最小二乘法的多项式拟合

合集下载

最小二乘法的基本原理和多项式拟合

最小二乘法的基本原理和多项式拟合

最小二乘法的基本原理和多项式拟合GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-最小二乘法的基本原理和多项式拟合一最小二乘法的基本原理从整体上考虑近似函数同所给数据点 (i=0,1,…,m)误差(i=0,1,…,m)的大小,常用的方法有以下三种:一是误差(i=0,1,…,m)绝对值的最大值,即误差向量的∞—范数;二是误差绝对值的和,即误差向量r的1—范数;三是误差平方和的算术平方根,即误差向量r的2—范数;前两种方法简单、自然,但不便于微分运算,后一种方法相当于考虑 2—范数的平方,因此在曲线拟合中常采用误差平方和来度量误差 (i=0,1,…,m)的整体大小。

数据拟合的具体作法是:对给定数据 (i=0,1,…,m),在取定的函数类中,求,使误差(i=0,1,…,m)的平方和最小,即=从几何意义上讲,就是寻求与给定点 (i=0,1,…,m)的距离平方和为最小的曲线(图6-1)。

函数称为拟合函数或最小二乘解,求拟合函数的方法称为曲线拟合的最小二乘法。

在曲线拟合中,函数类可有不同的选取方法.6—1二多项式拟合假设给定数据点 (i=0,1,…,m),为所有次数不超过的多项式构成的函数类,现求一,使得(1)当拟合函数为多项式时,称为多项式拟合,满足式(1)的称为最小二乘拟合多项式。

特别地,当n=1时,称为线性拟合或直线拟合。

显然为的多元函数,因此上述问题即为求的极值问题。

由多元函数求极值的必要条件,得(2)即(3)(3)是关于的线性方程组,用矩阵表示为(4)式(3)或式(4)称为正规方程组或法方程组。

可以证明,方程组(4)的系数矩阵是一个对称正定矩阵,故存在唯一解。

从式(4)中解出 (k=0,1,…,n),从而可得多项式(5)可以证明,式(5)中的满足式(1),即为所求的拟合多项式。

我们把称为最小二乘拟合多项式的平方误差,记作由式(2)可得(6)多项式拟合的一般方法可归纳为以下几步:(1) 由已知数据画出函数粗略的图形——散点图,确定拟合多项式的次数n;(2) 列表计算和;(3) 写出正规方程组,求出;(4) 写出拟合多项式。

最小二乘多项式拟合

最小二乘多项式拟合

最小二乘多项式拟合最小二乘多项式拟合,是一种常用的数据拟合方法,在各个学科领域都有广泛的应用。

它通过寻找最佳拟合曲线来近似描述一组离散数据点的趋势和规律。

在工程、统计学、经济学等领域,这种方法被广泛用于数据分析、曲线预测和模型建立。

首先,我们来看一下最小二乘拟合的基本原理。

在数据拟合过程中,我们通常假设数据是由一个未知函数生成的,而我们的目标是找到一个多项式函数,使得该多项式函数与数据之间的拟合误差最小。

为了达到这个目标,最小二乘拟合采用了最小化残差平方和的策略。

残差即为观测值与拟合值之间的差值,通过求解残差平方和的最小值,我们可以得到最佳拟合曲线的参数。

在最小二乘多项式拟合中,我们通常假设待拟合的数据点(x,y)满足下述形式的多项式方程:y=a0+a1*x+a2*x^2+...+ an*x^n,其中a0,a1,a2,...,an为待求的参数。

我们可以通过求解该多项式方程的系数,得到最佳拟合曲线。

在实际应用中,为了选择最佳的多项式次数,我们需要考虑过拟合和欠拟合的问题。

过拟合指的是模型过于复杂,过度适应了训练数据,但对新数据的预测效果较差;欠拟合则代表模型过于简单,无法很好地拟合数据的真实规律。

为此,我们可以引入交叉验证等方法,来选择合适的多项式次数,以平衡模型的复杂度和拟合能力。

此外,最小二乘多项式拟合还可以应用于数据的预测和模型建立。

对于已知的数据点,我们可以通过最小二乘方法拟合得到多项式函数,进而预测未知数据点的值。

这在实际中有很多应用,比如股票市场预测、天气预测等。

同时,最小二乘拟合还可以作为其他模型的基础,用于构建更复杂的模型,如神经网络、支持向量机等。

最后,最小二乘多项式拟合方法还有一些应注意的问题。

由于数据的分布情况和噪声的存在,最小二乘拟合可能对异常值比较敏感,因此需要在拟合过程中进行数据清洗和异常值处理。

此外,最小二乘拟合假设了数据之间是无相关的,因此在某些情况下,如时间序列数据的拟合中,可能并不适用。

直线拟合的四种方法

直线拟合的四种方法

直线拟合的四种方法直线拟合是一种常见的数据分析方法,用于找到一条直线来描述数据集中的趋势。

在实际应用中,直线拟合常用于回归分析、统计建模、机器学习等领域。

下面将介绍四种常用的直线拟合方法。

1. 最小二乘法(Least Squares Method)最小二乘法是最常见的直线拟合方法之一、该方法的基本思想是通过最小化实际观测数据点与直线的残差平方和来确定最佳拟合直线。

