电场重力场的复合场

合集下载

等效法处理重力场和电场的复合场问题

等效法处理重力场和电场的复合场问题

等效法处理重力场和电场的复合场问题作者:赵鹏飞来源:《理科考试研究·高中》2014年第11期物体仅在重力场中的运动是最常见、最基本的运动,但是对处在匀强电场中的带电物体而言,它的周围不仅有重力场,还有匀强电场,同时研究这两种场对物体运动的影响,问题就会变得复杂一些.此时,若能将重力场与电场合二为一,用一个全新的“复合场”(可形象称之为“等效重力场”)来代替,不仅能得到“柳暗花明”的效果,同时也是一种思想的体现.那么,如何实现这一思想方法呢?一、概念的全面类比为了方便后续处理方法的迁移,必须首先搞清“等效重力场”中的部分概念与之前的相关概念之间关系.具体对应如下:等效重力场是重力场、电场叠加而成的复合场等效重力是重力、电场力的合力等效重力加速度等于等效重力与物体质量的比值等效“最低点”是物体自由时能处于稳定平衡状态的位置等效“最高点”是物体圆周运动时与等效“最低点”关于圆心对称的位置等效重力势能等于等效重力大小与物体沿等效重力场方向“高度”的乘积二、等效重力场中的典型模型1.类平抛运动例1如图1所示,倾角α=37°的光滑绝缘斜面处于水平向右的匀强电场中,电场强度E=103N/C,有一个质量为m=3×10-3kg的带电小球,以速度v=1 m/s沿斜面匀速下滑,求:(1)小球带何种电荷?电荷量为多少?(2)在小球匀速下滑的某一时刻突然撤去斜面,此后经t=0.2 s小球的位移是多大?(g取10 m/s2)解析(1)由于小球匀速运动,所受重力与电场力的合力和斜面对小球的支持力平衡,如图2可知,小球必带正电,且tanα=Eqmg,所以;q=mgtanαE=2.25×10-5C.从“等效重力场”观点看,实际上就是小球所受等效重力与斜面对小球的支持力平衡,故等效重力大小、等效重力加速度大小可分别表示为G′=mg′=mgcosα、g′=gcosα.(2)撤去斜面后,小球仅受等效重力作用,且具有与等效重力方向垂直的初速度,所以小球做类平抛运动,处理的基本方法是运动的分解.如图3,小球在x轴方向做匀速直线运动,在y轴方向做“自由落体运动”,则有x=vty=12g′t2,其中v=1 m/s, t=0.2 s,g′=gcosα=1045m/s2=12.5 m/s2.解得y=0.25 m,所以t=0.2 s内的总位移大小为s=x2+y2=0.32 m.考虑到分析习惯,实际处理时可将上述示意图顺时针转过α角,让小球的运动和重力场中的平抛运动更接近.2.单摆类问题例2如图4所示,一条长为L的细线,上端固定,下段拴一质量为m的带电小球,将它置于一匀强电场中,电场强度大小为E,方向水平向右.已知当细线偏离竖直位置的夹角为α时,小球处于平衡状态,如果使细线的偏转角由α增大到φ,然后将小球由静止开始释放,则:(1)φ应为多大,才能使细线到达竖直位置时小球的速度恰好为零?(2)若α≤5°,那么(1)问中带电小球由静止释放至到达竖直位置需要多少时间?解析(1)从“等效重力场”观点看,小球原来的平衡位置是它的等效“最低点”,初始释放点M和几何最低点N是小球在等效“最低点”两侧做机械振动的两个端点,如图4所示,它们应该关于等效“最低点”对称,所以φ=2α;(2)α≤5°时,小球的振动可近似看成简谐运动,由静止释放至到达竖直位置需要的时间为周期的一半,即t=T2=2πLg′2=πLg′其中g′=G′m=mgcosαm=gcosα,所以小球从释放至第一次到达竖直位置的时间为t=πLcosαg.与传统的处理方法相比较,等效重力场法回避了复杂的数学表达式化简和三角函数变换的过程,达到了事半功倍的效果.3.竖直平面内圆周运动例3光滑绝缘的圆形轨道竖直放置,半径为R,在其最低点A处放一质量为m的带电小球,整个空间存在匀强电场,小球受到的的电场力大小为33mg,方向水平向右,现给小球一个水平向右的初速度v0,使小球沿轨道向上运动,若小球刚好能做完整的圆周运动,求v0大小.解析小球同时受到重力和电场力作用,可认为小球处在等效重力场中.小球所受的等效重力大小为G′=mg′=(mg)2+(33mg)2=233mg,其中g′=233g,且如图5又有tanθ=33mgmg=33,即θ=30°,也就是等效重力的方向与竖直方向成30°.故图6中B为等效“最低点”,C为等效“最高点”.小球能做完整圆周运动的临界条件是恰能通过等效“最高点”C,在C点等效重力提供向心力,即Fn=G′=mv2cR,可得vc=g′R=233gR,对小球从A运动到C的过程应用动能定理-mg′(R+Rcosθ)=12mv2c-12mv20.代入相关物理量解得 v0=2(3+1)gR此处,借助等效重力势能的概念使用等效机械能守恒定律也可以求解,不过需要准确理解等效重力场中“参考面”和“高度”的含义.。

