北美精算考试
2021年北美精算师考试内容及考试制度

北美精算师考试内容及考试制度北美精算师考试内容及考试制度北美精算师考试制度分为二个阶段:第一阶段是准精算师(asa)。
目前对准精算师的考试要求为300学分。
除了100系列的11门课程(复利数学、精算数学等)外,还须通过200系列的4门课程(经济保障计划、精算实务等)。
每门课在10至30学分不等。
学员在获得300学分后即成为asa,之后可继续考fsa课程。
asal00系列的11门课程的考试均采用英文试卷,选择题形式,考试时间分别为1个半小时至4个小时不等;200系列采用英语书写答题形式。
考生是否通过某一门课程考试以及所获得的分数,是到该课程全部试卷批完后,按成绩顺序排列后确定的。
第二阶段是精算师(fsa)。
考生在取得准精算师资格证书后方可参加fsa课程考试。
目前把精算师的考试课程分为财务、团体与健康保险、个人人寿与健康保险、养老金、投资五个方向,每个方向又分若干门课,每门课学分在10至30分不等。
要取得fsa资格必须通过以上一个方向的所有课程考试,以及再选择以上方向的其他课程,使学分达到150分,即学分总计要达到450分。
当fsa要素的课程考试全部通过后,考生还要参加最后一门课程:正式精算师认可课程(fac),其内容主要是职业道德和案例,时间为二天半,一般只要自始至终参加,在结束后的晚宴上会获得fsa证书。
北美精算师协会的考点分布在全世界各个国家和地区,考试每年5月和11月举行两次,考试时间由北美精算师协会确定,世界各地统一,考卷由北美精算师协会提供。
报名及考试地点:南开大学、湖南财经学院、复旦大学、中国人民大学、中山大学、中国科技大学、陕西财经学院、平安总公司北美精算学会考试课程准精算师考试:100系列课程:100微积分和线性代数、110概率论和数理统计、120应用统计、130运筹学、135数值分析、140复利数学、150精算数学、151风险理论、160生存模型和生命表编制、161人口数学、165匀修数学200系列课程:200经济保障计划概论、210精算实务概论、220资产管理和公司财务概论、230资产和负债管理原理正精算师的考试课程分为五个方向:一财务包括科目:财务管理、公司财务等二团体和健康保险包括科目:团体和个人健康保险的设计和销售等三个人人寿和年金保险包括科目:个人人寿和年金保险的精算实务调查、人寿保险法和税收等四养老金包括科目:养老金估价原理i、退休计划设计等五投资包括科目:高级资产组合管理等模板,内容仅供参考。
北美精算报考条件及科目

北美精算报考条件及科目引言概述:精算是一个专业的领域,要成为一名合格的精算师,需要具备一定的学术背景和专业知识。
北美地区的精算考试是全球范围内最具权威性的考试之一。
本文将介绍北美精算报考条件及科目的要求和内容。
正文内容:1. 报考条件1.1 学历要求北美精算考试要求申请人至少具备本科学历,通常要求与精算相关的专业背景,如数学、统计学、金融等。
1.2 工作经验要求除了学历要求,北美精算考试还要求申请人具备一定的工作经验,通常要求申请人在精算领域或相关领域工作一定年限,以确保申请人具备实际应用精算知识的能力。
2. 科目要求2.1 基础科目北美精算考试的基础科目主要包括数学、统计学、金融学等,这些科目是精算学习的基础,也是后续学习其他科目的基础。
2.2 核心科目北美精算考试的核心科目包括精算原理、风险管理、保险精算等,这些科目是精算专业知识的核心内容,涵盖了精算师所需掌握的理论和实践技能。
2.3 专业科目北美精算考试还包括一些专业科目,如寿险精算、非寿险精算、退休金精算等,这些科目是针对不同领域的精算实践而设立的,帮助申请人深入了解特定领域的精算知识。
总结:总体而言,北美精算报考条件及科目要求申请人具备一定的学术背景和实践经验。
报考条件包括学历要求和工作经验要求,学历要求至少为本科学历,通常要求与精算相关的专业背景;工作经验要求申请人在精算领域或相关领域工作一定年限。
科目要求包括基础科目、核心科目和专业科目,基础科目为数学、统计学、金融学等,核心科目为精算原理、风险管理、保险精算等,专业科目为针对不同领域的精算实践而设立的科目。
通过北美精算考试,申请人可以获得精算师资格,进一步提升自己在精算领域的专业能力。
北美精算师

北美精算师考试简介:北美精算师资格,被称为金领中的金领,在美国通过此项考试平均需要5-7年,在国内取得此项资格的年薪一般都在百万元之上甚至更多,到2002年,我国仅有10名精算师,未来十年,我国则需要5000名精算师。
考试时间:北美精算师协会精算师(含准精算师)的资格考试每年春季和秋季各进行一次。
春季的考试一般安排在5月份的上旬和中旬,秋季的考试一般安排在11月份的上旬和中旬。
考试方式:北美精算师协会的精算师资格分为两个层次,正式精算师(FSA)资格和准精算师(ASA)资格。
申请者要得到准精算师的资格,需取得300个学分。
准精算师要通过1 00系列和200系列的考试,其中100系列考试共有200学分,一般为选择题,200系列考试共有100学分,一般为笔试题。
在取得了准精算师(ASA)资格后可以参加精算师(FSA)的资格考试,取得精算师的资格共需获得450个学分。
精算师的考试共有五个方向:财务、团体保险和健康保险、个人寿险和年金、养老金及投资,每个方向均有不同的选修课。
考试内容:在2000年,北美精算师协会将改变现有的考试体系,其中准精算师资格将由15门课程合并为6门课程(course),精算师的资格将加入另外两门课程和职业发展课程,现简单介绍如下:(1)准精算师(ASA)阶段课程1:精算科学的数学基础(Mathematical foundations of Actuarial S cience)主要内容及概念:微积分;概率论;风险管理(包括损失频率;损失金额;自留额;免赔额;共同保险和风险保费)。
课程2:利息理论,经济与金融(Interest Theory,Economics and Fin ance)主要内容及概念:利息理论;微观经济学;宏观经济学;金融学基础。
课程3:关于风险的精算模型(Actuarical Models)主要内容及概念:保险和其它金融随机事件;生存模型;人口数据分析;定量分析随机事件的金融影响。
北美精算考试试题

