 则结果如何?
由动能定理: 2mgR=mv22/2-mv2/2
B
得 T=6mg
例2:用长为R的绝缘细线栓一带正电 q的小球,质量为m,在竖直向下的场 强为E匀强电场中,刚好能在竖直平
带电粒子在复合场中的运动知识点

带电粒子在复合场中的运动一、考纲要求1.理解组合场及复合场的特点,知道在什么情况下考虑物体重力,什么时候不考虑。
2.能够综合运用左手定则、安培定则及相关的力学规律解决带电粒子(物体)在复合场中的运动问题3.理解质谱仪、回旋加速器、磁流体发电机、电磁流量计等仪器的构造、原理,并能解决有关问题。
二、知识梳理1.复合场与组合场(1)复合场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域内,并不重叠或在同一区域,电场、磁场交替出现.2.带电粒子在复合场中的运动分类(1)静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动.(2)匀速圆周运动当带电粒子所受的重力与电场力大小相等、方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.(3)非匀变速曲线运动当带电粒子所受的合外力的大小和方向均变化,且与初速度方向不在同一条直线上时,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是拋物线.(4)分阶段运动带电粒子可能依次通过几个情况不同的复合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成.复合场与组合场3.回旋加速器(1)构造:如图所示,D1、D2是半圆形金属盒,D形盒的缝隙处接_____电源.D形盒处于匀强磁场中.(2)原理:交变电流的周期和粒子做圆周运动的周期相等,粒子在圆周运动的过程中一次一次地经过D形盒缝隙,两盒间的电势差一次一次地反向,粒子就会被一次一次地加速.由qvB=,得E km=,可见粒子获得的最大动能由磁感应强度和D形盒半径R决定,与加速电压无关.4.质谱仪(1)构造:如图所示,由粒子源、加速电场、偏转磁场和照相底片等组成.(2)原理:粒子由静止在加速电场中被加速,根据动能定理qU=mv2可知进入磁场的速度v=.粒子在磁场中受洛伦兹力偏转,做匀速圆周运动,根据牛顿第二定律,qvB=mv2/r.由以上几式可得出需要研究的物理量如粒子轨道半径、粒子质量、比荷等.5.速度选择器(如图所示)(1)平行板间电场强度E和磁感应强度B互相垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器.(2)粒子能够通过选择器的条件:qE=qvB,即v=.6.磁流体发电机(如图所示)(1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能.(2)根据左手定则,如图中的B板是发电机正极.(3)磁流体发电机两极板间的距离为d,等离子体速度为v,磁场磁感应强度为B,则两极板间能达到的最大电势差U=Bdv.7.电磁流量计(1)如图所示,一圆形导管直径为d,用非磁性材料制成,其中有可以导电的液体流过导管.(2)原理:导电液体中的自由电荷(正、负离子)在洛伦兹力作用下横向偏转,a、b间出现电势差,形成电场.当自由电荷所受电场力和洛伦兹力平衡时,a、b间的电势差就保持稳定.由Bqv=Eq=q,可得v=,液体流量Q=Sv=·=.8.霍尔效应在匀强磁场中放置一个矩形截面的载流导体,当磁场方向与电流方向垂直时,导体在与磁场、电流方向都垂直的方向上出现了电势差,这种现象称为霍尔效应,所产生的电势差称为霍尔电势差,其原理如图所示.三、要点精析1.求解带电粒子在组合场中运动问题的分析方法(1)正确受力分析,除重力、弹力、摩擦力外要特别注意静电力和磁场力的分析.(2)确定带电粒子的运动状态,注意运动情况和受力情况的结合.(3)对于粒子连续通过几个不同区域、不同种类的场时,要分阶段进行处理,并找出各阶段间的衔接点和相关联的物理量.(4)画出粒子运动轨迹,灵活选择不同的运动规律.2.带电粒子在叠加场中无约束情况下的运动情况分类(1)磁场力、重力并存①若重力和洛伦兹力平衡,则带电体做匀速直线运动.