最小二乘法的本原理和多项式拟合

合集下载

用最小二乘法求一次和二次拟合多项式

用最小二乘法求一次和二次拟合多项式

用最小二乘法求一次和二次拟合多项式
最小二乘法是一种常用的数学分析方法,其主要功能是对一些数据点进行拟合,找出最符合这些数据点的函数或曲线。

在实际应用中,最小二乘法经常被用来进行一次和二次拟合多项式。

一次拟合多项式是指通过一系列数据点,找出一条直线,使得这条直线与这些点的距离最小。

而二次拟合多项式则是指通过这些数据点,找出一个二次函数,使得这个函数与这些点的距离最小。

在进行最小二乘法拟合时,有一些重要的概念需要了解。

首先是残差,即每个数据点在拟合函数上的垂直距离。

其次是平方误差,即所有残差的平方和。

最小二乘法的目标就是要使平方误差最小。

对于一次拟合多项式,我们可以将其表示为y = a+bx的形式,其中a和b为待求参数。

我们需要通过最小二乘法来求出这两个参数,使得平方误差最小。

具体方法是通过求导来得到a和b的值,然后代入公式中计算平方误差,最后得到最小值。

对于二次拟合多项式,我们可以将其表示为y = a+bx+cx2的形式,其中a、b和c为待求参数。

同样,我们需要通过最小二乘法来求出这三个参数,使得平方误差最小。

具体方法是通过求导来得到a、b和c的值,然后代入公式中计算平方误差,最后得到最小值。

最小二乘法是一种常用的数据拟合方法,其优点在于可以对复杂的
函数进行拟合,并且可以通过求解方程组的形式来求出最优解。

在实际应用中,最小二乘法经常被用来进行一次和二次拟合多项式,以便更好地预测和分析数据的变化趋势。

最小二乘法在数学建模中的应用

最小二乘法在数学建模中的应用

最小二乘法在数学建模中的应用最小二乘法是一种常见的统计学方法,用于寻找一条最佳拟合曲线或平面,使得这个拟合曲线或平面与实际数据的误差最小。

最小二乘法在科学研究和工程学中都有广泛的应用。

在数学建模中,最小二乘法也是非常重要的一种方法。

本文将从数学建模的角度讨论最小二乘法的应用,包括基本原理、应用案例和如何使用计算机实现最小二乘法。

一、最小二乘法的基本原理在数学建模中,我们经常需要通过给定的数据来求解某些模型的参数。

例如,我们可能需要从一组数据中找到一条直线或曲线,使得这个模型与实际数据的误差最小。

最小二乘法就是一种常见的方法,它通过拟合一个具有数学解析式的模型来达到这个目标。

最小二乘法的基本思想就是,通过最小化误差平方和来求解模型中的参数。

误差平方和是指实际数据的点与模型直线或曲线之间的距离的平方和。

最小二乘法的做法是,对于每一个数据点,计算它与模型的距离,并将这些距离的平方相加。

然后,通过求取这个误差平方和的极小值,可以求得最佳拟合曲线或平面的参数。

二、最小二乘法的应用案例最小二乘法在数学建模中的应用非常广泛,下面列举一些应用案例。

1.线性回归线性回归是最小二乘法的一个经典应用。

在线性回归中,我们需要拟合一条直线,使得这条直线与实际数据的误差最小。

通常我们使用简单的线性方程y=ax+b来描述这条直线,而最小二乘法就是用来求解a和b的。

例如,我们有一组数据{(1,2),(2,5),(3,6),(4,8)},我们想找到一条直线y=ax+b,使得误差平方和最小。

我们可以将这个问题转化为求解a和b使得误差平方和最小。

具体做法是,计算每个数据点与直线的距离,然后将这些距离的平方相加。

最后,通过求取误差平方和的偏导数使其为0,可以求解出a和b的值。

2.多项式拟合最小二乘法还可以用于多项式拟合。

在多项式拟合中,我们需要拟合一个多项式模型,使得这个模型与实际数据的误差最小。

例如,我们有一组数据{(1,2),(2,5),(3,6),(4,8)},我们想找到一个二次函数y=ax^2+bx+c,使得误差平方和最小。

多项式插值和最小二乘法拟合在原理上的差别

多项式插值和最小二乘法拟合在原理上的差别

多项式插值和最小二乘法拟合在原理上的
差别
多项式插值和最小二乘法拟合是两种常见的数据拟合方法,它们在原理上有着一些差别。

多项式插值是一种通过已知数据点来构造一个多项式函数的方法,使得该函数在这些数据点上的函数值与给定的数据点相同。