1. The probability that a visit to a primary care physician’s (PCP) office results in neither lab work nor referral to a specialist is 35% . Of those coming to a PCP’s office, 30% are referred to specialists and 40% require lab work.Determine the probability that a visit to a PCP’s office results in both lab work and referral to a specialist.(A) 0.05(B) 0.12(C) 0.18(D) 0.25(E) 0.352. A study of automobile accidents produced the following data:An automobile from one of the model years 1997, 1998, and 1999 was involved in an accident.Determine the probability that the model year of this automobile is 1997 .(A) 0.22(B) 0.30(C) 0.33(D) 0.45(E) 0.503. The lifetime of a printer costing 200 is exponentially distributed with mean 2 years. The manufacturer agrees to pay a full refund to a buyer if the printer fails during the first year following its purchase, and a one-half refund if it fails during the second year. If the manufacturer sells 100 printers, how much should it expect to pay in refunds?(A) 6,321(B) 7,358(C) 7,869(D) 10,256(E) 12,6424. Let T denote the time in minutes for a customer service representative to respond to 10 telephone inquiries. T is uniformly distributed on the interval with endpoints 8 minutes and 12 minutes. Let R denote the average rate, in customers per minute, at which the representative responds to inquiries.Which of the following is the density function of the random variable R on the interval(A)12/5(B) 3 (C) (D) (E)5. Let T1 and T2 represent the lifetimes in hours of two linked components in an electronic device. The joint density function for T1 and T2 is uniform over the region defined by 0 <= t1<= t2<=L where L is a positive constant.Determine the expected value of the sum of the squares of T1 and T2 .(A)L2/3(B)L2/2(C)2 L2/3(D) 3 L2/4(E) L26. Two instruments are used to measure the height, h, of a tower. The error made by the less accurate instrument is normally distributed with mean 0 and standard deviation 0.0056h . The error made by the more accurate instrument is normally distributed with mean 0 and standard deviation 0.0044h . Assuming the two measurements are independent random variables, what is the probability that their average value is within 0.005h of the height of the tower?(A) 0.38(B) 0.47(C) 0.68(D) 0.84(E) 0.907. An insurance company’s monthly claims are modeled by a continuous, positive randomvariable X, whose probability density function is proportional to (1 + x)-4 ,where 0 < x Determine the company’s expected monthly claims.(A)1/6(B)1/3(C)1/2(D) 1(E) 38. A probability distribution of the claim sizes for an auto insurance policy is given in thetable below:What percentage of the claims are within one standard deviation of the mean claim size?(A) 45%(B) 55%(C) 68%(D) 85%(E) 100%9. The total claim amount for a health insurance policy follows a distributionwith density function The premium for the policy is set at 100 over the expected total claim amount.If 100 policies are sold, what is the approximate probability that the insurancecompany will have claims exceeding the premiums collected?