②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)电场力、磁场力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.3.带电粒子在叠加场中有约束情况下的运动带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.4.分析带电粒子在复合场中运动问题的一般步骤(1)看清粒子所在区域中场的组成,一般是电场、磁场、重力场中两个场或三个场的复合场.(2)正确的受力分析是解题的基础,除了重力、弹力、摩擦力以外,特别要注意电场力和洛伦兹力的分析,不可遗漏任一个力.(3)在受力分析的基础上进行运动分析,注意运动情况和受力情况的相互结合,特别要关注一些特殊的时刻所处的特殊状态(临界状态),对于临界问题,注意挖掘隐含条件.(4)如果粒子在运动过程中经过不同的区域受力发生改变,应根据需要对整个过程分阶段处理.(5)应用一些必要的数学知识,画出粒子的运动轨迹示意图,根据题目的条件和问题灵活选择不同的物理规律解题.①当带电粒子在复合场中做匀速直线运动时,根据受力平衡列方程求解;②当带电粒子在复合场中做匀速圆周运动时,应用牛顿定律结合圆周运动规律求解;③当带电粒子做复杂曲线运动时,一般要结合动能定理或能量守恒定律求解.5.带电粒子在交变电磁场中运动的处理方法[方法概述]这类问题首先要明确是电场做周期性变化还是磁场做周期性变化,亦还是电场、磁场都做周期性变化,另外分析是否计重力.在这类问题中,电场或磁场变化的周期一般会与粒子做圆周运动的周期存在某种关系.在某段时间内若受力平衡,则做匀速直线运动;在某段时间内若带电粒子只受电场力,则做类平抛运动,应用运动的合成与分解的方法分析;在某段时间内若带电粒子只受洛伦兹力,则做匀速圆周运动,洛伦兹力提供向心力.当然还会涉及平衡条件、牛顿运动定律、运动学公式、动能定理等.[题型简述]带电粒子在周期性变化场中的运动问题涉及的物理过程较复杂,一般都存在多值和对称的情况.渗透物理世界的对称与和谐.这类问题能很好地考查学生思维的多元性和空间的想象力,更能考查学生的综合分析能力,近几年内带电粒子在周期性变化场中的运动问题将成为压轴题的最大热点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复合场典型题
1.如图13-8-19所示,A 、B 为不带电平行金属板,间距为d ,构成的电容器电容为C , A 板接地且中央有孔.现将电荷量为q 、质量为m 的带电液一滴一滴地从A 板小孔的正上方高为h 处无初速度地滴下,液滴到达B 板后把电荷全部转移给B 1)第几滴液滴在A 、B 两板之间做匀速直线运动? (2)能够到达B 板的液滴不会超过多少滴?
2:如图所示,水平放置的平行板电容器,原来两板不带电,上极板接地,它的极板长L= 0.1m ,两板间距离
d = 0.4 cm ,有一束相同微粒组成的带电粒子流从两板中央平行极板射入,由于重力作用微粒能落到下板上,已知微粒质量为 m = 2kg ,电量q = 1C ,电容器电容为 C =F 。
求
(1)为使第一粒子能落点范围在下板中点到紧靠边缘的B 点之内,则微粒入射速度
应为多少? (2)以上述速度入射的带电粒子,最多能有多少落到下极板上?
3、在如图所示的xOy 平面内(y 轴的正方向竖直向上)存在着水平向右的匀强电场,有一带正电的小球自坐标原点O 沿y 轴正方向竖直向上抛出,它的初动能为5J ,不计空气阻力,当它上升到最高点M 时,它的动能为4J ,求:
(1)试分析说明带电小球被抛出后沿竖直方向和水平方向分别做什么运动?
(2)若带电小球落回到x 轴上的P 点,在图中标出P 点的位置。
(3)求带电小球到达P 点时的动能。
4、在水平向右的匀强电场中,有一质量为m 、带正电的小球,用长为l 的绝缘
细线悬挂于O 点,当小球静止时细线与竖直方向夹角为(如图)。
现给小球一
个垂直于悬线的初速度,使小球恰能在竖直平面内做圆周运
(1)小球在做圆周运动的过程中,在哪一位置速度最小?速度最小值多大?
(2)小球在B 点的初速度多大?
总结:
1.正交分解法:将复杂的运动分解为两个互相正交的简单的直线运动。
2.等效“重力场”法,将重力与电场力进行合成如图所示,则
等效于“重力”,等效于“重力 加速度”,的方向等效于“重力的方向”。
B 图
13-8-19。