武汉大学2010-2011第一学期《高等数学B1》期末考试试题解
2018-2019《大学数学微积分B1》试卷及答案

保密★启用前2018-2019学年第一学期期末考试《高等数学BⅠ》考生注意事项1.答题前,考生须在试题册指定位置上填写考生教学号和考生姓名;在答题卡指定位置上填写考试科目、考生姓名和考生教学号,并涂写考生教学号信息点。
2.选择题的答案必须涂写在答题卡相应题号的选项上,非选择题的答案必须书写在答题卡指定位置的边框区域内。
超出答题区域书写的答案无效;在草稿纸、试题册上答题无效。
3.填(书)写部分必须使用黑色字迹签字笔书写,字迹工整、笔迹清楚;涂写部分必须使用2B铅笔填涂。
4.考试结束,将答题卡和试题册按规定交回。
(以下信息考生必须认真填写)考生教学号考生姓名《高等数学B Ⅰ》试题答案 第 1 页 (共 5 页)一、选择题:1~6小题,每小题3分,共18分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将答案写在答题卡上,写在试题册上无效. 1. 1lim(1)nn n →∞+=( B ).(A )0 (B )1 (C )e (D )1e2. 设()f x 为可导函数,且满足条件0(1)(1)lim12x f f x x→−−=−,则曲线()y f x =在点(1,(1))f 处的切线的斜率等于( C ).(A )2 (B )1− (C )2− (D )123. 设0()()()d xF x x t f t t =−⎰ ()f x 为连续函数,且(0)=0()0f f x '>,,则()y F x =在0+∞(,)内( A ).(A )单调增加且为下凸 (B )单调增加且为上凸 (C )单调减少且为下凸 (D )单调减少且为上凸 4. 曲线221e 1e−−+=−x x y ( D ).(A )没有渐近线 (B )仅有水平渐近线(C )仅有铅直渐近线 (D )既有水平渐近线又有铅直渐近线 5. 若ln ()sin f t t =,则()d ()tf t t f t '=⎰( A ). (A )sin cos ++t t t C (B )sin cos −+t t t C (C )sin cos ++t t t t C (D )sin +t t C6. 使不等式1sin d ln xtt x t>⎰成立的x 的范围是( C ). (A )π(1,)2(B )π(,π)2 (C )(0,1) (D )(π,+)∞《高等数学B Ⅰ》试题答案 第 2 页 (共 5 页)二、填空题:7~12小题,每小题3分,共18分.7. 设当0x →时,2(1cos )ln(1)x x −+是比sin n x 高阶的无穷小,而sin n x 是比2e 1x −高阶的无穷小,则正整数n 等于 3 .8.设函数()y y x =由方程2e cos()e 1x y xy +−=−所确定,求d d x yx== 2− .9. 函数()ln 12=−y x 在0=x 处的(2)n n >阶导数()(0)n f = 2(1)!n n −⋅− . 10. 221d x x x −−=⎰116. 11. 121e d x x x−∞=⎰ 1 . 12. Oxy 平面上的椭圆22149x y +=绕x 轴旋转一周而形成的旋转曲面的方程是 222149x y z ++= . 三、解答题:13~19小题,共64分.解答应写出文字说明、证明过程或演算步骤.13.(本题满分10分)求函数3sin ()xf x x xπ=−的间断点,并判断间断点的类型. 【解】因为3sin sin ()(1)(1)x xf x x x x x x ππ==−−+,显然0,1,1x =−为间断点. 2分 于是lim ()lim(1)(1)x x xf x x x x →→π==π−+, 4分1111sin 1cos lim ()limlim 21212x x x x x f x x →−→−→−ππππ=−=−=+ 6分 1111sin 1cos lim ()limlim 21212x x x x x f x x →→→ππππ===−−, 8分 所以0,1,1x =−是第一类中的可去间断点. 10分《高等数学B Ⅰ》试题答案 第 3 页 (共 5 页)14.(本题满分10分)设cos sin ,sin cos x t t t y t t t =+⎧⎨=−⎩,求224d d t y x π=.