(A) 0.001(B) 0.159(C) 0.333(D) 0.407(E) 0.46010. An insurance company sells two types of auto insurance policies: Basic and Deluxe. The time until the next Basic Policy claim is an exponential random variable with mean two days. The time until the next Deluxe Policy claim is an independent exponential random variable with mean three days. What is the probability that the next claim will be a Deluxe Policy claim?(A) 0.172(B) 0.223(C) 0.400(D) 0.487(E) 0.50011. A company offers a basic life insurance policy to its employees, as well as a supplemental life insurance policy. To purchase the supplemental policy, an employee must first purchase the basic policy.Let X denote the proportion of employees who purchase the basic policy, and Y the proportion of employees who purchase the supplemental policy. Let X and Y have the joint density function f(x,y) = 2(x + y) on the region where the density is positive. Given that 10% of the employees buy the basic policy, what is the probability that fewer than 5% buy the supplemental policy?(A) 0.010(B) 0.013(C) 0.108(D) 0.417(E) 0.50012. Let C be the curve defined by x = sin t + t and y = cos t – t,Find an equation of the line tangent to C at (0, 1) .(A) y = 1(B) y = 1 + 2x(C) y = 1 – 2x(D) y = 1 –x(E) y = 1 –0.5x13. For a certain product priced at p per unit, 2000 – 10p units will be sold.Which of the following best represents the graph of revenue, r, as a function of price, p ?(A) (B) (C) (D) (E)14. A virus is spreading through a population in a manner that can be modeled by thefunction where A is the total population, g(t) is the number infected at time t, and B is a constant.What proportion of the population is infected when the virus is spreading the fastest?(A)1/3(B)1/2(C)2/3(D)3/4(E) 115. In a certain town, the rate of deaths at time t due to a particular disease is modeled by What is the total number of deaths from this disease predicted by the model?(A) 243(B) 370(C) 556(D) 1,111(E) 10,00016. The total cost, c, to a company for selling n widgets is c(n) = n2 + 4n + 100 . The price per widget is p(n) = 100 – n .What price per widget will yield the maximum profit for the company?(A) 50(B) 76(C) 96(D) 98(E) 10017. An insurance company has 120,000 to spend on the development and promotion of a new insurance policy for car owners. The company estimates that if x is spent on development and y is spent on promotion, then policies will be sold.Based on this estimate, what is the maximum number of policies that the insurance company can sell?(A) 3,897(B) 9,000(C) 11,691(D) 30,000(E) 90,00018. An insurance policy reimburses dental expense, X, up to a maximum benefit of 250 . The probability density function for X is: where c is a constant.Calculate the median benefit for this policy.