金属丝杨氏模量的测定

合集下载

测金属丝的杨氏模量

测金属丝的杨氏模量

测金属丝的杨氏模量
杨氏模量是材料力学中重要的一个参量,它描述了材料在受到外力作用下产生形变的程度,是衡量材料刚度和弹性的指标。

许多物理学实验都涉及到测量杨氏模量,这篇文章将介绍如何测定金属丝的杨氏模量。

首先,我们需要准备一段长度为L,截面积为A的金属丝,以及一组实验仪器:定压电源、可变电阻、恒定电流源、滑动电阻、计长度器和显微镜。

接下来,我们需要进行实验测定杨氏模量。

具体步骤如下:
1. 首先,将金属丝固定在两个支架上,使其处于水平状态。

2. 在金属丝的中央处加上一个重物,使其产生一个小的弯曲,同时记录下金属丝和重物的位置(这里用到计长度器和显微镜)。

3. 将恒定电流源与金属丝相连,使电流通过金属丝。

4. 使用滑动电阻测量电流,同时使用可变电阻器调节电流,使其维持一个恒定的数值。

5. 使用定压电源对金属丝施加一个保持不变的电压。

6. 记录下金属丝的弯曲变形,重复实验三次并取平均数。

根据上述实验数据,可以使用下面的公式计算出金属丝的杨氏模量:
E = (4FL^3) / (πd^4ΔL)
其中,E是金属丝的杨氏模量,F是重物的分力,L是金属丝的长度,d是金属丝的直径,ΔL是金属丝受到的弯曲变形。

需要注意的是,实验中应尽可能减小误差,比如使用精度更高的仪器、避免金属丝受到外力等。

同时,实验数据的准确性也至关重要,需要尽可能多地进行实验测量,减小随机误差的影响,以保证实验结果的准确性和可靠性。

总之,通过上述实验方法,我们可以测定金属丝的杨氏模量,并且可以得到一个准确可靠的数值,为材料力学和其他相关领域的研究提供重要的实验数据和参考依据。

金属丝杨氏模量的测定实验报告

金属丝杨氏模量的测定实验报告

一、实验目的1. 了解杨氏模量的概念和意义;2. 掌握用拉伸法测量金属丝杨氏模量的原理和方法;3. 学会使用实验仪器进行测量,并学会数据处理和误差分析;4. 培养实验操作能力和科学思维。

二、实验原理杨氏模量(E)是描述材料弹性性能的物理量,定义为材料在弹性形变时,单位应力所引起的单位应变。

其计算公式为:E = σ / ε其中,σ为应力,ε为应变。

应力是指单位面积上的力,应变是指单位长度的形变量。

本实验采用拉伸法测量金属丝的杨氏模量。

在实验过程中,对金属丝施加一定的拉力,使其产生弹性形变。

通过测量金属丝的伸长量和所受拉力,根据上述公式计算出杨氏模量。

三、实验仪器与材料1. 金属丝:直径约为1mm,长度约为100mm;2. 拉伸仪:用于施加拉力;3. 量角器:用于测量金属丝的伸长角度;4. 标尺:用于测量金属丝的伸长量;5. 计算器:用于计算数据。

四、实验步骤1. 将金属丝固定在拉伸仪上,确保金属丝与拉伸仪的轴线一致;2. 将金属丝的另一端固定在支架上,确保支架与拉伸仪的轴线一致;3. 调整量角器,使其与金属丝轴线垂直;4. 拉伸金属丝,使其产生弹性形变;5. 记录金属丝的伸长角度和伸长量;6. 重复上述步骤,进行多次实验,以确保数据的准确性;7. 根据实验数据,计算金属丝的杨氏模量。

五、数据处理与结果分析1. 计算金属丝的应力:σ = F / S其中,F为拉力,S为金属丝的横截面积。

2. 计算金属丝的应变:ε = ΔL / L其中,ΔL为金属丝的伸长量,L为金属丝的原始长度。

3. 根据实验数据,计算金属丝的杨氏模量:E = σ / ε4. 分析实验结果,与理论值进行比较,讨论误差来源。

六、实验结论通过本次实验,我们成功测量了金属丝的杨氏模量。

实验结果表明,金属丝的杨氏模量与理论值基本吻合。

在实验过程中,我们学会了使用拉伸法测量金属丝的杨氏模量,掌握了数据处理和误差分析的方法。

同时,本次实验也提高了我们的实验操作能力和科学思维。

金属丝杨氏弹性模量的测定

金属丝杨氏弹性模量的测定

实验八 金属丝杨氏弹性模量的测定杨氏模量是表征固体的力学性质的重要物理量,它是工程技术中机械构件选材时的重要参数。

本实验不仅介绍了如何测定此参数,更重要的是通过实验可以领会仪器的配置原则,了解为什么对不同的长度测量应选用不同的测量仪器,以及在测量中由于测量对象及方法的改变如何估算其系统误差。