具体步骤如下:(1)给定包含n个数据点的数据集;(2) 设直线方程为y = ax + b,其中a为斜率,b为截距;(3)计算每个数据点到直线的垂直距离,即残差;(4)将残差平方和最小化,求解a和b的值。

2. 总体均值法(Method of Overall Averages)总体均值法也是一种常用的直线拟合方法。

该方法的基本思想是通过计算数据集的x和y的均值,将直线拟合到通过这两个均值点的直线上。

具体步骤如下:(1)给定包含n个数据点的数据集;(2) 计算x和y的均值,即x_mean和y_mean;(3) 利用直线方程y = a(x - x_mean) + y_mean拟合数据。

3. 多项式拟合法(Polynomial Fitting Method)多项式拟合法是一种常见的直线拟合方法,适用于数据集中存在非线性趋势的情况。

该方法的基本思想是通过将数据拟合到多项式模型,找到最佳拟合直线。

具体步骤如下:(1)给定包含n个数据点的数据集;(2) 设多项式方程为y = a0 + a1*x + a2*x^2 + ... + an*x^n;(3) 通过最小二乘法求解a0, a1, a2, ..., an的值;(4)通过求解得到的多项式方程进行数据拟合。

4. 支持向量机(Support Vector Machine)支持向量机是一种经典的机器学习方法,适用于直线拟合问题。

该方法的基本思想是找到离数据集最近的点,然后构建一条平行于这两个点的直线。

具体步骤如下:(1)给定包含n个数据点的数据集;(2)将数据点划分为两个类别,如正类和负类;(3)找到离两个类别最近的点,将其作为支持向量;(4)根据支持向量构建一条平行于两个类别的直线,使得两个类别之间的间隔最大化。

用最小二乘法求一次和二次拟合多项式

用最小二乘法求一次和二次拟合多项式

用最小二乘法求一次和二次拟合多项式
最小二乘法是一种常用的数学分析方法,其主要功能是对一些数据点进行拟合,找出最符合这些数据点的函数或曲线。

在实际应用中,最小二乘法经常被用来进行一次和二次拟合多项式。

一次拟合多项式是指通过一系列数据点,找出一条直线,使得这条直线与这些点的距离最小。

而二次拟合多项式则是指通过这些数据点,找出一个二次函数,使得这个函数与这些点的距离最小。

在进行最小二乘法拟合时,有一些重要的概念需要了解。

首先是残差,即每个数据点在拟合函数上的垂直距离。

其次是平方误差,即所有残差的平方和。

最小二乘法的目标就是要使平方误差最小。

对于一次拟合多项式,我们可以将其表示为y = a+bx的形式,其中a和b为待求参数。

我们需要通过最小二乘法来求出这两个参数,使得平方误差最小。

具体方法是通过求导来得到a和b的值,然后代入公式中计算平方误差,最后得到最小值。

对于二次拟合多项式,我们可以将其表示为y = a+bx+cx2的形式,其中a、b和c为待求参数。

同样,我们需要通过最小二乘法来求出这三个参数,使得平方误差最小。

具体方法是通过求导来得到a、b和c的值,然后代入公式中计算平方误差,最后得到最小值。

最小二乘法是一种常用的数据拟合方法,其优点在于可以对复杂的
函数进行拟合,并且可以通过求解方程组的形式来求出最优解。

在实际应用中,最小二乘法经常被用来进行一次和二次拟合多项式,以便更好地预测和分析数据的变化趋势。

多项式最小二乘拟合

多项式最小二乘拟合

多项式最小二乘拟合是一种常见的数学方法,可以用于解决数据分析和预测问题。

本文将详细介绍的原理、应用以及注意事项。

一、原理是一种基于最小二乘法的数学方法。

最小二乘法是一种寻找函数与数据拟合的方法,它试图寻找一个函数来最小化数据点和该函数之间的距离之和。

最小二乘法通常用于数据拟合、回归分析、统计模型构建和信号处理等领域。

是在多项式模型的基础上使用最小二乘法拟合数据。

多项式模型一般形式为:y = a0 + a1*x + a2*x^2 + …… + an*x^n其中y为因变量,x为自变量,a0、a1、a2……an是待定系数,n为多项式的阶数。