多项式插值的基本思想是通过已知数据点构造一个多项式函数,使得该函数在这些数据点上的函数值与给定的数据点相同。

多项式插值的优点是可以精确地拟合数据,但是当数据点数量较多时,多项式插值的计算量会变得非常大,同时过度拟合的风险也会增加。

最小二乘法拟合是一种通过最小化误差平方和来拟合数据的方法。

最小二乘法拟合的基本思想是通过已知数据点构造一个函数,使得该函数在这些数据点上的误差平方和最小。

最小二乘法拟合的优点是可以在一定程度上避免过度拟合的问题,同时计算量也相对较小。

但是最小二乘法拟合的缺点是无法精确地拟合数据,因为它只是通过最小化误差平方和来寻找一个最优解,而不是通过精确地拟合每个数据点来得到一个解。

因此,多项式插值和最小二乘法拟合在原理上的差别主要在于它们的目标不同。

多项式插值的目标是精确地拟合每个数据点,而最小二乘法拟合的目标是通过最小化误差平方和来得到一个最优解。

在实际应用中,我们需要根据具体的数据特点和需求来选择合适的拟
合方法。

如果数据点数量较少且需要精确地拟合每个数据点,那么多项式插值可能是更好的选择;如果数据点数量较多或需要避免过度拟合的问题,那么最小二乘法拟合可能更适合。

最小二乘法的原理及在建模中的应用分析

最小二乘法的原理及在建模中的应用分析

最小二乘法的原理及在建模中的应用分析最小二乘法(least squares method)是一种数学优化方法,用于解决线性回归和非线性回归问题,通过求取使得误差平方和最小化的参数估计值。

它的原理是寻找一条最佳拟合曲线或平面,使得观测值与拟合值之间的误差最小。

在线性回归问题中,最小二乘法可以用来估计回归模型的参数。

假设我们有n个样本点{(x1, y1), (x2, y2), ..., (xn, yn)},其中yi是对应的观测值,我们想要找到一个线性模型y = ax + b,使得拟合值与观测值之间的误差最小。

这个问题可以通过最小化误差平方和来求解。

误差平方和定义为E(a, b) = Σ(yi - (axi + b))^2,我们需要找到使得E(a, b)最小的a和b。

∂E/∂a = -2Σ(xi(yi - (axi + b))) = 0∂E/∂b = -2Σ(yi - (axi + b)) = 0将上述方程进行化简,可以得到如下的正规方程组:Σ(xi^2)a + Σ(xi)b = Σ(xi yi)Σ(xi)a + nb = Σ(yi)解这个方程组,可以得到最小二乘估计的参数值。

1.线性回归分析:最小二乘法可以用于估计线性回归模型的参数。

通过最小二乘估计,可以得到最佳拟合直线,并用这条直线来预测因变量。

2.时间序列分析:最小二乘法可以用于拟合时间序列模型。

通过寻找最佳拟合函数,可以识别出序列中的趋势和周期性变化。

3.统计数据处理:最小二乘法可以用于数据平滑和滤波处理。

通过拟合一个平滑曲线,可以去除数据中的噪声和不规则波动,从而提取出数据中的趋势信息。

4.多项式拟合:最小二乘法可以用于多项式拟合。

通过最小二乘估计,可以拟合出多项式函数,将其用于数据拟合和函数逼近。

5.曲线拟合:最小二乘法可以用于非线性曲线拟合。

通过选择合适的函数形式,并通过最小二乘估计求解参数,可以拟合出复杂的非线性曲线。

总之,最小二乘法是一种常用的参数估计方法,可以用于线性回归、非线性拟合、时间序列分析等多种建模问题。

多项式最小二乘拟合

多项式最小二乘拟合

多项式最小二乘拟合是一种常见的数学方法,可以用于解决数据分析和预测问题。

本文将详细介绍的原理、应用以及注意事项。

一、原理是一种基于最小二乘法的数学方法。

最小二乘法是一种寻找函数与数据拟合的方法,它试图寻找一个函数来最小化数据点和该函数之间的距离之和。

最小二乘法通常用于数据拟合、回归分析、统计模型构建和信号处理等领域。

是在多项式模型的基础上使用最小二乘法拟合数据。

多项式模型一般形式为:y = a0 + a1*x + a2*x^2 + …… + an*x^n其中y为因变量,x为自变量,a0、a1、a2……an是待定系数,n为多项式的阶数。