(A) 161(B) 165(C) 173(D) 182(E) 25019. In an analysis of healthcare data, ages have been rounded to the nearest multiple of 5 years. The difference between the true age and the rounded age is assumed to be uniformly distributed on the interval from _2.5 years to 2.5 years. The healthcare data are based on a random sample of 48 people. What is the approximate probability that the mean of the rounded ages is within 0.25 years of the mean of the true ages?(A) 0.14(B) 0.38(C) 0.57(D) 0.77(E) 0.8820. Let X and Y denote the values of two stocks at the end of a five-year period. X is uniformly distributed on the interval (0, 12) . Given X = x, Y is uniformly distributed on the interval (0, x) . Determine Cov(X, Y) according to this model.(A) 0(B) 4(C) 6(D) 12(E) 2421. A ball rolls along the polar curve defined by r = sin . The ball starts at = 0 and ends at Calculate the distance the ball travels.(A) (B) (C) (D) (E)22. An actuary determines that the annual numbers of tornadoes in counties P and Q are jointly distributed as follows:Calculate the conditional variance of the annual number of tornadoes in county Q, giventhat there are no tornadoes in county P .(A) 0.51(B) 0.84(C) 0.88(D) 0.99(E) 1.7623. An insurance policy is written to cover a loss X where X has density function The time (in hours) to processa claim of size x, where 0 _ x _ 2, is uniformly distributed on the interval from x to 2x .Calculate the probability that a randomly chosen claim on this policy is processed in three hours or more.(A) 0.17(B) 0.25(C) 0.32(D) 0.58(E) 0.8324. An actuary has discovered that policyholders are three times as likely to file two claims as to file four claims.If the number of claims filed has a Poisson distribution, what is the variance of the number of claims filed?(A) (B) 1(C) (D) 2(E) 425. An advertising executive claims that, through intensive advertising, 175,000 of a city’s 3,500,000 people will recognize the client’s product after one day. He further claims that product recognition will grow as advertising continues according to the relationship an+1 = 0.95an +175,000, where an is the number of people who recognize the client’s product n days after advertising begins. If the advertising executive’s claims are correct, how many of the city’s 3,500,000 people will not recognize the client’s product after 35 days of advertising?(A) 552,227(B) 561,468(C) 570,689(D) 581,292(E) 611,88626. The bond yield curve is defined by the function y(x) for 0 < x _ 30 where y is the yield on a bond which matures in x years. The bond yield curve is a continuous, increasing function of x and, for any two points on the graph of y, the line segment connecting those points lies entirely below the graph of y . Which of the following functions could represent the bond yield curve?