复合场知识点总结

复合场知识点总结

复合场知识点总结在物理学中,复合场是一个重要且富有挑战性的概念。

复合场通常指的是电场、磁场和重力场中的两个或多个同时存在于同一空间区域的情况。

理解和掌握复合场的相关知识,对于解决许多物理问题至关重要。

首先,让我们来了解一下电场。

电场是由电荷产生的,它对处在其中的电荷有力的作用。

电场强度是描述电场强弱和方向的物理量,用E 表示。

电场强度的定义式为 E =F / q,其中 F 是电荷所受的电场力,q 是电荷量。

磁场则是由电流或磁体产生的。

磁场对运动电荷或电流有力的作用,这个力被称为洛伦兹力或安培力。

磁感应强度 B 用来描述磁场的强弱和方向。

当电场和磁场同时存在时,就形成了电磁场。

在电磁场中,带电粒子的运动情况较为复杂。

如果带电粒子的初速度与电场和磁场的方向都垂直,那么它将做匀速圆周运动。

此时,洛伦兹力提供向心力,即qvB = mv²/ r,由此可以得出半径 r = mv /(qB) 。

重力场是我们日常生活中最为熟悉的场之一,物体在重力场中会受到重力的作用。

重力的大小 G = mg,其中 m 是物体的质量,g 是重力加速度。

在复合场中,带电粒子的运动情况取决于电场、磁场和重力场的强度、方向以及带电粒子的初速度、电荷量和质量等因素。

如果电场力和重力平衡,而磁场力不为零,带电粒子将在磁场中做匀速圆周运动。

例如,在速度选择器中,电场力和洛伦兹力平衡,只有速度满足特定条件的带电粒子才能通过。

当电场力、磁场力和重力三力平衡时,带电粒子将做匀速直线运动。

这种情况在实际问题中也较为常见。

还有一种情况是,带电粒子在复合场中的运动轨迹是复杂的曲线。

解决这类问题时,通常需要将带电粒子的运动分解为沿着电场、磁场和重力场方向的分运动,然后分别进行分析和计算。

在解决复合场问题时,我们需要熟练运用牛顿运动定律、动能定理、能量守恒定律等物理规律。

例如,当带电粒子在复合场中做非匀变速运动时,动能定理和能量守恒定律往往能发挥重要作用。

复合场1复合场的分类叠加场电场磁场重力

复合场1复合场的分类叠加场电场磁场重力

复合场1.复合场的分类: (1)叠加场:电场、磁场、重力场共存,或其中某两场共存. (2)组合场:电场与磁场各位于一定的区域内,并不重叠或相邻或在同一区域,电场、磁场交替出现.二、带电粒子在复合场中的运动形式1.静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动. 2.匀速圆周运动:当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.3.较复杂的曲线运动:当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.4.分阶段运动:带电粒子可能依次通过几个情况不同的组合场区域,其运动情况随区域发生变化,其运动 过程由几种不同的运动阶段组成.1.[带电粒子在复合场中的直线运动]某空间存在水平方向的匀强电场带电小球沿如图所示的直线斜向下由A 点沿直线向B 点运动,此空间同时存在由A 指向B 的匀强磁场,则下列说法正确的是( ) A .小球一定带正电B .小球可能做匀速直线运动C .带电小球一定做匀加速直线运动D .运动过程中,小球的机械能增大2.[带电粒子在复合场中的匀速圆周运动]如图所示,一带电小球在一正交电场、磁场区域里做匀速圆周运动,电场方向竖直向下,磁场方向垂直纸面向里,则下列说法正确的是( ) A .小球一定带正电 B .小球一定带负电 C .小球的绕行方向为顺时针 D .改变小球的速度大小,小球将不做圆周运动3.[质谱仪原理的理解]如图所示是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B 和E .平板S 上有可让粒子通过的狭缝P 和记录粒子位置的胶片A 1A 2.平板S 下方有磁感应强度为B 0的匀强磁场.下列表述正确的是( ) A .质谱仪是分析同位素的重要工具 B .速度选择器中的磁场方向垂直纸面向外 C .能通过狭缝P 的带电粒子的速率等于E /B D .粒子打在胶片上的位置越靠近狭缝P ,粒子的比荷越小4.[回旋加速器原理的理解]回旋加速器,工作原理示意图如图置于高真空中的D 形金属盒半径为R ,两盒间的狭缝很小,带电粒子穿过的时间可忽略.磁感应强度为B 的匀强磁场与盒面垂直,高频交流电频率为f ,加速电压为U .若A 处粒子源产生的质子质量为m 、电荷量为+q ,在加速器中被加速,且加速过程中不考虑相对论效应和重力的影响.则下列说法正确的是( ) A .质子被加速后的最大速度不可能超过2πRf B .质子离开回旋加速器时的最大动能与加速电压U 成正比 C .质子第2次和第1次经过两D 形盒间狭缝后轨道半径之比为2∶1 D .不改变磁感应强度B 和交流电频率f ,该回旋加速器的最大动能不变规律总结:带电粒子在复合场中运动的应用实例1.质谱仪: (1)构造:如图由粒子源、加速电场、偏转磁场和照相底片等构成. (2)原理:粒子由静止被加速电场加速,根据动能定理可得关系式qU =12mv 2.粒子在磁场中受洛伦兹力作用而偏转,做匀速圆周运动,根据牛顿第二定律得关系式qvB =m v 2r.由两式可得出需要研究的物理量,如粒子轨道半径、粒子质量、比荷. r =1B 2mUq ,m =qr 2B 22U ,q m =2U B 2r2. 2.回旋加速器: (1)构造:如图D 1、D 2是半圆形金属盒,D 形盒的缝隙处接交流电源,D 形盒处于匀强磁场中. (2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子在圆周运动的过程中一次一次地经过D 形盒缝隙,两盒间的电势差一次一次地反向,粒子就会被一次一次地加速.