在实验方法上,通过本实验可以看到,以对称测量法消除系统误差的思路在其它类似的测量中极具普遍意义。

在实验装置上的光杠杆镜放大法,由于它的性能稳定、精度高,而且是线性放大,所以在设计各类测试仪器中得到广泛的应用。

一 实 验 目 的(1)掌握“光杠杆镜”测量微小长度变化的原理,图2。

(2)学会用“对称测量”消除系统误差。

(3)学习如何依实际情况对各个测量值进行误差估算。

(4)练习用逐差法、作图法处理数据。

三 实 验 原 理物体在外力作用下或多或少都要发生形变,当形变不超过某一限度时,撤走外力之后形变能随之消失,这种形变叫弹性形变,发生弹性形变时物体内部将产生恢复原状的内应力。

设有一截面为S ,长度为L 0的均匀棒状(或线状)材料,受拉力F 拉伸时,伸长了L Δ,其单位面积截面所受到的拉力SF称为胁强,而单位长度的伸长量LLΔ称为胁变。

根据胡克定律,在弹性形变范围内,棒状(或线状)固体胁变与它所受的胁强成正比:0ΔL LY S F =其比例系数Y 取决于固体材料的性质,反应了材料形变和内应力之间的关系,称为杨氏弹性模量。

LS FL Y Δ0= (1) 本实验是测定某一种型号钢丝的杨氏弹性模量,其中F 可以由所挂的砝码的重量求出,截面积S 可以通过螺旋测微计测量金属丝的直径计算得出,0L 可用米尺等常规的测量器具测量,但L Δ由于其值非常微小,用常规的测量方法很难精确测量。

本实验将用放大法——“光杠杆镜”来测定这一微小的长度改变量L Δ,图1是光杠杆镜的实物示意图。

图2是光杠杆镜测微小长度变化量的原理图。

左侧曲尺状物为光杠杆镜,M 是反射镜,b 即所谓光杠杆镜短臂的杆长,O 端为b 边的固定端,b 边的另一端则随被测钢丝的伸长、缩短而下降、上升,从而改变了M 镜法线的方向,使得钢丝原长为L 0时,从一个调节好的位于图右侧的望远镜看M 镜中标尺像的读数为1n ;而钢丝受力伸长后,光杠杆镜的位置变为虚线所示,此时从望远镜上看到的标尺像的读数变为2n 。