(A) y(x) = a a is a positive constant(B) y(x) = a + kx a, k are positive constants(C) , k are positive constants(D) y(x) = , k are positive constants(E) y(x) = a + k log(x + 1) a, k are positive constants 27. A car dealership sells 0, 1, or 2 luxury cars on any day. When selling a car, the dealer also tries to persuade the customer to buy an extended warranty for the car. Let X denote the number of luxury cars sold in a given day, and let Y denote the number of extended warranties sold.P(X = 0, Y = 0) =1/6 P(X = 1, Y = 0) =1/12 P(X = 1, Y = 1) =1/6 P(X = 2, Y = 0) =1/12P(X = 2, Y = 1) =1/3 P(X = 2, Y = 2) =1/6 What is the variance of X ?28. Inflation is defined as the rate of change in price as a function of time. The figure below is a graph of inflation, I, versus time, t . Price at time t = 0 is 100 . What is the next time at which price is 100 ?(A) At some time t, t (0, 2) .(B) 2(C) At some time t, t (2, 4) .(D) 4(E) At some time t, t (4, 6) .29. An investor buys one share of stock in an internet company for 100 . During the first four days he owns the stock, the share price changes as follows (measured relative to theprior day’s price): If the pattern of relative price movements observed on the first four days is repeated indefinitely, how will the price of the share of stock behave in the long run?(A) It converges to 0.00 .(B) It converges to 99.45 .(C) It converges to 101.25 .(D) It oscillates between two finite values without converging.(E) It diverges to .30. Three radio antennas are located at points (1, 2), (3, 0) and (4, 4) in the xy-plane. In order to minimize static, a transmitter should be located at the point which minimizes the sum of the weighted squared distances between the transmitter and each of the antennas. The weights are 5, 10 and 15, respectively, for the three antennas. What is the x-coordinate of the point at which the transmitter should be located in order to minimize static?(A) 2.67(B) 3.17(C) 3.33(D) 3.50(E) 4.0031. Let R be the region bounded by the graph of x2 + y2 = 9 .Calculate(A) (B) (C) (D) (E)32. A study indicates that t years from now the proportion of a population that will beinfected with a disease can be modeled by Determine the time when the actual proportion infected equals the average proportion infected over the time interval from t = 0 to t = 3 .(A) 1.38(B) 1.50(C) 1.58(D) 1.65(E) 1.6833. A blood test indicates the presence of a particular disease 95% of the time when thedisease is actually present. The same test indicates the presence of the disease 0.5% ofthe time when the disease is not present. One percent of the population actually has thedisease.Calculate the probability that a person has the disease given that the test indicates the presence of the disease.(A) 0.324(B) 0.657(C) 0.945(D) 0.950(E) 0.99534. An insurance policy reimburses a loss up to a benefit limit of 10 . The policyholder’sloss, Y, follows a distribution with density function:What is the expected value of the benefit paid under the insurance policy?