【解】由题意,得4d (sin cos )cos cos sin d tan , 1.d (cos sin )sin sin cos d t y t t t t t t t yt x t t t t t t t x π='−−+===='+−++ 5分222324d d tan d 1d ,d d d cos d t y t t yx t x t t x π==⋅==π10分15.(本题满分10分)求x . 【解】设tan ,,22x t x ππ=−<<,则2d sec d x t t =,于是 3分 原式2= 5分 2cos d sin tt t=⎰2sin dsin csc t t t C −==−+⎰ 9分C =+. 10分16.(本题满分10分)求函数3226187y x x x =−−−的极值.【解】2612186(3)(1),y x x x x '=−−=−+ 2分 令0,y '=得驻点123, 1.x x ==− 5分 又1212,(3)240,(1)240,y x y y ''''''=−=>−=−< 8分《高等数学B Ⅰ》试题答案 第 4 页 (共 5 页)所以极大值(1)3y −=,极小值(3)61y =−. 10分17.(本题满分10分)求由曲线y =1,4,0x x y ===所围成的平面图形的面积及该图形绕y 轴旋转一周所形成的立体的体积.【解】(1) 1S x =⎰2分432121433x ⎡⎤==⎢⎥⎣⎦ 5分 (2) 解法1: 412y V x =π⎰ 7分4521412455x ⎡⎤π==π⎢⎥⎣⎦ 10分解法2: 24132d y V y y =π−π−π⎰ 7分1245=π 10分18.(本题满分8分)求过直线50:40x y z L x z ++=⎧⎨−+=⎩,且与平面48120x y z −−+=交成π4角的平面方程.【解1】过已知直线L 的平面束方程为(4)(5)0x z x y z λ−++++=,即(1)5(1)40x y z λλλ+++−+=. 2分 已知平面的法向量为(1,4,8)−−. 由题设条件,有πcos4=, 即2=,由此解得0λ=或43λ=−. 6分《高等数学B Ⅰ》试题答案 第 5 页 (共 5 页)将0λ=或43λ=−分别代入平面束方程,得所求平面方程为40207120x z x y z −+=++−=,. 8分 【解2】过已知直线L 的平面束方程为(4)(5)0x z x y z λ−++++=,即(1)5(1)40x y z λλλ+++−+=. 2分 已知平面的法向量为(1,4,8)−−. 由题设条件,有πcos4=即2=,由此解得34λ=−. 6分 将34λ=−分别代入平面束方程,得所求平面方程为207120x y z ++−=. 7分另外,40x z −+=也是所求平面方程. 8分19.(本题满分6分)设函数()f x 在[]0,2π上连续,在(0,2π)内可导,且(0)1,(π)3,f f ==(2π)2f =. 试证明在(0,2π)内至少存在一点ξ,使()()cos 0f f ξξξ'+=.【证】 构造函数sin ()()e x F x f x =. 2分 因为()F x 在[]0,2π上连续,在(0,2π)内可导,且(0)1,(π)3,(2π)2F F F ===. 3分因为2是介于(0)1F =与(π)3F =之间的,故由闭区间上连续函数的介值定理知,在(0,π)内存在一点c 使得()2(2π)F c F ==. 5分于是在[],2πc 上函数()F x 满足罗尔定理的条件,所以[]sin ()()()cos e 0,(,2π)(0,2π)F f f c ξξξξξξ''=+=∈⊂.则原结论成立. 6分。
10-11-1高数21理工类(B)卷答案

2010 ~2011 学年度第一学期《高等数学21(理工)》试卷(B 卷)评阅标准及考核说明适用年级专业:2010级高等数学21理工类(本科) 考 试 形 式:( )开卷、(√)闭卷一、选择题(每小题 3 分,共 12 分。