金属丝杨氏模量的测定实验报告

金属丝杨氏模量的测定实验报告

金属丝杨氏模量的测定实验报告金属丝杨氏模量的测定实验报告引言:杨氏模量是描述材料刚性和弹性的重要参数,对于材料的力学性能评估和工程设计具有重要意义。

本实验旨在通过测定金属丝的杨氏模量,探索金属材料的力学性能,并了解测量过程中的误差来源及其对结果的影响。

实验原理:杨氏模量是描述材料在弹性变形过程中应力与应变关系的物理量。

在弹性区域内,应力与应变成正比,比例系数即为杨氏模量。

实验中,我们采用悬挂法测定金属丝的杨氏模量。

将金属丝固定在两个支撑点上,并在中间加挂一负重。

通过测量金属丝的长度变化和负重的重量,可以计算得到杨氏模量。

实验步骤:1. 准备工作:选择一根细丝材料,如铜丝或钢丝,并测量其直径和长度。

准备两个支撑点,保证丝材能够悬挂在中间。

2. 悬挂装置搭建:将金属丝固定在两个支撑点上,并调整支撑点的高度,使金属丝水平悬挂。

3. 测量初始长度:使用游标卡尺等测量工具,准确测量金属丝的初始长度。

注意避免外力对丝材的影响。

4. 加挂负重:在金属丝的中间位置加挂一负重,记录下负重的重量。

5. 测量变形长度:使用测微计等精确测量工具,测量金属丝在负重作用下的长度变化。

注意避免外力对丝材的影响。

6. 数据处理:根据测量结果计算金属丝的应变和应力,并绘制应力-应变曲线。

通过线性拟合得到斜率,即为金属丝的杨氏模量。

实验结果与讨论:根据实验数据和测量结果,我们得到了金属丝的杨氏模量。

然而,实验中可能存在一些误差来源,如测量长度的精确度、负重的不均匀分布等。

这些误差会对最终的结果产生影响。

为了减小误差,我们可以采取以下措施:1. 使用更加精确的测量工具,如激光测距仪等,提高测量长度的准确性。

2. 在金属丝上均匀分布负重,避免负重集中在某一点导致丝材变形不均匀。

3. 进行多次实验,取平均值,减小随机误差的影响。

此外,我们还可以探索不同材料的杨氏模量差异,比较不同金属材料的力学性能。

不同材料的杨氏模量差异可能源于其晶格结构、原子间键的强度等因素。

金属丝杨氏模量的测定

金属丝杨氏模量的测定

金属丝杨氏模量的测定实验目的1. 学会用拉伸法测量金属丝的杨氏模量。

2. 掌握用光杠杆测量微小伸长量的原理和方法。

3. 学会用逐差法处理数据。

实验原理实验表明,在弹性范围内,对于长度为L ,截面积为S 的金属丝,如果沿长度方向施外力F 使金属丝伸长(或缩短)L ∆,则有LL YS F ∆= (1)Y 为比例系数,对一定的材料是一个常数,称为该材料的杨氏弹性模量。

设金属丝直径为d ,则其截面积241d S π=,代入(1)得Ld FLY ∆=24π (2)(2)式中L d F 、、可用常用的方法和仪器测得,而L ∆很小,这里用光杠杆测量。

光杠杆包含T 形架和镜面。

T 形架由3个尖足a 、b 和c 支撑,形成一个等腰三角形,a 足到b 、c 两足连线的垂直距离b 称为光杠杆长度,它是可以调节的。

金属丝上端由A 点固定,下端由一圆柱体螺旋夹夹于B 点。

光杠杆a 足尖置于圆柱体上。

如图望远镜叉丝对准标尺的初始值为0x ,加砝码后,足尖将随圆柱体的升降而升降。

平面镜绕轴旋转一个小角度θ,标尺读数变为i x ,由图可知,b L <<∆,θ很小,则有bL ∆=≈θθtan Dl Dx x i =-=≈02tan 2θθ 由上两式得l Db L 2=∆(3)因为b D >>,由(3)知L l ∆>>,我们利用光杠杆把微小长度变化L ∆转化为数值有较大变化的标尺读数l ,这也就是光杠杆系统的放大原理。

bD 2称为放大倍数。

将(3)代入(2)得杨氏模量为bld FLDY 28π=(4)实验仪器杨氏模量仪、望远镜标尺系统、光杠杆、水准仪、螺旋测微器、游标卡尺、钢卷尺、砝码光杠杆光杠杆测量原理操作要点1. 利用水准仪调节杨氏模量仪的底脚螺钉使支架保持铅直。

2. 调节望远镜标尺装置,使望远镜和光杠杆等高,且使望远镜镜身和标尺在平面镜中的像在一条直线上。

3. 调节望远镜目镜使十字叉丝清晰,调节物镜,并适当移动标尺系统,使标尺像清晰。

金属丝杨氏模量的测定

金属丝杨氏模量的测定

物理实验报告【实验名称】杨氏模量的测定【实验目的】1. 掌握用光杠杆测量微小长度变化的原理和方法,了解其应用。

2. 掌握各种长度测量工具的选择和使用。

3. 学习用逐差法和作图法处理实验数据。

【实验仪器】MYC-1型金属丝杨氏模量测定仪(一套)、钢卷尺、米尺、螺旋测微计、重垂、砝码等。

【实验原理】 一、杨氏弹性模量设金属丝的原长L ,横截面积为S ,沿长度方向施力F 后,其长度改变ΔL ,则金属丝单位面积上受到的垂直作用力F/S 称为正应力,金属丝的相对伸长量ΔL/L 称为线应变。

实验结果指出,在弹性范围内,由胡克定律可知物体的正应力与线应变成正比,即LLYS F ∆= (1) 则E LL SF Y ∆=(2) 比例系数E 即为杨氏弹性模量。

在它表征材料本身的性质,Y 越大的材料,要使它发生一定的相对形变所需要的单位横截面积上的作用力也越大。

Y 的国际单位制单位为帕斯卡,记为Pa (1Pa =12m N ;1GPa =910Pa )。

本实验测量的是钢丝的杨氏弹性模量,如果钢丝直径为d ,则可得钢丝横截面积S42d S π=则(2)式可变为EL d FLY ∆=24π (3)可见,只要测出式(3)中右边各量,就可计算出杨氏弹性模量。