(A)1.0(B) 1.3(C) 1.8(D) 1.9(E) 2.035. A company insures homes in three cities, J, K, and L . Since sufficient distance separates the cities, it is reasonable to assume that the losses occurring in these cities are independent. The moment generating functions for the loss distributions of the cities are:MJ(t) = (1 – 2t)-3 MK(t) = (1 – 2t)-2.5 ML(t) = (1 – 2t)-4.5 Let X represent the combined losses from the three cities.Calculate E(X3) .(A) 1,320(B) 2,082(C) 5,760(D) 8,000(E) 10,56036. In modeling the number of claims filed by an individual under an automobile policyduring a three-year period, an actuary makes the simplifying assumption that for all integers , where pn represents the probability that the policyholder files n claims during the period.Under this assumption, what is the probability that a policyholder files more than one claim during the period?(A) 0.04(B) 0.16(C) 0.20(D) 0.80(E) 0.9637. Let S be the surface described by f(x,y) = arctany/x Determine an equation of the plane tangent to S at the point(A) (B) (C) (D) (E)38. An insurance policy is written to cover a loss, X, where X has a uniform distributionon [0, 1000] .At what level must a deductible be set in order for the expected payment to be 25% of what it would be with no deductible?(A) 250(B) 375(C) 500(D) 625(E) 75039. An insurance policy is written that reimburses the policyholder for all losses incurred up to a benefit limit of 750 . Let f(x) be the benefit paid on a loss of x .Which of the following most closely resembles the graph of the derivative of f ?(A) (B) (C) (D) (E)40. A company prices its hurricane insurance using the following assumptions:(i) In any calendar year, there can be at most one hurricane.(ii) In any calendar year, the probability of a hurricane is 0.05 .(iii) The number of hurricanes in any calendar year is independentof the number of hurricanes in any other calendar ing the company’s assumptions, calculate the probability that there are fewer than 3 hurricanes in a 20-year period.Course 1 May 2000 Answer Key1. A 21. B2. D 22. D3. D 23. A4. E 24. D5. C 25. D6. D 26. E7. C 27. B8. A 28. C9. B 29. A10. C 30. B11. D 31. D12. E 32. D13. E 33. B14. B 34. D15. C 35. E16. B 36. A17. C 37. B18. C 38. C19. D 39. C20. C 40. E。
北美精算师考试内容及考试制度精算师考试.doc

北美精算师考试制度分为二个阶段:第一阶段是准精算师(ASA)。
目前对准精算师的考试要求为300学分。
除了100系列的11门课程(复利数学、精算数学等)外,还须通过200系列的4门课程(经济保障计划、精算实务等)。
每门课在10至30学分不等。
学员在获得300学分后即成为ASA,之后可继续考FSA课程。
ASAl00系列的11门课程的考试均采用英文试卷,选择题形式,考试时间分别为1个半小时至4个小时不等;200系列采用英语书写答题形式。
考生是否通过某一门课程考试以及所获得的分数,是到该课程全部试卷批完后,按成绩顺序排列后确定的。
第二阶段是精算师(FSA)。
考生在取得准精算师资格证书后方可参加FSA课程考试。
目前把精算师的考试课程分为财务、团体与健康保险、个人人寿与健康保险、养老金、投资五个方向,每个方向又分若干门课,每门课学分在10至30分不等。
要取得FSA资格必须通过以上一个方向的所有课程考试,以及再选择以上方向的其他课程,使学分达到150分,即学分总计要达到450分。
当FSA要素的课程考试全部通过后,考生还要参加最后一门课程:正式精算师认可课程(FAC),其内容主要是职业道德和案例,时间为二天半,一般只要自始至终参加,在结束后的晚宴上会获得FSA证书。
北美精算师协会的考点分布在全世界各个国家和地区,考试每年5月和11月举行两次,考试时间由北美精算师协会确定,世界各地统一,考卷由北美精算师协会提供。