请将答案填在下面的表格内) 1、C 2、A 3、D 4、B 二、填空题(每题 3分,共 12 分)[1、32 2、第一类3、14、0三、求下列极限(每题 5 分,共 10 分)[]1、解:11lim1x x x →→=- (1分)1x →= (2分)12x →== (2分)2、解:03limx x x →∞→∞=⎰3分) 13=………………………………………………………(2分) 四、求下列函数的导数或微分(每题 5 分,共 15 分)]1、解:()12sin x x e y '⎛⎫⋅ ⎪''==……………………………(2分)=(2分)……………………………(1分)[]2、解:方程sin cos()0y x x y --=两边同时对x 求导得sin cos sin()()0y x y x x y x y ''++-⋅-=……………………………(1分) sin cos sin()(1)0y x y x x y y ''++-⋅-= ……………………………(2分)[]sin()sin cos sin()x y x y y x x y '--=+-……………………………(1分)cos sin()sin()sin y x x y y x y x +-'=--,所以cos sin()sin()sin y x x y dy dx x y x+-=-- ……………………………(1分)[]3、解:由(sin )(1cos )x a t t y a t =-⎧⎨=-⎩,则由参数方程求导得()(1cos )(1cos )()sin sin dx x t a t t dy y t a t t'--===' …………………………… (2分)22233(1cos )sin (1cos )cos 1cos sin sin sin sin t d x t t t t t dy a t a t a t '-⎡⎤⎢⎥---⎣⎦=== ……………………………(2分) 所以223661cos 1(8sin t t d x t dy a t aππ==-⎡⎤==-⎢⎥⎣⎦ ……………………………(1分) 五、求下列积分(每题 6 分,共 12 分)1、解:22--=⎰⎰……………(2分)2分)12π=-………………………………………(2分)2、解:因为222tan (sec 1)sec x xdx x x dx x xdx xdx =-=-⎰⎰⎰⎰……………………(1分)2211tan tan tan 22xd x x x x xdx x =-=--⎰⎰………(2分) 22sin 111tan tan cos cos 2cos 2x x x dx x x x d x x x x =--=+-⎰⎰…… (2分)21tan ln cos 2x x x x C =+-+……………………(1分) 六、简答题(共 8 分)解:(1)函数()f x 的定义域为2x ≠-的一切实数……………(1分)(2)因为23(6)()(2)x x f x x +'=+, ……………(1分) (3)又因为424()(2)xf x x ''=+,令()0f x ''=,得10x =,22x =-为()f x ''不存在的点(1分) (4)以10x =,22x =-为分断点,将()f x 的定义域分成三段列表如下 (3分)(5)所以()f x 的凸区间是(,2)-∞-和(2,0)-,凹区间是(0,)+∞,拐点是(0,4)(2分) 七、应用题(共 7 分)解:联立方程243y y x x =⎧⎨=-+-⎩得121,3x x ==…………………………(2分) 所以可得所围图形的面积是33322114(43)2333x x x dx x x ⎡⎤-+-=-+-=⎢⎥⎣⎦⎰…………………………(5分)八、解微分方程(每小题 7分,共14分)[教师答题时间:6分钟][](1)解:由22dy y dx x y =-可得212y dy x ydx x=-…………………………(1分) 该方程为齐次微分方程,令y u y ux x =⇒=可得dy du u x dx dx=+ ……………(2分) 则原方程变形为12(12)u dx du u u x-=+ ………………………………………(1分)两边积分可得2(12)uCx u =+ (C 为常数)………………………………………(2分) 将yu x=代入上式可得2(2)y C x y =+(C 为常数)…………………………(1分) [](2)解:由已知可得方程4x y y xe ''-=的特征方程为210r -=特征值为121,1r r =-=……………………………(2分)所以其相应的齐次方程的通解为12x x y C e C e -=+ (12,C C 为常数)……………………………(1分)又因为1是一重特征根,由已知可得1m =,故原方程有特解*()x y x ax b e =+,代入原方程可得(422)4x x ax a b e xe ++=,解得1,1a b ==-, 可得原方程的一个特解为 *(1)x y x x e =- 所以原方程的通解为12(1)x x x y C e C e x x e -=++-……………………………………………(2分) 又因为,00|0,|1x x y y =='==可得1212011C C C C +=⎧⎨-+-=⎩,解得1211C C =-⎧⎨=⎩ 所以满足初始条件的特解为(1)x x x y e e x x e -=-++-………………(2分) 九、综合题[综合型](共10分)] 证明:220()()()a a a af x dx f x dx f x dx =+⎰⎰⎰(2分)令2x a t =-,则当x a =时,t a =;当2x a =时,0t =,dx dt =- (4分) 所以200()(2)(2)a a aaf x dx f a t dt f a x dx =--=-⎰⎰⎰(2分)所以[]20()()(2)aaf x dx f x f a x dx =+-⎰⎰(2分)注:考核类型是指:三基类、一般综合型和综合型。
武汉大学高数上往届试题

武汉大学2008–2009学年第一学期《高等数学B》试题一.试解下列各题:(每题7分,共42分)1.计算limn→∞[︃n−n3−1n(n+2)]︃.2.计算limx→0(sin x)·ln(1+2x)1−cos2x.3.设⎧⎪⎪⎨⎪⎪⎩x=t+sin ty=f(x−t)f二阶可导,求d2yd x2.4.计算π/2−π/2sin x(x+cos x)d x.5.设f′(ln x)=⎧⎪⎪⎨⎪⎪⎩1,0<x≤1x,x>1且f(0)=0,求f(x).6.计算反常积分+∞(1+2x)e−2x d x.二.(15分)已知函数y=(x−1)3(x+1)2,求:1.函数f(x)的单调增加、单调减少区间,极大、极小值;2.函数图形的凸性区间、拐点、渐近线.三.(12分)设有点A(3,1,−2)和直线l:x−4=y+32=z1,1.试求过点A且通过直线l的平面方程;2.求点A到直线l的距离.四.(12分)设f(x)=⎧⎪⎪⎨⎪⎪⎩e2x+b,x≤0sin ax,x>0问:1.a,b为何值时,f(x)在x=0处可导;2.若另有F(x)在x=0处可导,证明F[f(x)]在x=0处可导.五.(12分)一铅直倒立在水中的等腰三角形水闸门,其底为6米,高为3米,且底与水面相齐,求:1.水闸所受的压力(水的比重为1);2.作一水平线将此闸门分为上下两部分,使两部分所受的压力相等.六.(7分)设f(x)在区间[0,1]上连续,且1f(x)d x=0,证明:对于任意正整数k,在(0,1)内至少存在一点ξ,使kξf(x)d x=f(ξ).武汉大学2009–2010学年第一学期《高等数学B 》试题一.试解下列各题:(每题7分,共42分)1.计算lim x →0x −arctan x e x 3−12.求解微分方程y ′′−6y ′+9y =0的通解.3.计算 1−1x 2(1+√1+x 2sin x )d x4.计算 +∞0e −√x d x .5.求曲线⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩x = t 1cos u u d u y = t 1sin u u d u 自t =1到t =π2一段弧的长度.6.设y =1x 2+3x +2,求y (n ).二.(8分)已知u =e xy ,其中y =f (x )由方程y 0e t 2d t = x 20cos t d t 确定,求d u d x .三.(8分)设x 1=1,x n =1+x n 1+x n(n =1,2,···),试证明数列{x n }收敛,并求lim n →∞x n .四.(8分)证明结论:可导函数在其导数为正值的区间上为单调增加函数,并说明此结论的几何意义.五.(15分)已知函数y =x 3+4x 2,求1.函数f (x )的单调增加,单调减少区间,极大、极小值.2.函数图形的凸性区间、拐点、渐近线.六.(12分)已知函数y =y (x )满足微分方程y ′′−y ′=2(1−x ),且x 轴为曲线y =y (x )的过原点的一条切线,在曲线y =y (x )(x ≥0)上某B 点处作一切线,使之与曲线、x 轴所围成平面图形的面积为112,试求:1.曲线y =y (x )的方程;2.切点B 的坐标;3.由上述所围图形绕x 轴旋转一周所得立体的体积.七.