式中L (金属丝原长)可由米尺测量,d (钢丝直径),可用螺旋测微仪测量,F (外力)可由实验中钢丝下面悬挂的砝码的重力F=mg 求出,而ΔL 是一个微小长度变化(在此实验中 ,当L ≈1m时,F 每变化1kg 相应的ΔL 约为0.3mm)。

因此,本实验利用光杠杆的光学放大作用实现对钢丝微小伸长量ΔL 的间接测量。

二、光杠杆测微小长度变化尺读望远镜和光杠杆组成如图2所示的测量系统。

光杠杆系统是由光杠杆镜架与尺读望远镜组成的。

光杠杆结构见图2(b )所示,它实际上是附有三个尖足的平面镜。

三个尖足的边线为一等腰三角形。

前两足刀口与平面镜在同一平面内(平面镜俯仰方位可调),后足在前两足刀口的中垂线上。

金属丝杨氏模量的测定

金属丝杨氏模量的测定

α1S1 (T1
− T20 ) n2 − T10 ) n1
若两种金属样品的形状和尺寸都大致基本相同,则可认为 S1 = S2 ;若两种样品的表面状况也基本相
同(如涂层、色泽等),又处于同一环境中进行观察,那么周围介质(空气)的性质当然也相同,则可认
为α1 = α 2 , n1 = n2 。于是,当周围介质温度不变(即室温 T10 = T20 = T0 恒定),而两种样品又处于相同 温度 T1 = T2 = T 时,上式可简化为如下形式:
4
5
6
7
8
9 10
温度 T(℃)
时间 t(分) 11 12 13 14 15 16 17 18 19 20 21
温度 T(℃)
时间 t(分) 22 23 24 25 26 27 28 29 30
温度 T(℃)
表二:铝盘散热数据记录
m2 =_______g
时间 t(分) 0
1
2
3
4
5
6
7
8
9 10
温度 T(℃)
实验要点
1. 把加热盘放到隔热板上,设定加热盘加热所需的温度值(70℃),然后再把温度指示选择换档开关旋至 “加热盘温度”档,使加热盘加热到 70℃左右。
2. 记录铜盘和铝盘的质量分别为 m1 和 m2 。 3. 测量标准铜盘在温度 T =50℃时的自然冷却速率:
加热标准铜盘,当标准铜盘温度上升到 60℃左右时,让标准铜盘通过外表面直接向环境散热(自然冷 却)。记录铜盘的散热情况(记录铜盘散热温度区间 55℃-45℃,记录起始时刻为 t=0 时刻,每隔一分钟记 录一个数据) 4. 测量待测铝盘在温度 50℃附近的自然冷却速率:
(1)

金属杨氏模量的测定

金属杨氏模量的测定

金属杨氏模量的测定杨氏模量是表征固体材料抵抗形变能力的重要物理量,是工程材料重要参数,它反映了材料弹性形变与内应力的关系,它只与材料性质有关,是工程技术中机械构件选材时的重要依据。

本实验采用液压加力拉伸法及利用光杠杆的原理测量金属丝的微小伸长量,从而测定金属材料的杨氏模量。

一、 实验目的(1) 学会测量杨氏弹性模量的一种方法(2) 掌握光杠杆放大法测量微小长度的原理 (3) 学会用逐差法处理数据二、仪器和量具数显液压杨氏模量仪,光杠杆和标尺望远镜,钢卷尺,螺旋测微计。