报名及考试地点:南开大学、湖南财经学院、复旦大学、中国人民大学、中山大学、中国科技大学、陕西财经学院、平安总公司北美精算学会考试课程准精算师考试:100系列课程:100微积分和线性代数、110概率论和数理统计、120应用统计、130运筹学、135数值分析、140复利数学、150精算数学、151风险理论、160生存模型和生命表编制、161人口数学、165匀修数学200系列课程:200经济保障计划概论、210精算实务概论、220资产管理和公司财务概论、230资产和负债管理原理正精算师的考试课程分为五个方向:一财务包括科目:财务管理、公司财务等二团体和健康保险包括科目:团体和个人健康保险的设计和销售等三个人人寿和年金保险包括科目:个人人寿和年金保险的精算实务调查、人寿保险法和税收等四养老金包括科目:养老金估价原理I、退休计划设计等五投资包括科目:高级资产组合管理等12北美精算师资格考试制度介绍-精算师考试SOA从2005年起采用新的教育体制。
北美精算师 考试成绩 题目解析

北美精算师考试成绩题目解析
北美精算师(SOA)考试成绩的解析主要涉及以下几个方面:
1. 考试内容:北美精算师考试涵盖了多个领域,包括概率论、统计学、保险经济学、金融数学等。
考试通常由选择题和主观题组成,难度较大。
2. 成绩评定:考试成绩通常以分数形式表示,一般分为合格和不合格两个等级。
在某些考试中,还可能获得更具体的评分,例如得分和排名。
3. 题目解析:北美精算师考试题目通常比较长,涉及多个知识点。
考生需要全面掌握相关知识,并且具备较强的分析能力和解决问题的能力。
4. 考试技巧:考试技巧对于取得好成绩也非常重要。
考生需要合理分配时间,掌握答题技巧,避免因粗心或时间不够而失分。
5. 备考策略:备考北美精算师考试需要制定科学有效的学习计划,注重基础知识的掌握和应用能力的提升。
同时,还需要进行大量的模拟练习和题海战术。
总之,北美精算师考试成绩的解析不仅涉及考试内容的掌握程度,还包括考试技巧和备考策略等多个方面。
考生需要全面提升自己的知识水平和综合能力,才能取得好成绩。
【SOA】关于北美精算师,你必须知道的入门级知识——Exam P

关于北美精算师,你必须知道的入门级知识——Exam P成为一名北美准精算师(ASA)必须要经历五门SOA的准精算师考试,而其中最简单也是大部分人最先开始学习准备的就是Exam P,即probability。
顾名思义,Exam P考察的就是最基本的数理统计与概率问题。
下面我们就来了解一下Exam P的考试形式与内容。
考试目的考生可以掌握用于定量评估风险的基本的概率方法,并着重于用这些方法应用解决精算学中遇到的问题。
参加这门考试的考生应具有一定的微积分基础,并了解基本的概率、保险和风险管理的概念。
考试形式Exam P采用机考的形式,总共30道单项选择题,考试时间为3个小时。
每道选择题共有5个选项,其中只有一个正确选项。
与SAT考试不同的是,Exam P考试答错并不会额外扣分,也就是说考生一定不要空任何一道题。
Exam P中会随机分布几道“pilot question”,这些题目是主办方用来分析从而改进将来的考试而出现的,它们的正确与否并不会影响到考生的实际分数。
但是由于考生并无法分辨出这些题目,所以对每一道题目,考生都要同样认真地对待。
考试内容概率(占总分10%-20%)最基本的事件概率计算问题。
包括集合方程与表示(sat functions)、互斥事件(mutually exclusive events)、事件独立性(independence of events)、组合概率(Combinatorial probability)、条件概率(Conditional probability)以及贝叶斯定理(Bayes theorem)等。
拥有单因素概率分布的随机变量(占总分35%-45%)连续分布或离散分布的单因素随机变量的研究。
包括PDF&CDF(Probability density functions and Cumulative distribution functions)、独立随机事件的和的分布、众数(Mode)、中位数(Median)、百分位数(Percentile)、动差(Moment)、方差(Variance)以及变形等问题。
北美精算师考试要求

北美精算师考试要求想考北美精算师呀,那我给你说说它的要求哈。
一、教育背景相关要求。
1. 基础学历。
一般来说,你得有个大学学历才行。
就像盖房子得有个地基,大学的知识就相当于这个地基。
虽然它没规定非得是什么专业的大学学历,但要是你学的是数学、统计、金融这些跟数字和钱打交道多的专业,那你在备考的时候就会感觉轻松那么一丢丢。
因为这些专业的课程已经给你铺了些路,像概率论、微积分啥的,都是北美精算师考试里会用到的基础知识点。
2. 课程学习。
你要是想参加考试,最好在学校里或者自己自学一些特定的课程。
比如说精算数学、风险理论这些课程就很关键。
这就好比你要去一个神秘的地方探险,这些课程就是你的地图和指南针。
没有它们,你在考试的迷宫里就容易迷路。
而且有些课程是层层递进的,前面的基础课程没学扎实,后面那些更复杂的内容你就会看得云里雾里的。
二、考试体系方面的要求。
1. 多门考试要过。
北美精算师考试有好几个级别呢,就像游戏里的关卡一样。
你得一级一级地打通关。
首先是准精算师阶段(ASA),这里面又包含好多门考试,像概率(P)、金融数学(FM)等,这些就像是小怪兽,你得一个一个把它们打败。
等你通过了准精算师阶段的所有考试,你还得继续向精算师(FSA)阶段进发。
这个阶段的考试就更难了,有不同的方向可以选择,每个方向又有自己的一套考试组合。
这就好比游戏到了后期,大BOSS出现了,你得使出浑身解数。
2. 考试形式。
考试形式大多是选择题,不过可别以为选择题就简单哦。
有些题目就像脑筋急转弯一样,会给你绕好几个弯。
而且还有一些需要你在电脑上进行计算的部分,这就要求你得熟练掌握各种计算工具和软件。
就像你不能只会用筷子吃饭,还得会用刀叉,甚至有时候得用手抓(开个玩笑啦,就是说要灵活应对各种计算情况)。
另外,考试时间也是有限制的,你得像个小机器人一样高效准确地答题,但又不能真的像机器人那么机械,得有点自己的思考和判断。
三、职业道德要求。
1. 遵守规则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Actsc Forum 18
Questions ?
Actsc Forum
19
Add:
an introduction to financial derivatives, (forwards, options, futures, swaps) and their use in risk management. an introduction to the concept of no-arbitrage as a fundamental concept in financial mathematics.