的目标是寻找一组系数a0、a1、a2……an,使得对于给定的数据点(xi, yi),拟合函数f(xi)与实际值yi的偏差最小。

二、应用可以应用于很多领域,例如:1. 数据分析:可以用于分析数据,找出数据中的规律和趋势。

2. 预测分析:可以用于预测未来的趋势和走势。

3. 信号处理:可以用于处理信号,找出信号中的噪声和信号。

4. 工程应用:可以应用于工程设计、系统优化等领域。

三、注意事项1. 数据要求:需要一组数据来进行拟合计算,因此数据质量很重要。

数据应该尽量准确、完整、真实。

2. 模型选择:中的多项式阶数对于模型的精度和复杂度有很大的影响。

因此,在选择模型时应该考虑到模型与数据的适应性和效率。

3. 拟合误差:中的误差也是需要考虑的问题。

拟合误差越小,模型的预测精度就越高。

当拟合误差过大时,需要重新检验数据和模型选择。

四、总结是一种基于最小二乘法的数学方法,可以用于解决数据分析和预测问题。

在实际应用中,应该注重数据的质量、模型的选择和拟合误差的控制,以确保拟合结果的准确性和可靠性。

最小二乘法多项式拟合实验报告.docx

最小二乘法多项式拟合实验报告.docx

连续系统仿真实验报告实验数据拟合建模姓名:专业:学号:时间:2013年5月1日实验单元二实验数据拟合建模一、实验目的1、 用C 语言实现最小二乘的多项式拟合和LU 分解法;2、 熟练掌握最小二乘拟合和LU 分解法的基本原理。

3、 体会用计算机编程解决计算问题的方法。

二、需求说明(一) 、需求阐述本次实验是要求根据己知的自变量和函数值,通过多项式拟合來分别计 算2、3、4阶拟合多项式,并根据拟合结果分別计算出待求点的函数值。

其中解 拟合系数方程组时采用LU 分解的方法计算拟合多项式的系数。

(二) 、实验公式m 次拟合函数公式为:(p (x )=ao 七1対~・・・可点"计算系数4的方程组为:Sg a 0 +S] a 】 +...4-s ni a ni =t 0 < S]a ()+s?a]+...+s mF ]a m =t]k Sm a 0 +S mH a i +• •丹加^冃 其中 》= 士疋E ,i-0所以,在编程计算时,先计算出方程组①,再用LU 分解法计算求出耳的 值,即可得到拟合多项式。

LU 分解法的公式为:其中L 矩阵和U 矩阵的计算公式如下: 第一步,当k 二1,有:「1 0 0・・・01〔21 1 0-0^31 彳32 1 ••::::0 厶L ……1-i=0n-l最后求 u nn : U nn =a nn -^l m u m r=l三、设计说明(一) 、数据结构程序采用一维数组的形式来读取文件中给出的己知点处的值和要计算的未 知点处的H 变量值,最终的拟合计算结果也是采用一维数组的形式输出到文件中。

拟合多项式的系数a 和拟合系数方程组的参数t 都是采用一维数组來存储的,而 拟合系数方程组中的参数s 和L 、U 矩阵都是用二维数组來表示的。

由于要分别 计算2、3、4阶拟合结果,所以数组的规模取为5,矩阵的规模取为5*5.(二) 、算法设计及效率分析在进行LU 分解函数中,在计算L 矩阵和U 矩阵时,因为当k=2,3.-,n-l 时, 计算丈M 和土皿的循环条件不允许k=l 时进入,而正好k=l 时,计算1“和i 町不 x-1 r-1k-1 k ・l需要工1丿匕和工1以崎,因而对k=l 和k=2,3,-,n-l,就可以和在一起计算,这样就减少了 r=lr=l程序的长度。