三、原理1.拉伸法测量钢丝的杨氏模量任何物体在外力作用下都要产生形变,可分为弹性形变和塑性形变。

弹性形变在外力作用撤除后能恢复原状,而塑性形变则不能恢复原状。

发生弹性形变时,物体内部产生的企图恢复物体原状的力叫做内应力。

对固体来讲,弹性形变又可分为4种:伸长或压缩形变、切变、扭变、弯曲形变。

本实验只研究金属丝沿长度方向受外力作用后的伸长形变。

取长为L ,截面积为S 的均匀金属丝,在两端加外力F 相拉后,则作用在金属丝单位面积上的力S F 为正应力,相对伸长LL ∆定义为线应变。

根据胡克定律,物体在弹性限度范围内,应变与应力成正比,其表达式为LLYS F ∆= (1) 式中Y 称为杨氏模量,它与金属丝的材料有关,而与外力F 的大小无关。

由于L ∆是一个微小长度变化,故实验常采用光杠杆法进行测量。

2.光杠杆法测量微小长度变化放大法是一种应用十分广泛的测量技术,有机械放大、光放大、电子放大等。

如螺旋测微计是通过机械放大而提高测量精度的,示波器是通过将电子信号放大后进行观测的。

本实验采用的光杠杆法属于光放大。

光杠杆放大原理被广泛地用于许多高灵敏度仪表中,如光电反射式检流计、冲击电流计等。

图1(b)标尺光杠杆如图1(a )、1(b )所示,在等腰三角形板1的三个角上,各有一个尖头螺钉,底边连线上的两个螺钉B 和C 称为前足尖,顶点上的螺钉A 称为后足尖,A 到前两足尖的连线BC 的垂直距离为b ,如图3(a )所示;2为光杠杆倾角调节架;3为光杠杆反射镜。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理实验报告【实验名称】杨氏模量的测定【实验目的】1. 掌握用光杠杆测量微小长度变化的原理和方法,了解其应用。

2. 掌握各种长度测量工具的选择和使用。

3. 学习用逐差法和作图法处理实验数据。

【实验仪器】MYC-1型金属丝杨氏模量测定仪(一套)、钢卷尺、米尺、螺旋测微计、重垂、砝码等。

【实验原理】 一、杨氏弹性模量设金属丝的原长L ,横截面积为S ,沿长度方向施力F 后,其长度改变ΔL ,则金属丝单位面积上受到的垂直作用力F/S 称为正应力,金属丝的相对伸长量ΔL/L 称为线应变。

实验结果指出,在弹性范围内,由胡克定律可知物体的正应力与线应变成正比,即LLYS F ∆= (1) 则E LL SF Y ∆=(2) 比例系数E 即为杨氏弹性模量。

在它表征材料本身的性质,Y 越大的材料,要使它发生一定的相对形变所需要的单位横截面积上的作用力也越大。

Y 的国际单位制单位为帕斯卡,记为Pa (1Pa =12m N ;1GPa =910Pa )。

本实验测量的是钢丝的杨氏弹性模量,如果钢丝直径为d ,则可得钢丝横截面积S42d S π=则(2)式可变为E L d FL Y ∆=24π (3) 可见,只要测出式(3)中右边各量,就可计算出杨氏弹性模量。

式中L (金属丝原长)可由米尺测量,d (钢丝直径),可用螺旋测微仪测量,F (外力)可由实验中钢丝下面悬挂的砝码的重力F=mg 求出,而ΔL 是一个微小长度变化(在此实验中 ,当L ≈1m时,F 每变化1kg 相应的ΔL 约为mm)。

因此,本实验利用光杠杆的光学放大作用实现对钢丝微小伸长量ΔL 的间接测量。

二、光杠杆测微小长度变化尺读望远镜和光杠杆组成如图2所示的测量系统。

光杠杆系统是由光杠杆镜架与尺读望远镜组成的。

光杠杆结构见图2(b )所示,它实际上是附有三个尖足的平面镜。

三个尖足的边线为一等腰三角形。

前两足刀口与平面镜在同一平面内(平面镜俯仰方位可调),后足在前两足刀口的中垂线上。

尺读望远镜由一把竖立的毫米刻度尺和在尺旁的一个望远镜组成。

1-金属丝2-光杠杆3-平台4-挂钩5-砝码6-三角底座7-标尺8-望远镜图1 杨氏模量仪示意图(a ) (b)图2光杠杆将光杠杆和望远镜按图2所示放置好,按仪器调节顺序调好全部装置后,就会在望远镜中看到经由光杠杆平面镜反射的标尺像。

设开始时,光杠杆的平面镜竖直,即镜面法线在水平位置,在望远镜中恰能看到望远镜处标尺刻度1s 的象。

当挂上重物使细钢丝受力伸长后,光杠杆的后脚尖1f 随之绕后脚尖32f f 下降ΔL ,光杠杆平面镜转过一较小角度θ,法线也转过同一角度θ。

根据反射定律,从1s 处发出的光经过平面镜反射到2s (2s 为标尺某一刻度)。

由光路可逆性,从2s 发出的光经平面镜反射后将进入望远镜中被观察到。

望远记2s -1s = Δn.由图2可知b L∆=θtan D n∆=θtan式中,b 为光杠杆常数(光杠杆后脚尖至前脚尖连线的垂直距离);D 为光杠杆镜面至尺读望远镜标尺的距离由于偏转角度θ很小,即ΔL <<b ,Δn <<D ,所以近似地有bL∆θ≈,Dn2∆θ≈则n 2DbL ∆∆•=(4) 由上式可知,微小变化量ΔL 可通过较易准确测量的b 、D 、Δn ,间接求得。