(7分)若f (x )在[a ,b ]上连续,且f (a )=f (b )=0及f ′(a )f ′(b )>0,则f (x )在(a ,b )内至少存在一点ξ,使f (ξ)=0.武汉大学2010–2011学年第一学期《高等数学B 》试题一.计算题:(每题7分,共56分)1.求由方程ln xy =e x +y 所确定的隐函数y =y (x )的导数d y d x .2.求lim x →0√2−√1+cos x √1+x 2−1.3.求lim x →0+ x0sin t 3d tx 0cos t 2d t .4.(7分)求lim n →∞1n [︃(︃x +2n )︃+(︃x +4n )︃+···+(︃x +2n n )︃]︃.5.求不定积分 1√1+e 2xd x .6.求定积分 π/2x (1−sin x )d x .7.求方程y ′+2xy =xe −x 2的通解.8.设f ′(x )=e −x 2,lim x →+∞f (x )=0,求 +∞0x 2f (x )d x .二.(7分)证明当0<x <π2时,sin x >2πx .三.(10分)设抛物线y =ax 2+bx +c 过原点,当0≤x ≤1时,y ≥0.又已知该抛物线与x 轴及直线x =1所围成的图形的面积为13,试确定a ,b ,c 使此图形绕x 轴旋转一周所成的旋转体的体积V 最小.四.(7分)试判断函数f (x )=lim n →∞x 2n −1−1x 2n +1的间断点及其类型.五.(10分)设函数f (x ),g (x )满足f ′(x )=g (x ),g ′(x )=2e x −f (x ),且f (0)=0,g (0)=2,求f (x ),g (x )的表达式.六.(10分)设函数f (x )在[0,3]上连续,在(0,3)内可导,且f (0)+f (1)+f (2)=3,f (3)=1,试证:必存在ξ∈(0,3),使f ′(ξ)=0.武汉大学2011–2012学年第一学期《高等数学B》试题一.计算题:(每题8分,共56分)1.设⎧⎪⎪⎨⎪⎪⎩x=arcsin√1−t2y=1+t2,求d2yd x2.2.求limx→0e x−e sin x(x+x2)ln(1+x)arcsin x.3.已知limx→∞(︂x−ax+a)︂x=+∞a2xe−2x d x,求常数a的值.4.计算不定积分d x√ax+b+d(a 0).5.求定积分1x(1−x4)32d x.6.求解微分方程d yd x=x3y3−xy.7.设ϕ(x)=⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩2xxe t2d tx,x 0a,x=0求a的值使得ϕ(x)在x=0处连续,并用导数的定义求ϕ′(0).二.(5分)设a n=(︃1+1n)︃sinnπ2,证明数列{a n}没有极限.三.(10分)设y=y(x)c满足微分方程y′′−3y′+2y=2e x,且其图形在点(0,1)处的切线与曲线y=x2−x+1在该点的切线重合,求y=y(x).四.(11分)已知函数y=x−1x2+1,求函数的增减区间,凹凸区间,极值、拐点和渐近线.五.(10分)求曲线y=e x,y=sin x,x=0,x=1所围成的平面图形的面积S,并求该平面图形绕x轴旋转一周所得的旋转体体积.六.(8分)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使f′′(ξ)=g′′(ξ).武汉大学2012–2013学年第一学期《高等数学B 》试题一.(5分)若lim x →x 0g (x )=0,且在x 0的某去心邻域内g (x ) 0,lim x →x 0f (x )g (x )=A ,则lim x →x 0f (x )必等于0,为什么?二.(8分)设f (x )=⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ae x +be −x −c sin 2x ,x ∈(︁−π2,−π2)︁且x 0,1,x =0.试确定a ,b ,c 的一组值,使得f (x )在x =0处连续.三.(6分)设f (x )在x =a 处二阶可导,且f (a )=f ′(a )=0,f ′′(a )=1,求极限limx →a f (x )sin(x −a )(e x −e a )3.四.(5分)指出f (x )=11+e 1x 的间断点及其类型.五.(5分)设u ,v 均是x 的可微函数,y (x )=ln √u 2+v 2,求d y .