由qvB =mv 2r , 图6得E km =q 2B 2r 22m ,可见粒子获得的最大动能由磁感应强度B 和D 形盒半径r 决定,与加速电压无关. 特别提醒 这两个实例都应用了带电粒子在电场中加速、在磁场中偏转(匀速圆周运动)的原理.3.速度选择器:(1)平行板中电场强度E 和磁感应强度B 互相垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器. (2)带电粒子能够沿直线匀速通过速度选择器的条件是qE =qvB ,即v =E B .4.磁流体发电机:(1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能. (2)根据左手定则,如图中的B 是发电机正极. (3)磁流体发电机两极板间的距离为L ,等离子体速度为v ,磁场的磁感应强度为B ,则由qE =q U L =qvB 得两极板间能达到的最大电势差U =BLv .5.电磁流量计工作原理:如图9所示,圆形导管直径为d ,用非磁性材料制成,导电液体在管中向左流动,导电液体中的自由电荷(正、负离子),在洛伦兹力的作用下横向偏转,a 、b 间出现电势差,形成电场,当自由电荷 所受的电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定,即:qvB =qE =q U d ,所以v =U Bd ,因此液体流量Q =Sv =πd 24·U Bd =πdU 4B. 带电粒子在叠加场中的运动:1.带电粒子在叠加场中无约束情况下的运动情况分类 (1)磁场力、重力并存:①若重力和洛伦兹力平衡,则带电体做匀速直线运动.②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题. (2)电场力、磁场力并存(不计重力的微观粒子):①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题. (3)电场力、磁场力、重力并存:①若三力平衡,一定做匀速直线运动.②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题.2.带电粒子在叠加场中有约束情况下的运动:带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.例 1 如图带电平行金属板相距为2R ,在两板间有垂直纸面向里、磁感应强度为B的圆形匀强磁场区域 ,与两板及左侧边缘线相切.一个带正电的粒子(不计重力)沿两板间中心线O 1O 2从左侧边缘O 1点以某一速度射入,恰沿直线通过圆形磁场区域,并从极板边缘飞出,在极板间运动时间为t 0.若撤去磁场,质子仍从O 1点以相同速度射入,则经t 02时间打到极板上. (1)求两极板间电压U ; (2)若两极板不带电,保持磁场不变,该粒子仍沿中心线O 1O 2从O 1点射入,欲使粒子从两板左侧间飞出,射入的速度应满足什么条件?突破训练1 如图空间存在着垂直纸面向外的水平匀强磁场, 磁感应强度为B ,在y 轴两侧分别有方向相反的匀强电场,电场强度均为E ,在两个电场的交界处左侧,有一带正电的液滴a 在电场力和重力作用下静止,现从场中某点由静止释放一个带负电的液滴b ,当它的运动方向变为水平方向时恰与a 相撞,撞后两液滴合为一体,速度减小到原来的一半,并沿x 轴正方向做匀速直线运动,已知液滴b 与a 的质量相等,b 所带电荷量是a 所带电荷量的2倍,且相撞前a 、b 间的静电力忽略不计. (1)求两液滴相撞后共同运动的速度大小; (2)求液滴b 开始下落时距液滴a 的高度h .例2 如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L 的平行金属极板MN 和PQ ,两极板中心各有一小孔S 1、S 2,两极板间电压的变化规律如图乙所示,正反向电压的大小均为U 0,周期为T 0.在t =0时刻将一个质量为m 、电荷量为-q (q >0)的粒子由S 1静止释放,粒子在电场力的作用下向右运动,在t =T 02时刻通过S 2垂直于边界进入右侧磁场区.(不计粒子重力,不考虑极板外的电场) (1)求粒子到达S 2时的速度大小v 和极板间距d . (2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件. (3)若已保证了粒子未与极板相撞,为使粒子在t =3T 0时刻再次到达S 2,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感应强度的大小.突破训练2 如图所示装置中,区域Ⅰ和Ⅲ中分别有竖直向上和水平向右的匀强电场,电场强度分别为E 和E2;区域Ⅱ内有垂直向外的水平匀强磁场,磁感应强度为B .一质量为m 、带电荷量为q 的带负电粒子(不计重力)从左边界O 点正上方的M 点以速度v 0水平射入电场,经水平分界线OP 上的A 点与OP 成60°角射入区域Ⅱ的磁场,并垂直竖直边界CD 进入Ⅲ区域的匀强电场中.求: (1)粒子在区域Ⅱ匀强磁场中运动的轨迹半径; (2)O 、M 间的距离; (3)粒子从M 点出发到第二次通过CD 边界所经历的时间.突破训练3 如图甲所示,与纸面垂直的竖直面MN 的左侧空间中存在竖直向上的场强大小为E =2.5×102N/C 的匀强电场(上、下及左侧无界).一个质量为m =0.5kg 、电荷量为q =2.0×10-2 C 的可视为质点的带正电小球,在t =0时刻以大小为v 0的水平初速度向右通过电场中的一点P ,当t =t 1时刻在电场所在空间中加上一如图乙所示随时间周期性变化的磁场,使得小球能竖直向下通过D 点,D 为电场中小球初速度方向上的一点,PD 间距为L ,D 到竖直面MN 的距离DQ 为L /π.