最小二乘法多项式拟合c语言

最小二乘法多项式拟合c语言

最小二乘法多项式拟合c语言
最小二乘法多项式拟合是一种数学方法,用于在一组数据点中拟合一个多项式函数,以最小化误差的平方和。

这种方法常用于数据分析和统计学中,可以用来预测未来的趋势或者揭示数据背后的规律。

C语言是一种广泛使用的编程语言,可以用来实现最小二乘法多项式拟合算法。

在C语言中,可以使用数值计算库来进行数据计算和多项式拟合。

常用的数值计算库包括GNU Scientific Library (GSL)、Numerical Recipes等。

实现最小二乘法多项式拟合的基本步骤如下:
1. 定义多项式的阶数,例如3阶多项式。

2. 读入待拟合的数据点,包括 x 值和 y 值。

3. 根据拟合的阶数,构造矩阵A和向量b,其中A是一个矩阵,每一行代表一个数据点,每一列代表一个多项式系数,b是一个向量,每个元素代表一个数据点的y值。

4. 使用最小二乘法求解多项式系数向量c,使得误差平方和最小。

5. 输出多项式系数向量c,即可得到拟合的多项式函数。

最小二乘法多项式拟合在实际应用中具有广泛的应用,例如曲线拟合、数据预测、信号处理等领域。

在C语言中使用最小二乘法多项式拟合算法,可以有效地处理大量的数据,并获得较为准确的预测结果。

- 1 -。

最小二乘法多项式拟合原理

最小二乘法多项式拟合原理

最小二乘法多项式拟合原理最小二乘法多项式拟合原理最小二乘法是一种数学方法,用于寻找一个函数,使得该函数与已知数据点的残差平方和最小化。

尤其在数据分析和统计学中广泛应用,其中特别重要的应用是曲线拟合。

本文将介绍最小二乘法在多项式拟合中的原理。

多项式拟合多项式拟合是一种常见的曲线拟合方法,它将数据点逼近为一个固定次数的多项式。

假设有N个数据点(x1,y1),(x2,y2),…,(xN,yN),希望找到一个关于x的M次多项式函数y=a0+a1x+a2x^2+...+aMx^M,最小化拟合曲线与数据点之间的残差平方和,即S(a0,a1,…,aM)=∑i=1N(yi−P(x))2其中P(x)=a0+a1x+a2x^2+...+aMx^M。

最小二乘法最小二乘法是一种优化方法,通过最小化残差平方和,寻找最优的拟合函数参数。

在多项式拟合中,残差平方和的最小值可以通过相应的求导数为零来计算拟合函数参数。

设残差平方和S的导数为零得到的方程组为∑xi0,…,xiMaM=∑yi⋅xi0,…,xiM,其中M+1个未知量为a0,a1,…,aM,共有M+1个方程,可以使用线性代数解决。

拟合错误与选择问题使用较高次数的多项式进行拟合,可能会导致过度拟合,使得拟合函数更接近每个数据点,因此更难以预测它们之间的关系。

另一方面,使用过低次数的多项式无法反映出数据点之间的较细节的关系。

因此,在实践中,我们需要权衡多项式次数和误差,以找到一个最合适的拟合结果。

总结最小二乘法是一种常用的曲线拟合方法,在多项式拟合中广泛应用。

通过最小化残差平方和,可以找到最优的拟合函数参数,权衡多项式次数和误差,可以得出最合适的拟合结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用最小二乘法进行多项式拟合(m a t l a b 实现)
西安交通大学
徐彬华
算法分析:
,1,2,3,..,m),一共m+1
个数据点,取多项式P(x),使
函数P(x)称为拟合函数或最小二乘解,令似的 使得
其中,a0,a1,a2,…,an 为待求未知数,n 为多项式的最高次幂,由此,该问题化为求
的极值问题。

由多元函数求极值的必要条件:
j=0,1,…,n 得到:
总共有7个数据点,令m=6
第一步:画出已知数据的的散点图,确定拟合参数n;
x=::;y=[,,,,,,];
plot(x,y,'*')
xlabel 'x 轴'
ylabel 'y 轴'
title '散点图'
hold on
因此将拟合参数n设为3.
第二步:计算矩阵
A= 注意到该矩阵为(n+1)*(n+1)矩阵,
多项式的幂跟行、列坐标(i,j)的关系为i+j-2,由此可建立循环来求矩阵的各个元素,程序如下:
m=6;n=3;
A=zeros(n+1);
for j=1:n+1
for i=1:n+1
for k=1:m+1
A(j,i)=A(j,i)+x(k)^(j+i-2)
end
end
end;
再来求矩阵
B=
B=[0 0 0 0];
for j=1:n+1
for i=1:m+1
B(j)=B(j)+y(i)*x(i)^(j-1)
end
end
第三步:写出正规方程,求出a0,,a1…,an.
B=B';
a=inv(A)*B;
第四步:画出拟合曲线
x=[::];
z=a(1)+a(2)*x+a(3)*x.^2+a(4)*x.^3;
plot(x,z)
legend('离散点','y=a(1)+a(2)*x+a(3)*x.^2+a(4)*x.^3') title('拟合图')
总程序附下:
x=::;y=[,,,,,,];
plot(x,y,'*')
xlabel 'x轴'
ylabel 'y轴'
title '散点图'
hold on
m=6;n=3;
A=zeros(n+1);
for j=1:n+1
for i=1:n+1
for k=1:m+1
A(j,i)=A(j,i)+x(k)^(j+i-2)
end
end
end;
B=[0 0 0 0];
for j=1:n+1
for i=1:m+1
B(j)=B(j)+y(i)*x(i)^(j-1)
end
end
B=B';
a=inv(A)*B;
x=[::];
z=a(1)+a(2)*x+a(3)*x.^2+a(4)*x.^3;
plot(x,z)
legend('离散点','y=a(1)+a(2)*x+a(3)*x.^2+a(4)*x.^3') title('拟合图')。

相关文档
最新文档