实验中取D >>b ,光杠杆的作用是将微小长度变化ΔL 放大为标尺上的相应位置变化Δn ,ΔL 被放大了 b D2倍。

(注:实际实验中有两面镜子,故ΔL 被放大了4D/b 倍) 将(3)、(4)两式代入(2)有E nFb d LD 8Y 2∆π•=×2 (5)通过上式便可算出杨氏模量E 。

【实验内容及步骤】 一、杨氏模量测定仪的调整1. 调节杨氏模量测定仪三角底座上的调整螺钉,使支架、细钢丝铅直,使平台水平。

2. 将光杠杆放在平台上,两前脚放在平台前面的横槽中,后脚放在钢丝下端的夹头上适当位置,不能与钢丝接触,不要靠着圆孔边,也不要放在夹缝中。

二、光杠杆及望远镜镜尺组的调整1. 将望远镜放在离光杠杆镜面约为处,并使二者在同一高度。

调整光杠杆镜面与平台面垂直,望远镜成水平,并与标尺竖直,望远镜应水平对准平面镜中部。

2. 调整望远镜(1) 移动标尺架和微调平面镜的仰角,及改变望远镜的倾角。

使得通过望远镜筒上的准心往平面镜中观察,能看到标尺的像; (2) 调整目镜至能看清镜筒中叉丝的像;(3) 慢慢调整望远镜右侧物镜调焦旋钮直到能在望远镜中看见清晰的标尺像,并使望远镜中的标尺刻度线的像与叉丝水平线的像重合;(4) 消除视差。

眼睛在目镜处微微上下移动,如果叉丝的像与标尺刻度线的像出现相对位移,应重新微调目镜和物镜,直至消除为止。

3. 试加八个砝码,从望远镜中观察是否看到刻度(估计一下满负荷时标尺读数是否够用),若无,应将刻度尺上移至能看到刻度,调好后取下砝码。

三、测量采用等增量测量法1. 加减砝码。

先逐个加砝码,共八个。

每加一个砝码(1kg),记录一次标尺的位置i n ;然后依次减砝码,每减一个砝码,记下相应的标尺位置'i n (所记i n 和'in 分别应为偶数个)。

2. 测钢丝原长L 。

用钢卷尺测出钢丝原长(两夹头之间部分)L 。

3. 测钢丝直径d 。

在钢丝上选不同部位及方向,用螺旋测微计测出其直径d ,重复测量五次,取平均值。

4. 测量并计算D 。

用钢卷尺量出光杠杆镜镜面到望远镜附标尺的距离,作单次测量。

5. 测量光杠杆常数b 。

取下光杠杆在展开的白纸上同时按下三个尖脚的位置,用直尺作出光杠杆后脚尖到两前脚尖连线的垂线,再用千分尺测出b 。

【数据记录及处理】1. 金属丝的原长L = 光杠杆常数 b = D =d =(d 上+d 中上+d 中+d 中下+d 下)/5(kg)in加砝码减砝码ini4iinnc-=+ 11n22n33n44n55n2ccc'iii+=17.54cci41i===∑66n77n88n其中in是每次加1kg砝码后标尺的读数,('iiinn2n+=(两者的平均)。

4. 用逐差法处理数据.本实验的直接测量量是等间距变化的多次测量,故采用逐差法处理数据。

计算出每增加一个1kg的的变化量,计算公式为:c bdLDF8E2π=×2。

用逐差法处理数据如下:448cnn=-,'4'4'8cnn=-337cnn=-,'3'3'7cnn=-226cnn=-,'2'2'6cnn=-115cnn=-,'1'1'5cnn=-将以上四个式子叠加并求平均值22.5-2ccc'222=+=01.5-2ccc'333=+=92.4-2ccc'444=+=则可得到17.5-4ccccc4321=+++=计算中可取绝对值为17.5c = 注:c 为增重4kg 时钢丝的伸长量。

计算结果如表2所示。

金属丝直径:d =(d 上+d 中上+d 中+d 中下+d 下)/5=代入数据可得到钢丝杨氏模量==cb d LDF8E 2π×2=×10^11N/m ²【作图法处理实验数据】 略【分析与讨论】 略【附原始数据】。

相关文档
最新文档