设磁感应强度垂直纸面向里为正.(g =10 m/s 2) (1)如果磁感应强度B 0为已知量,使得小球能竖直向下通过D 点,求磁场每一次作用时间t 0的最小值(用题中所给物理量的符号表示); (2)如果磁感应强度B 0为已知量,试推出满足条件的时刻t 1的表达式(用题中所给物理量的符号表示); (3)若小球能始终在电磁场所在空间做周期性运动,则当小球运动的周期最大时,求出磁感应强度B 0及运动的最大周期T 的大小(用题中所给物理量的符号表示).高考题组1.如图一半径为R 的圆表示一柱形区域的横截面(纸面).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m 、电荷量为q 的粒子沿图中直线从圆上的a 点射入柱形区域,从圆上的b 点离开该区域,离开时速度方向与直线垂直.圆心O 到直线的距离为35R .现将磁场换为平行于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线从a 点射入柱形区域,也从b 点离开该区域.若磁感应强度大小为B ,不计重力,求电场强度的大小.2.如图所示,两块水平放置、相距为d 的长金属板接在电压可调的电源上.两板之间的右侧区域存在方向垂直纸面向里的匀强磁场.将喷墨打印机的喷口靠近上板下表面,从喷口连续不断喷 出质量均为m 、水平速度均为v 0、带相等电荷量的墨滴.调节电源电压至U ,墨滴在电场区域恰能沿水平向右做匀速直线运动;进入电场、磁场共存区域后,最终垂直打在下板的M 点. (1)判断墨滴所带电荷的种类,并求其电荷量; (2)求磁感应强度B 的值; (3)现保持喷口方向不变,使其竖直下移到两板中间的位置.为了使墨滴仍能到达下板M 点,应将磁感应强度调至B ′,则B ′的大小为多少?3.有人设计了一种带电颗粒的速率分选装置,其原理如图所示,两带电金属板间有匀强电场,方向竖直向上,其中PQNM矩形区域内还有方向垂直纸面向外的匀强磁场.一束比荷(电荷量与质量之比)均为1k 的带正电颗粒,以不同的速率沿着磁场区域的水平中心线O ′O 进入两金属板之间,其中速率为v 0的颗粒刚好从Q 点处离开磁场,然后做匀速直线运动到达收集板,重力加速度为g ,PQ =3d ,NQ =2d ,收集板与NQ 的距离为l ,不计颗粒间的相互作用.求: (1)电场强度E 的大小; (2)磁感应强度B 的大小; (3)速率为λv 0(λ>1)的颗粒打在收集板上的位置到O 点的距离.4. 如图所示,坐标平面第Ⅰ象限内存在大小为E =4×105 N/C 、方向水平向左的匀强电场,在第Ⅱ象限内存在方向垂直纸面向里的匀强磁场.质荷比为m q =4×10-10 N/C 的带正电粒子从x 轴上的A 点以初速度v 0=2×107 m/s 垂直x 轴射入电场,OA =0.2 m ,不计重力.求: (1)粒子经过y 轴时的位置到原点O 的距离; (2)若要求粒子不能进入第三象限,求磁感应强度B 的取值范围(不考虑粒子第二次进入电场后的运动情况.)5.如图甲,在以O 为坐标原点的xOy 平面内,存在着范围足够大的电场和磁场,一个带正电小球在t =0时刻以v 0=3gt 0的初速度从O 点沿+x方向(水平向右)射入该空间,在t 0时刻该空间同时加上如图乙所示的电场和磁场,其中电场方向竖直向上,场强大小E 0=mg q ,磁场垂直于xOy 平面向外,磁感应强度大小B 0=πm qt 0,已知小球的质量为m ,带电荷量为q ,时间单位为t 0,当地重力加速度为g ,空气阻力不计.试求: (1)t 0末小球速度的大小; (2)小球做圆周运动的周期T 和12t 0末小球速度的大小; (3)在给定的xOy 坐标系中,大体画出小球在0到24t 0内运动轨迹的示意图;(4)30t 0内小球距x 轴的最大距离.►题组1. 在水平匀强电场和垂直纸面向里的匀强磁场中,有一竖直足够长固定绝缘杆MN ,小球P 套在杆上,已知P 的质量为m ,电荷量为+q ,电场强度为E ,磁感应强度为B ,P 与杆间的动摩擦因数为μ,小球由静止开始下滑直到稳定的过程中( ) A .小球的加速度一直减小B .小球的机械能和电势能的总和保持不变C .下滑加速度为最大加速度一半时的速度可能是v =2μqE -mg 2μqBD .下滑加速度为最大加速度一半时的速度可能是v =2μqE +mg 2μqB2. 如图所示,已知一带电小球在光滑绝缘的水平面上从静止开始经电压U 加速后,水平进入互相垂直的匀强电场E 和匀强磁场B 的复合场中(E 和B 已知),小球在此空间的竖直面内做匀速圆周运动,则 ( ) A .小球可能带正电 B .小球做匀速圆周运动的半径为r =1B 2UE g C .小球做匀速圆周运动的周期为T =2πEBg D .若电压U 增大,则小球做匀速圆周运动的周期增加3.如图空间的某个复合场区域内存在着方向相互垂直的匀强电场和匀强磁场.质子由静止开始经一加速电场加速后,垂直于复合场的界面进入并沿直线穿过场区,质子从复合场区穿出时的动能为E k .那么氘核同样由静止开始经同一加速电场加速后穿过同一复合场后的动能E k ′的大小是( )A .E k ′=E kB .E k ′>E kC .E k ′<E kD .条件不足,难以确定4.如图两块平行金属极板MN 水平放置,板长L =1 m .间距d =33 m ,两金属板间电压U MN =1×104 V ;在平行金属板右侧依次存在ABC 和FGH 两个全等的正三角形区域,正三角形ABC 内存在垂直纸面向里的匀强磁场B 1,三角形的上顶点A 与上金属板M 平齐,BC 边与金属板平行,AB 边的中点P 恰好在下金属板N 的右端点;正三角形FGH 内存在垂直纸面向外的匀强磁场B 2.