的目标是寻找一组系数a0、a1、a2……an,使得对于给定的数据点(xi, yi),拟合函数f(xi)与实际值yi的偏差最小。

二、应用可以应用于很多领域,例如:1. 数据分析:可以用于分析数据,找出数据中的规律和趋势。

2. 预测分析:可以用于预测未来的趋势和走势。

3. 信号处理:可以用于处理信号,找出信号中的噪声和信号。

4. 工程应用:可以应用于工程设计、系统优化等领域。

三、注意事项1. 数据要求:需要一组数据来进行拟合计算,因此数据质量很重要。

数据应该尽量准确、完整、真实。

2. 模型选择:中的多项式阶数对于模型的精度和复杂度有很大的影响。

因此,在选择模型时应该考虑到模型与数据的适应性和效率。

3. 拟合误差:中的误差也是需要考虑的问题。

拟合误差越小,模型的预测精度就越高。

当拟合误差过大时,需要重新检验数据和模型选择。

四、总结是一种基于最小二乘法的数学方法,可以用于解决数据分析和预测问题。

在实际应用中,应该注重数据的质量、模型的选择和拟合误差的控制,以确保拟合结果的准确性和可靠性。

最小二乘法多项式拟合原理

最小二乘法多项式拟合原理

最小二乘法多项式拟合原理最小二乘法多项式拟合原理最小二乘法是一种数学方法,用于寻找一个函数,使得该函数与已知数据点的残差平方和最小化。

尤其在数据分析和统计学中广泛应用,其中特别重要的应用是曲线拟合。

本文将介绍最小二乘法在多项式拟合中的原理。

多项式拟合多项式拟合是一种常见的曲线拟合方法,它将数据点逼近为一个固定次数的多项式。

假设有N个数据点(x1,y1),(x2,y2),…,(xN,yN),希望找到一个关于x的M次多项式函数y=a0+a1x+a2x^2+...+aMx^M,最小化拟合曲线与数据点之间的残差平方和,即S(a0,a1,…,aM)=∑i=1N(yi−P(x))2其中P(x)=a0+a1x+a2x^2+...+aMx^M。

最小二乘法最小二乘法是一种优化方法,通过最小化残差平方和,寻找最优的拟合函数参数。

在多项式拟合中,残差平方和的最小值可以通过相应的求导数为零来计算拟合函数参数。

设残差平方和S的导数为零得到的方程组为∑xi0,…,xiMaM=∑yi⋅xi0,…,xiM,其中M+1个未知量为a0,a1,…,aM,共有M+1个方程,可以使用线性代数解决。

拟合错误与选择问题使用较高次数的多项式进行拟合,可能会导致过度拟合,使得拟合函数更接近每个数据点,因此更难以预测它们之间的关系。

另一方面,使用过低次数的多项式无法反映出数据点之间的较细节的关系。

因此,在实践中,我们需要权衡多项式次数和误差,以找到一个最合适的拟合结果。

总结最小二乘法是一种常用的曲线拟合方法,在多项式拟合中广泛应用。

通过最小化残差平方和,可以找到最优的拟合函数参数,权衡多项式次数和误差,可以得出最合适的拟合结果。

最小二乘法的应用及原理解析

最小二乘法的应用及原理解析

最小二乘法的应用及原理解析最小二乘法,英文称为 Least Squares Method,是一种经典的数学优化技术,广泛应用于数据拟合、信号处理、机器学习、统计分析等领域。

本文将从应用角度出发,介绍最小二乘法的基本原理、优缺点以及实际应用中的具体操作流程。

一、最小二乘法的基本原理最小二乘法的基本思路是:已知一组样本数据(x1,y1),(x2,y2),...(xn,yn),要求找到一条曲线(如直线、多项式等),使得该曲线与样本数据的误差平方和最小。

其数学表示式为:$min {\sum_{i=1}^{n}(y_i-\hat{y}_i)^2}$其中,$\hat{y}_i$是曲线在$x_i$处的预测值,代表曲线对样本数据的拟合程度。