Implications:
expand to a 2.5-hour multiple-choice exam Actsc 231, Actsc 371
Actsc Forum 9
Changes to Exam M
Add:
learning outcomes on option pricing: put-call parity, the binomial model, and Black-Scholes formula. A study note introducing actuarial applications of option pricing. learning outcomes on interpretation of option Greeks and deltahedging learning outcomes on the features of exotic options. an introduction to Brownian motion and Itô’s lemma. loss models, including risk theory, to Exam C. 3-hr life contingencies segment (Exam MLC) 2-hr financial economics segment (Exam MFE)
Advanced Finance/ERM
Advanced Portfolio Management Advanced Investment Topics
FSA Modules
Operational Risk/Financial Reporting
Social Insurance
Health Systems Overview Pricing, Reserving & Forecasting
Actuarial Science Forum
Robert Brown Ken Seng Tan Fall 2006
Outline of the Presentation
SoA Education Redesign The Job Market Department News
Actsc Forum 2
Christiane Lemieux (July 2006) David Landriault (July 2006) Joseph Kim (July 2007)
advertising for two more faculties advertising for an administrative staff
Actsc 445, Actsc 446 Actsc 232, Actsc 331, Stat 333
Remove:
Implications:
Actsc Forum
10
Changes to Exam C
Add:
lognormal models for asset prices and its relationship to the Black-Scholes formula. Monte-Carlo valuation of derivative securities with the current material on simulation characteristics and calculation of risk measures such as value at risk and conditional tail expectation. loss models and risk theory material moved from Exam M.
Actsc Forum 15
Job Skills
Computing Communication Statistical Modeling Risk Analysis
Actsc Forum 16
Geographic Demand
- Canada: Need 3 exams for job
- U.S.: Now appreciates Waterloo
Students can only apply VEE credits after passing two SoA Preliminary Exams
/ccm/content/exams-educationjobs/education-redesign/process-for-validation-by-educationalexperience/
VEE-Economics - One of Econ 101, 201 or 301 PLUS one of Econ 102, 202 or 302 VEE-Corporate Finance – Actsc 372 VEE-Applied Statistics – both Stat 331 and Stat 443
Actsc Forum
3
Stage 1: VEE
VEE courses:
Economics, Corporate Finance, Applied Statistics
Obtain credit by getting a grade of >70% in the approved UW courses
Actsc Forum 5
Stage 3: Associateship Component
Fundamentals of Actuarial Practices (FAP)
8 Modules: FAP 1 to 8 (e-learning modules) 2 Exams
FAP exam 1 (cover Modules 1-5) “Final Assessment” (cover Modules 6-8)
Actsc Forum 4
Stage 2: Four Preliminary Exams
Exam P – Probability (Stat 230)
Computer-based testing (CBT) 4 times/year 2007: Feb. 20-23, May 14-17, Aug. 21-24, Nov. 26-29
Track FSA Exams
Finance & ERM Investment Individual Insurance Design/ Pricing CSP – Company Sponsor Perspective Regulation Retirement Design/ Pricing CSP Group & Health Design/ Pricing CSP Financial Economic Theory
Financial Economics
Capstone Module
Strategic Business Management Module (SBM)
Actsc Forum
7
Changes to FM, M, C starting Spring 2007
Actsc Forum
8
Changes to Exam FM
Actsc Forum
14
Newer Opportunities
Finance Hedge Funds Derivatives Health Insurance Consulting Enterprise Risk Management (ERM) Chief Risk Officer (Insurer, Bank, Others)
/exams/prob_exam.cfm
Exam FM – Financial Mathematics Exam M – Actuarial Models Exam C – Construction and Evaluation of Actuarial Models
Associateship Professionalism Course (APC) Stages 1 + 2 + 3 = ASA designation
ASA = Associateship of the SoA
Actsc Forum 6
Stage 4: Fellowship Components
Actsc Forum
12
THE JOB MARKET
Co-op and Permanent
Traditional Employment
Life Insurance Head Office (stable) P&C Insurance Head Office (growing) Pension Consulting (stable)
SoA: Professional Qualification Requirements
Stage 1:
Validated by Educational Experience (VEE)
Stage 2: Four Preliminary Exams Stage 3: Associateship Level Stage 4: Fellowship Level