已知A 、F 、G 处于同一直线上,B 、C 、H 也处于同一直线上.AF 两点的距离为23m .现从平行金属板MN 左端沿中心轴线方向入射一个重力不计的带电粒子,粒子质量m =3×10-10 kg ,带电荷量q =+1×10-4 C ,初速度v 0=1×105 m/s. (1)求带电粒子从电场中射出时的速度v 的大小和方向; (2)若带电粒子进入中间三角形区域后垂直打在AC 边上,求该区域的磁感应强度B 1; (3)若要使带电粒子由FH 边界进入FGH 区域并能再次回到FH 界面,求B 2应满足的条件.5. 如图一个质量为m 、电荷量为q 的正离子,在D 处沿图示方向以一定的速度射入磁感应强度为B 的匀强磁场中,磁场方向垂直纸面向里.结果离子正好从距A 点为d 的小孔C 沿垂直于电场方向进入匀强电场,此电场方向与AC 平行且向上,最后离子打在G 处,而G 处距A 点2d(AG ⊥AC ).不计离子重力,离子运动轨迹在纸面内.求: (1)此离子在磁场中做圆周运动的半径r ; (2)离子从D 处运动到G 处所需时间; (3)离子到达G 处时的动能.6.如图甲所示,水平直线MN 下方有竖直向上的匀强电场,现将一重力不计、比荷q m =106C/kg 的正电荷置于电场中的O 点由静止释放,经过π15×10-5 s 后,电荷以v 0=1.5×104 m/s 的速度通过MN 进入其上方的匀强磁场,磁场与纸面垂直,磁感应强度B 按图乙所示规律周期性变化(图乙中磁场以垂直纸面向外为正,以电荷第一次通过MN 时为t =0时刻).求: (1)匀强电场的电场强度E ; (2)图乙中t =4π5×10-5 s 时刻电荷与O 点的水平距离; (3)如果在O 点右方d =68 cm 处有一垂直于MN 的足够大的挡板,求电荷从O 点出发运动到挡板所需的时间.7.如图甲所示,在xOy 平面内有足够大的匀强电场,电场方向竖直向上,电场强度E =40 N/C ,在y 轴左侧平面内有足够大的瞬时磁场,磁感应强度B 1随时间t 变化的规律如图乙所示,15π s 后磁场消失,选定磁场垂直纸面向里为正方向.在y 轴右侧平面内还有方向垂直纸面向外的恒定的匀强磁场,分布在一个半径为r =0.3 m 的圆形区域(图中未画出),且圆的左侧与y 轴相切,磁感应强度B 2=0.8 T .t =0时刻,一质量m =8×10-4 kg 、电荷量q =2×10-4 C 的微粒从x 轴上x P =-0.8 m 处的P 点以速度v =0.12 m/s 向x 轴正方向入射.(g取10 m/s 2,计算结果保留两位有效数字) (1)求微粒在第二象限运动过程中离y 轴、x 轴的最大距离. (2)若微粒穿过y 轴右侧圆形磁场时,速度方向的偏转角度最大,求此圆形磁场的圆心坐标(x ,y ).1.答案 CD 解析 由于重力方向竖直向下,空间存在磁场,且直线运动方向斜向下,与磁场方向相同,故不受洛伦兹力作用,电场力必水平向右,但电场具体方向未知,故不能判断带电小球的电性,选项A 错误;重力和电场力的合力不为零,故不可能做匀速直线运动,所以选项B 错误;因为重力与电场力的合力方向与运动方向相同,故小球一定做匀加速直线运动,选项C 正确;运动过程中由于电场力做正功,故机械能增大,选项D 正确.2.答案 BC 解析 小球做匀速圆周运动,重力必与电场力平衡,则电场力方向竖直向上,结合电场方向可知小球一定带负电,A 错误,B 正确;洛伦兹力充当向心力,由曲线运动轨迹的弯曲方向结合左手定则可得绕行方向为顺时针方向,C 正确,D 错误.3.答案 ABC 解析 粒子在题图中的电场中加速,说明粒子带正电,其通过速度选择器时,电场力与洛伦兹力平衡,则洛伦兹力方向应水平向左,由左手定则知,磁场的方向应垂直纸面向外,选项B 正确;由Eq =Bqv 可知,v =E /B ,选项C 正确;粒子打在胶片上的位置到狭缝的距离即为其做匀速圆周运动的直径D =2mv Bq,可见D 越小,则粒子的比荷越大,D 不同,则粒子的比荷不同,因此利用该装置可以分析同位素,A 正确,D 错误.4.答案 AC 解析 粒子被加速后的最大速度受到D 形盒半径R 的制约,因v =2πR T=2πRf ,故A 正确;粒子离开回旋加速器的最大动能E km =12mv 2=12m ×4π2R 2f 2=2m π2R 2f 2,与加速电压U 无关,B 错误;根据R =mv Bq ,Uq =12mv 21,2Uq =12mv 22,得质子第2次和第1次经过两D 形盒间狭缝后轨道半径之比为2∶1,C 正确;因回旋加速器的最大动能E km =2m π2R 2f 2与m 、R 、f 均有关,D 错误.例1解析 (1)设粒子从左侧O 1点射入的速度为v 0,极板长为L ,粒子在初速度方向上做匀速直线运动L ∶(L -2R )=t 0∶t 02,解得L =4R 粒子在电场中做类平抛运动:L -2R =v 0·t 02 a =qE m R =12a (t 02)2 在复合场中做匀速运动:q U 2R =qv 0B 联立各式解得v 0=4R t 0,U =8R 2B t 0(2)设粒子在磁场中做圆周运动的轨迹如图所示,设其轨道半径为r ,粒子恰好从上极板左边缘飞出时速度的偏转角为α,由几何关系可知:β=π-α=45°,r +2r =R 因为R =12qE m (t 02)2,所以qE m =qv 0B m =8R t 20 根据牛顿第二定律有qvB =m v 2r ,解得v =22-1Rt 0 所以,粒子在两板左侧间飞出的条件为0<v <22-1R t 0突破训练1 解析 液滴在匀强磁场、匀强电场中运动,同时受到洛伦兹力、电场力和重力作用. (1)设液滴a 质量为m 、电荷量为q ,则液滴b 质量为m 、电荷量为-2q ,液滴a 平衡时有qE =mg ① a 、b 相撞合为一体时,质量为2m ,电荷量为-q ,速度为v ,由题意知处于平衡状态,重力为2mg ,方向竖直向下,电场力为qE ,方向竖直向上,洛伦兹力方向也竖直向上,因此满足qvB +qE =2mg ②由①、②两式,可得相撞后速度v =E B(2)对b ,从开始运动至与a 相撞之前,由动能定理有W E +W G =ΔE k ,即(2qE+mg )h =12mv 20 ③ a 、b 碰撞后速度减半,即v =v 02,则v 0=2v =2E B 再代入③式得h =mv 204qE +2mg =v 206g =2E 23gB2 例2 解析 (1)粒子由S 1至S 2的过程,根据动能定理得qU 0=12mv 2 ① 由①式得v = 2qU 0m ②设粒子的加速度大小为a ,由牛顿第二定律得q U 0d =ma ③ 由运动学公式得d =12a (T 02)2 ④联立③④式得d =T 04 2qU 0m ⑤(2)设磁感应强度的大小为B ,粒子在磁场中做匀速圆周运动的半径为R ,由牛顿第二定律得qvB =m v 2R⑥ 要使粒子在磁场中运动时不与极板相撞,需满足2R >L 2 ⑦ 联立②⑥⑦式得B <4L 2mU 0q(3)设粒子在两边界之间无场区向左匀速运动的过程所用时间为t 1,有d =v t 1 ⑧ 联立②⑤⑧式得t 1=T 04 ⑨ 若粒子再次到达S 2时速度恰好为零,粒子回到极板间应做匀减速运动,设匀减速运动的时间为t 2,根据运动学公式得d =v 2t 2 ⑩ 联立⑧⑨⑩式得t 2=T 02 ⑪ 设粒子在磁场中运动的时间为t t =3T 0-T 02-t 1-t 2 ⑫ 联立⑨⑪⑫式得t =7T 04⑬设粒子在匀强磁场中做匀速圆周运动的周期为T ,由⑥式结合运动学公式得T =2πm qB ⑭ 由题意可知T =t ⑮ 联立⑬⑭⑮式得B =8πm 7qT 0. 突破训练2 解析 (1)粒子的运动轨迹如图所示,其在区域Ⅰ的匀强电场中做类平抛运动,设粒子过A 点时速度为v ,由类平抛运动规律知v =v 0cos 60°粒子在匀强磁场中做匀速圆周运动,由牛顿第二定律得Bqv =m v 2R ,所以R =2mv 0qB (2)设粒子在区域Ⅰ的电场中运动时间为t 1,加速度为a .则有qE =ma ,v 0tan 60°=at 1,即t 1=3mv 0qE O 、M 两点间的距离为L =12at 21=3mv 202qE(3)设粒子在Ⅱ区域磁场中运动时间为t 2 则由几何关系知t 2=T 16=πm 3qB 设粒子在Ⅲ区域电场中运动时间为t 3,a ′=q E2m =qE 2m 则t 3=22v 0a ′=8mv 0qE 粒子从M 点出发到第二次通过CD 边界所用时间为t =t 1+t 2+t 3=3mv 0qE +πm 3qB +8mv 0qE =8+3mv 0qE +πm 3qB 例3解析 (1)粒子在磁场中运动时qvB =mv 2R T =2πR v 解得T =2πm qB =4×10-3 s (2)粒子的运动轨迹如图所示,t =20×10-3 s 时粒子在坐标系内做了两个圆周运动和三段类平抛运动,水平位移x =3v 0T =9.6×10-2m 竖直位移y =12a (3T )2 Eq =ma 解得y =3.6×10-2 m 故t =20×10-3 s 时粒子的位置坐标为: (9.6×10-2 m ,-3.6×10-2 m)(3)t =24×10-3 s 时粒子的速度大小、方向与t =20×10-3 s 时相同,设与水平方向夹角为α 则v =v 20+v 2yv y =3aT tan α=v y v 0 解得v =10 m/s 与x 轴正向夹角α为37°(或arctan 34)斜向右下方突破训练3 解析 (1)当小球仅有电场作用时:mg =Eq ,小球将做匀速直线运动.在t 1时刻加入磁场,小球在时间t 0内将做匀速圆周运动,圆周运动周期为T 0,若竖直向下通过D 点,由图甲分析可知: t 0=3T 04=3πm 2qB 0(2)PF -PD =R ,即: v 0t 1-L =R qv 0B 0=mv 20/R 所以v 0t 1-L =mv 0qB 0,t 1=L v 0+m qB 0(3)小球运动的速率始终不变,当R 变大时,T 0也增加,小球在电磁场中的运动的周期T 增加,在小球不飞出电磁场的情况下,当T 最大时有: DQ =2R =L π=2mv 0qB 0 B 0=2πmv 0qL ,T 0=2πR v 0=L v 0由图分析可知小球在电磁场中运动的最大周期: T =8×3T 04=6L v 0,小球运动轨迹如图乙所示. 1. 解析 粒子在磁场中做圆周运动.设圆周的半径为r ,由牛顿第二定律和洛伦兹力公式得qvB =m v 2r①式中v 为粒子在a 点的速度.过b 点和O 点作直线的垂线,分别与直线交于c 点和d 点.由几何关系知,线段ac 、bc 和过a 、b 两点的圆弧轨迹的两条半径(未画出)围成一正方形.因此ac =bc =r② 设cd =x ,由几何关系得ac =45R +x ③bc =35R +R 2-x 2 ④ 联立②③④式得r =75R ⑤ 再考虑粒子在电场中的运动.设电场强度的大小为E ,粒子在电场中做类平抛运动.设其加速度大小为a ,由牛顿第二定律和带电粒子在电场中的受力公式得qE =ma ⑥粒子在电场方向和直线方向运动的距离均为r ,由运动学公式得r =12at 2 ⑦ r =vt ⑧ 式中t 是粒子在电场中运动的时间.联立①⑤⑥⑦⑧式得E =14qRB 25m. 2.解析 (1)墨滴在电场区域做匀速直线运动,有q U d =mg ① 由①式得:q =mgd U ②由于电场方向向下,电荷所受电场力向上,可知:墨滴带负电荷.(2)墨滴垂直进入电场、磁场共存区域后,重力仍与电场力平衡,合力等于洛伦兹力,墨 滴做匀速圆周运动,有qv 0B =m v 20R ③ 考虑墨滴进入电场、磁场共存区域和下板的几何关系,可知。