显然,当误差平方和最小时,该曲线与样本数据的拟合效果最好,也就是最小二乘法的优化目标。

最小二乘法的求解方法有多种,比较常用的有矩阵求导法、正规方程法、QR分解法等。

这里以正规方程法为例进行介绍。

正规方程法的思路是:将目标函数中的误差平方和展开,取它的一阶导数为零,求得最优解的系数矩阵。

具体过程如下:1.将样本数据表示为矩阵形式,即 $X=[1,x_1,x_2,...,x_n]^T$。

2.构建方程组 $X^TX\beta=X^TY$,其中$\beta=[\beta_0,\beta_1,...,\beta_p]$是待求系数矩阵。

3.求解方程组,得到最优解的系数矩阵 $\beta$。

最小二乘法的优点是:对于线性问题,最小二乘法是一种解析解,可以求得精确解。

同时,最小二乘法易于理解、简单易用,可以快速拟合实际数据,避免过度拟合和欠拟合。

二、最小二乘法的优缺点最小二乘法虽然有很好的拟合效果,但是也存在一些不足之处:1.对异常值敏感。

最小二乘法基于误差平方和的最小化,如果样本中存在离群值或噪声,会对最终结果产生较大影响,导致拟合结果不准确。

2.对线性假设敏感。

最小二乘法只适用于线性问题,如果样本数据的真实规律是非线性的,则拟合效果会大打折扣。

加权最小二乘法 拟合多项式 matlab

加权最小二乘法 拟合多项式 matlab

加权最小二乘法(Weighted Least Squares, WLS)是一种经典的拟合方法,用于处理数据中的噪声和异常值。

在拟合多项式的过程中,加权最小二乘法能够更好地适应不同的数据权重,从而得到更准确、更可靠的拟合结果。

结合Matlab强大的数学计算和可视化工具,我们可以更方便、更高效地实现加权最小二乘法拟合多项式。

一、加权最小二乘法的基本原理1. 加权最小二乘法的概念在拟合多项式过程中,常常会遇到数据噪声较大或者部分数据异常值较大的情况。

此时,普通的最小二乘法可能无法有效地拟合数据,因此需要引入加权最小二乘法。

加权最小二乘法通过为每个数据点赋予不同的权重,对异常值和噪声进行更有效的处理。

2. 加权最小二乘法的数学原理加权最小二乘法的数学原理主要是在最小化误差的基础上,引入权重矩阵来调整不同数据点的重要性。

通过优化残差的加权和,可以得到适应不同权重的拟合结果。

二、Matlab中的加权最小二乘法1. Matlab工具Matlab提供了丰富的数学计算和拟合工具,通过内置的polyfit函数和curve fitting工具箱,可以方便地实现加权最小二乘法拟合多项式。

Matlab还提供了丰富的可视化工具,可以直观展示加权最小二乘法的拟合效果。

2. 加权最小二乘法的实现在Matlab中,可以通过指定权重向量来调用polyfit函数,实现加权最小二乘法拟合多项式。

利用Matlab内置的拟合评估工具,可以对拟合效果进行全面评估和优化。

三、实例分析以实际数据为例,我们可以在Matlab环境下进行加权最小二乘法的拟合多项式实例分析。

通过构建数据模型、指定权重、调用polyfit函数并结合可视化工具,可以全面了解加权最小二乘法在拟合多项式中的应用效果。

四、个人观点和总结在实际工程和科学研究中,加权最小二乘法拟合多项式是一种非常有效和重要的数据处理方法。

结合Matlab强大的数学计算和可视化工具,可以更方便、更高效地实现加权最小二乘法拟合多项式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一节 最小二乘法的基本原理和多项式拟合一 最小二乘法的基本原理从整体上考虑近似函数)(x p 同所给数据点),(i i y x (i=0,1,…,m)误差i i i y x p r -=)((i=0,1,…,m)的大小,常用的方法有以下三种:一是误差i i i y x p r -=)((i=0,1,…,m)绝对值的最大值im i r ≤≤0max ,即误差 向量T m r r r r ),,(10 =的∞—范数;二是误差绝对值的和∑=mi ir 0,即误差向量r 的1—范数;三是误差平方和∑=mi ir02的算术平方根,即误差向量r 的2—范数;前两种方法简单、自然,但不便于微分运算 ,后一种方法相当于考虑 2—范数的平方,因此在曲线拟合中常采用误差平方和∑=mi ir02来 度量误差i r (i=0,1,…,m)的整体大小。