5.18(读背)等效法处理重力场和电场的复合场问题

5.18(读背)等效法处理重力场和电场的复合场问题

难点分析:为了方便后续处理方法的迁移,必须首先搞清“等效重力场”中的部分概念与复合之前的相关概念之间关系。

具体对应如下:等效重力场: 重力场、电场叠加而成的复合场。

等效重力: 重力、电场力的合力。

等效重力加速度: 等效重力与物体质量的比值。

等效“最低点”: 物体自由时能处于稳定平衡状态的位置。

等效“最高点”: 物体圆周运动时与等效“最低点”关于圆心对称的位置。

等效重力势能: 等效重力大小与物体沿等效重力场方向“高度”的乘积。

突破策略在解答重力不可忽略的带电物体在匀强电场中运动问题及相关的能量问题时,我们常采用的方法是:把物体的运动分解成沿重力和电场力方向的两个分运动,然后根据要求解答有关的问题。

用该种方法处理一些电场问题时,显的烦琐。

根据匀强电场和重力场的等效性,如果把重力场和匀强电场两场的问题转化为一个场的问题——建立“等效重力场”来处理该类有些题目,就会显得简洁,而且便于理解。

“等效重力场”建立方法当一个质量为m 、带电量为q 的物体同时处在重力场和场强为E 的匀强电场中,可将两场叠加为一个等效的重力场。

等效重力场的“重力加速度”可表示为qEg g m'=+,g '的方向与重力mg 和电场力qE 合力的方向一致;若合力的方向与重力mg 方向夹角为θ,则g 也可表示为cos gg θ=。

解题应用解圆周运动例. 如图所示,在沿水平方向的匀强电场中有一固定点O ,用一根长度0.40m L =的绝缘细绳把质量为0.10kg m =、带有正电荷的金属小球悬挂在O 点,小球静止在B 点时细绳与竖直方向的夹角为37θ=。

现将小球拉至位置A 使细线水平后由静止释放,求:⑴小球通过最低点C 时的速度的大小; ⑵小球在摆动过程中细线对小球的最大拉力。

(210m/s g =,sin 370.60=,cos370.80=)解析: ⑴建立“等效重力场”如图8所示,“等效重力加速度”g ', 方向:与竖直方向的夹角30,大小: 1.25cos 37gg g '==由A 、C 点分别做绳OB 的垂线,交点分别为A'、C',由动能定理得带电小球从A 点运动到C 点等效重力做功21m ()(cos sin )2OA OC Cg L L mg L mv θθ''''-=-= 代入数值得 1.4C v ≈m/s(2)当带电小球摆到B 点时,绳上的拉力最大,设该时小球的速度为B v ,绳上的拉力为F ,则21sin 2B mg L L mv θ'-=() ① 2B v F mg mL'-=②联立①②两式子得 2.25F =N 。

电场和重力场的复合场的解题模板

电场和重力场的复合场的解题模板

电场和重力场的复合场的解题模板电场和重力场是物理学中重要的概念,它们在自然界中起着重要的作用。

而复合场则是将电场和重力场结合在一起进行研究的一种方法。

在本文中,我将按照从简到繁、由浅入深的方式来探讨电场和重力场的复合场的解题模板,以便读者能够更深入地理解这一主题。

一、简介在物理学中,电场和重力场分别描述了电荷和物体受到的力。

电场是由带电粒子产生的力场,在空间中存在电势差,使得带电粒子在其中受到力的作用。

重力场则是由物体的质量产生的力场,使得其他物体受到重力的作用。

二、电场和重力场的解题模板1. 定义所给的物理情境和所求解的问题。

我们要明确所给的物理情境和所求解的问题。

一个带电粒子在同时存在电场和重力场的环境中运动,我们需要求解其受力和运动轨迹。

2. 确定电场和重力场的表达式。

接下来,我们需要确定电场和重力场的具体表达式。

对于电场,我们可以使用电势和电荷的关系来计算。

对于重力场,我们可以使用万有引力定律来计算。

在此基础上,我们可以得到电场和重力场的叠加,得到复合场的表达式。

3. 计算受力和运动轨迹。

有了复合场的表达式后,我们可以根据带电粒子的电荷和重力作用的质量计算出受力。

根据受力和质量的关系,可以得到带电粒子的加速度。

进一步,我们可以求解其运动轨迹,包括位置、速度和加速度的函数关系等。

4. 分析结果并讨论。

在得到计算结果之后,我们需要对结果进行分析和讨论。

计算出的运动轨迹是否符合物理规律?是否符合预期?是否存在其他因素会对结果产生影响?这些都是我们需要思考和讨论的问题。

三、个人观点和理解电场和重力场的复合场是物理学研究中的一个重要领域,它涉及到多个学科的知识和方法。

在解题过程中,我们需要根据具体情境确定所求问题,然后使用合适的表达式计算受力和运动轨迹。

通过这样的解题模板,我们可以更好地理解电场和重力场的复合场,并应用到实际问题中去。

总结:本文以电场和重力场的复合场为主题,按照从简到繁、由浅入深的方式探讨了解题模板。

高中物理知识点复合场

高中物理知识点复合场

高中物理知识点复合场复合场是指重力场、电场、磁场并存,或其中两场并存。

分布方式或同一区域同时存在,或分区域存在。

复合场是高中物理中力学、电磁学综合综合型问题的沃苏什卡。

既体现了运动情况说明受力情况、受力情况决定运动情况的思想,又能考查电磁学中的关键环节重点知识,因此,近年来这类题备受青睐。

通过上表可以推断出,由于复合场的综合性弱,覆盖考点较多,预计在2021年高考(微博)中仍是一个热点。

复合场的考查方式:复合场可以图文形式直接出题,也可以与各种仪器(质谱仪,回旋加速器,速度选择器等)相结合考查。

一、重力场、电场、磁场分区域存在(例如质谱仪,回旋加速器)此种出题方式要求熟练掌握平抛运动、类平抛运动、圆周运动的基本公式及解决这种方式。

重力场:平抛运动电场:1.加速场:动能定理2.偏转场:类平绞运动或动能定理磁场:圆周运动二、重力场、电场、磁场同区域存在(例如速度选择器)带电粒子在复合场做什么运动取决于带电粒子所受合力及初速度,因此,把带电粒子的运动情况和变形情况结合是分析起来解决此类问题的关键。

(一)若带电粒子在复合场中做匀速直线运动时应根据平衡条件解题,例如速度选择器。

则有Eq=qVB(二)当带电粒子在复合场中做圆周运动时,则有Eq=mgqVB=mv2/R(2021年天津10题)如图所示,直角坐标系xOy位于竖直平面内,在水平的x轴下方存存在匀强磁场和匀强电场,磁场的磁感应为B,方向垂直xOy平面向里,电场线平行于y轴。

一质量为m、电荷量为q的带正电的小球,从y轴上的A点水平向右抛出,经x轴上的M 点位进入电场和磁场,恰能做匀速圆周运动,从x轴上的N点第一次离开引力场和磁场,MN之间的距离为L,小球过M点时的速度方向与x 轴的方向夹角为θ。