数据拟合的具体作法是:对给定数据 ),(i i y x (i=0,1,…,m),在取定的函数类Φ中,求Φ∈)(x p ,使误差i i i y x p r -=)((i=0,1,…,m)的平方和最小,即∑=mi ir 02=[]∑==-mi i i y x p 02min)(从几何意义上讲,就是寻求与给定点),(i i y x (i=0,1,…,m)的距离平方和为最小的曲线)(x p y =(图6-1)。

函数)(x p 称为拟合 函数或最小二乘解,求拟合函数)(x p 的方法称为曲线拟合的最小二乘法。

在曲线拟合中,函数类Φ可有不同的选取方法.6—1二 多项式拟合假设给定数据点),(i i y x (i=0,1,…,m),Φ为所有次数不超过)(m n n ≤的多项式构成的函数类,现求一Φ∈=∑=nk k k n x a x p 0)(,使得[]min )(00202=⎪⎭⎫⎝⎛-=-=∑∑∑===mi mi n k i k i k i i n y x a y x p I (1)当拟合函数为多项式时,称为多项式拟合,满足式(1)的)(x p n 称为最小二乘拟合多项式。

特别地,当n=1时,称为线性拟合或直线拟合。

显然∑∑==-=m i nk i k i k y x a I 02)(为n a a a ,,10的多元函数,因此上述问题即为求),,(10n a a a I I =的极值 问题。

由多元函数求极值的必要条件,得n j x y x a a Im i j i nk i k i k j ,,1,0,0)(200 ==-=∂∂∑∑== (2)即nj y x a xn k mi i j i k mi k j i,,1,0,)(0==∑∑∑===+ (3)(3)是关于n a a a ,,10的线性方程组,用矩阵表示为⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+∑∑∑∑∑∑∑∑∑∑∑=====+==+====m i i n i m i i i m i i n mi n i m i n i m i n i mi n i m i i m i imi n i m i i y x y x y a a a x x x x x x x x m 000100201001020001 (4) 式(3)或式(4)称为正规方程组或法方程组。

可以证明,方程组(4)的系数矩阵是一个对称正定矩阵,故存在唯一解。

从式(4)中解出k a (k=0,1,…,n),从而可得多项式∑==nk kk n x a x p 0)( (5)可以证明,式(5)中的)(x p n 满足式(1),即)(x p n 为所求的拟合多项式。

我们把[]∑=-mi i i ny x p2)(称为最小二乘拟合多项式)(x p n 的平方误差,记作[]∑=-=mi i i n y x p r0222)(由式(2)可得∑∑∑===-=mi nk mi i k i k i y x a y r222)( (6)多项式拟合的一般方法可归纳为以下几步:(1) 由已知数据画出函数粗略的图形——散点图,确定拟合多项式的次数n ; (2) 列表计算∑==mi j in j x)2,,1,0( 和∑==mi ij in j y x)2,,1,0( ;(3) 写出正规方程组,求出n a a a ,,10;(4) 写出拟合多项式∑==nk kk n x a x p 0)(。

在实际应用中,m n <或m n ≤;当m n =时所得的拟合多项式就是拉格朗日或牛顿插值多项式。

例1 测得铜导线在温度i T (℃)时的电阻)(Ωi R 如表6-1,求电阻R 与温度 T 的近似函数关系。

i 0 1 2 3 4 5 6i T (℃))(Ωi R解 画出散点图(图6-2),可见测得的数据接近一条直线,故取n=1,拟合函数为T a a R 10+=列表如下i i T i R 2i Ti i R T 0 1 2 3 4 5 6 ∑正规方程组为⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡445.200295.56583.93253.2453.245710a a解方程组得921.0,572.7010==a a故得R 与T 的拟合直线为T R 921.0572.70+=利用上述关系式,可以预测不同温度时铜导线的电阻值。