不计空气阻力,重力加速度为g,求(1)电场强度E的大小和方向;(2)小球从A点抛出时初速度v0的大小;(3)A点到x轴的高度h。

解析:本题考查平挥运动和带电小球在复合场中的运动。

电场和重力场的复合场的解题模板

电场和重力场的复合场的解题模板

电场和重力场的复合场的解题模板在物理学中,我们经常会遇到电场和重力场的复合场问题。

这类问题需要我们综合运用电场和重力场的知识,进行深入的分析和解答。

在本文中,我将为您介绍电场和重力场的复合场的解题模板,帮助您更好地理解和掌握这一重要的物理概念。

一、基础知识回顾在开始讨论电场和重力场的复合场问题之前,让我们先回顾一下电场和重力场的基础知识。

电场是由电荷产生的力场,描述了电荷在空间中的作用。

重力场则是由物体的质量产生的力场,描述了物体在地球或其他天体周围的作用。

在研究电场和重力场的复合场问题时,我们需要充分理解电荷和质量对空间的影响,以及它们相互作用的规律。

二、电场和重力场的复合场当电场和重力场同时存在时,它们将相互影响,产生复合场的效应。

在解题时,我们需要综合考虑电荷和质量在复合场中的行为,进而分析其对粒子或物体的影响。

这一过程中,我们可以利用电场和重力场的叠加原理,将复合场分解为电场和重力场的独立影响,再进行综合考虑,从而得出最终的解答。

三、解题模板1. 题目和要求:我们需要明确问题的题目和要求,确定所求物理量和已知条件。

2. 分解场:将复合场分解为电场和重力场的独立影响,分别进行分析。

3. 表达式推导:根据电场和重力场的相关公式,推导出复合场的表达式。

4. 数值计算:结合已知条件,进行数值计算,得出最终结果。

四、个人观点和理解电场和重力场的复合场问题是物理学中的重要问题之一,它涉及了电磁学和引力学两大基本领域的结合。

解决这类问题需要我们灵活运用物理知识,深入分析和综合考虑不同场的影响,从而得出准确的结论。

在实际应用中,电场和重力场的复合场问题也有着广泛的应用,对于深入理解自然界的规律具有重要意义。

总结回顾通过本文的介绍,我们对电场和重力场的复合场的解题模板有了更深入的理解。

在解决这类问题时,我们需要充分掌握基础知识,运用解题模板进行分析,同时也要不断拓展应用和思考,以便更好地掌握物理学的核心概念。

高中物理:匀强电场与重力场的复合场的处理方法

高中物理:匀强电场与重力场的复合场的处理方法

高中物理:匀强电场与重力场的复合场的处理方法一、分解法这种方法一般适用于电场力方向与重力方向不在一直线上(常见的情况是相互垂直)、且带电小物体的初速度方向与其所受合外力方向成任意角的情况。

处理这种运动的基本思路与处理带电粒子在电场中偏转运动类似,是将一个复杂的运动分解为沿重力方向和电场力方向的两个分运动。

由于重力和电场力都恒定,所以这两种分运动必是匀变速直线运动。

二、等效重力法这种方法一般适用于电场力与重力在一条直线上,或电场力和重力虽不在一直线上,但带电体还受其他条件的约束,如单摆、圆周运动等。

处理的基本思路是将重力和电场力合成,等效于重力;加速度,等效于重力加速度。

然后根据其运动特点,采用相应的物理规律进行求解。

这两种方法有时又同时并用。

例、真空中存在空间范围足够大的、水平向右的匀强电场。

在电场中,若将一质量为m、带正电的小球由静止释放,运动中小球速度与竖直方向夹角为(取,)。

现将该小球从电场中某点以初速度竖直向上抛出,求运动过程中:(1)小球受到的电场力的大小和方向;(2)小球从抛出点至最高点的电势能变化量;(3)小球最小动量的大小及方向。

解析:(1)由题意知,带正电的小球受的电场力水平向右,重力竖直向下,所以合力方向向下偏右角,如图1所示。

由图知,电场力的大小为:。

图1(2)小球竖直向上抛出,做类似于斜抛的运动。

显然,该题用正交分解法较为恰当。

将该运动分解为水平方向和竖直方向两种运动。

由于初速度沿竖直方向,所以小球在竖直方向做初速度为的匀减速直线运动;在水平方向作初速度为零的匀加速直线运动。

水平方向:,竖直方向:上升到最高点时,所用时间为此时小球沿水平方向的位移为:电场力做的功为:由功能关系知,小球上升到最高点的过程中,电势能减小了。

(3)根据斜抛运动的知识可知,小球运动到速度方向与合外力方向垂直时速度最小,因而动量也最小。

此时小球速度方向与水平方向成角,如图2所示。

设最小速度为,则:图2由于,代入上式可得:,所以。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、半径为r的绝缘光滑圆环固定在竖直平面内,环上套有一质量为m,带正电的珠子,
空间存在水平向右的匀强电场,珠子所受静电力是其重力的3/4倍。

现将珠子从环的最低点A处由静止释放,求珠子在什么位置动能达到最大?此时最大动能为多少?
E
A
2、一个带电量为-q的小油滴从A点出发以速度V0射入水平向右的匀强电场中,V0与水平方向的夹角为θ,已知油滴质量为m、重力加速度为g,当油滴到达轨迹最高点时速度大小又恰为V0,试问:
(1)油滴运动的最高点大致处在什么位置?(2)电场强度E的大小;(3)最高点与A点的电势差U的大小。

3、一条长为L的细线上端固定在O点,下端系一个质量为m的小球,将它置于一个
很大的匀强电场中,电场强度为E,方向水平向右,已知小球在B点时平衡,细线与竖直线的夹角为α,如图所示,求
(1)当悬线与竖直方向的夹角为多大时,才能使小球由静止释放后,细线到竖直位置时,
小球速度恰好为零?
(2)当细线与竖直方向成α角时,至少要给小球一个多大的初速,才能使小球在竖直面内
做圆周运动?
O
E。

相关文档
最新文档