例如,由R=0得T=,即预测温度T=℃时,铜导线无电阻。

6-2i 0 1 23 4 5 6 7 8 i x1 3 4 5 6 7 8 9 10 iy10 5 4211234试用最小二乘法求它的二次拟合多项式。

解 设拟合曲线方程为2210x a x a a y ++= 列表如下I i x i y2i x3i x4i xi i y x i i y x 20 1 10 1 1 1 10 10 1 3 5 9 27 81 15 45 2 4 4 16 64 256 16 64 3 5 2 25 125 625 10 50 4 6 1 36 216 1296 6 36 5 7 1 49 343 2401 7 49 6 8 2 64 512 4096 16 128 7 9 3 81 729 6561 27 243 8 104 100 1000 10000 40 400 ∑53 32 381 3017 25317 147 1025得正规方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡102514732253173017381301738152381529210a a a解得2676.06053.3,4597.13210=-==a a a故拟合多项式为22676.06053.34597.13x y +-=*三 最小二乘拟合多项式的存在唯一性定理1 设节点n x x x ,,,10 互异,则法方程组(4)的解存在唯一。

证 由克莱姆法则,只需证明方程组(4)的系数矩阵非奇异即可。

用反证法,设方程组(4)的系数矩阵奇异,则其所对应的齐次方程组⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+∑∑∑∑∑∑∑∑∑∑∑=====+==+====m i i n i m i i i m i i n mi n i m i n i m i n i mi n i m i i m i imi n i m i i y x y x y a a a x x x x x x x x m 000100201001020001 (7) 有非零解。

式(7)可写为nj a xn k k mi k j i ,,1,0,0)(0==∑∑==+ (8)将式(8)中第j 个方程乘以ja (j=0,1,…,n),然后将新得到的n+1个方程左右两端分别 相加,得 ∑∑∑===+=⎥⎦⎤⎢⎣⎡nj n k k m i k j i j a x a 00000)(因为[]∑∑∑∑∑∑∑∑∑∑=======+===+===⎥⎦⎤⎢⎣⎡m i m i mi in n k ki k n j j i j n j n k k j i j k nj n k k m i k j i j x p x a x a x a a a x a 00020000000)())(()( 其中: ∑==nk kk n x a x p 0)(所以0)(=i n x p (i=0,1,…,m))(x p n 是次数不超过n 的多项式,它有m+1>n 个相异零点,由代数基本定理,必须有010===n a a a ,与齐次方程组有非零解的假设矛盾。

因此正规方程组(4)必有唯一解 。

定理2 设n a a a ,,1,0 是正规方程组(4)的解,则∑==nk kk n x a x p 0)(是满足式(1)的最小二乘拟合多项式。

证 只需证明,对任意一组数nb b b ,,1,0 组成的多项式∑==nk kk n x b x Q 0)(,恒有[][]∑∑==-≥-mi i i n mi i i ny x p y x Q22)()(即可。

[][][][][][]()∑∑∑∑∑∑∑∑∑∑==========⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=⎥⎦⎤⎢⎣⎡-⋅-+≥-⋅-+-=---n j mi j i n k i k i k j j m i nj n k i ki k ji j j i i n mi i n i n m i i n i n mi ii n mi i i n x y x a a b y x a x a b y x p x p x Q x p x Q y x p y x Q 00000002222)(20)()()(2)()()()(因为k a (k=0,1,…,n)是正规方程组(4)的解,所以满足式(2),因此有[][]0)()(022≥---∑∑==mi i i n mi i i ny x p y x Q故)(x p n 为最小二乘拟合多项式。

*四 多项式拟合中克服正规方程组的病态在多项式拟合中,当拟合多项式的次数较高时,其正规方程组往往是病态的。

而且:①正规方程组系数矩阵的阶数越高,病态越严重;②拟合节点分布的区间[]m x x ,0偏离原点越远,病态越严重; ③i x (i=0,1,…,m)的数量级相差越大,病态越严重。

为了克服以上缺点,一般采用以下措施:①尽量少作高次拟合多项式,而作不同的分段低次拟合;②不使用原始节点作拟合,将节点分布区间作平移,使新的节点i x 关于原 点对称,可大大降低正规方程组的条件数,从而减低病态程度。

平移公式为:mi x x x x mi i ,,1,0,20 =+-= (9)③对平移后的节点i x (i=0,1,…,m),再作压缩或扩张处理:m i x p x i i ,,1,0,==* (10) 其中r mi rix m p 202)()1(∑=+=,(r 是拟合次数) (11)经过这样调整可以使*i x 的数量级不太大也不太小,特别对于等距节点),,1,0(0m i ih x x i =+=,作式(10)和式(11)两项变换后,其正规方程组的系数矩阵设 为A ,则对1~4次多项式拟合,条件数都不太大,都可以得到满意的结果。

相关文档
最新文档