六.(5分)求函数I (x )=x e ln t t 2−2t +1d t 在区间[e ,e 2]上的最大值.七.(5分)求 −1−2d xx √x 2−1.八.(5分)求微分方程y ′′+3y ′=cos 2x 的通解.九.(5分)若在x 0的某去心邻域内|f (x )|≤α(x ),且lim x →x 0α(x )=0,试证明:lim x →x 0f (x )=0.十.(5分)设y =y (x )由方程y =f [2x +ϕ(y )]所确定,其中f 与ϕ都是可微函数,求y ′.十一.(6分)设f (x )=lim t →∞x (︃1+1t)︃4xt ,求f ′′(x ).十二.(6分)求函数y =(x −1)3√x 2的极值.十三.(8分)求由不等式sin 3x ≤y ≤cos 3x ,0≤x ≤π4所确定的区域的面积.十四.(8分)设f (x )在[0,1]上连续,在(0,1)内可导,且f (0)=0,对任意x ∈(0,1)有f (x ) 0,证明存在c ∈(0,1)使得n f ′(c )f (c )=f ′(1−c )f (1−c ).(n 为自然数).十五.(8分)设f (x )在[0,+∞)上连续,0<a <b .若 +∞0f (x )x d x 收敛,证明 +∞0f (ax )−f (bx )x d x =f (0)ln b a.十六.(10分)设位于第一象限的曲线y =f (x )过点⎛⎜⎜⎜⎜⎝√22,12⎞⎟⎟⎟⎟⎠,其上任意一点P (x ,y )处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(1)求曲线y =f (x )的方程.(2)已知曲线y =sin x 在[0,π]上的弧长为l ,试用l 表示曲线y =f (x )的弧长.。
武汉大学《概率论与数理统计》期末考试历年真题及参考答案

6、解:首先确定 f (x, y)
1[
1 x dy]dx
6,0 x 1, x2
y x;
0 x2
E(X)=
1[
0
x x2
x
6dy]dx
1 2
;E(X
2
)=
1[
0
x x2
x2
6dy]dx
3 10
;E(Y)=
1[
0
y
y y 6dx]dy
2 5
E(Y 2 )=
1[
0
y
y
(
1 2
x)(
1 2
y)
f
(x,
y), 所以X ,Y不独立;
(3)1[ 1h(x y) f (x, y)dy]dx 1[ x1 h(z)(x x z)dz]dx
00
0x
0 [ z1 h(z)(2x z)dx]dz 1 1 h(z)(2x z)dx]dz
1 0
0z
0 h(z)(z2 z 1)dz 1 h(z)(1 z2 z)dz
Z 0 1234
P
1 131 1
(Z) 16 4 8 4 16
武汉大学2011-2012 第一学期《概率论与数理统 计》期末试题及参考答案
一、解:(1)P(A+B)=P(A)+P(B)-P(A)P(B)=0.5+0.4-0.5×0.4=0.7
(2)P((A-B)|(A+B))=P((A-B)∩(A+B))/P(A+B)=[P(A)-P(A)P(B)]/P(A+B)=0.3/0.7=3/7 二、解:
y
2
6dx]dy
3 14
;E(XY)=
高等数学期末考试试题及答案(大一考试)

五、设函数由方程确定,求。
(8分)六、若有界可积函数满足关系式,求。
(8分)七、求下列各不定积分(每题6分,共12分)(1).八、设求定积分。
(6分)九、讨论函数的单调区间、极值、凹凸区间和拐点坐标。
(10分)十、求方程的通解(6分)十一、求证:。
(5分)第一学期高等数学(上)(A)卷分标准题3分,共15分)2。
B 3。
D 4.B 5。
D分,共18分)为任意常数),4. 2 ,5。
6。
分………………………………………..6分分解:………………3分 (6) (8)导 (3)数)…………6分分解:(1)。
……。
.3分…………………….6分分分=……………6分时有极大值2,有极小值. 在上是凸的,在上是凹的,拐点为(0,0)………10分十、解; (3)设方程(1)的解为代入(1)得………5分 (6)十一、证明:令………………1 分又…。
3分的图形是凸的,由函数在闭区间连续知道最小值一定在区间端点取到。
,所以………….5分。
(2010至2011学年第一学期)一、单项选择题(15分,每小题3分)1、当时,下列函数为无穷小量的是()(A)(B) (C)(D)2.函数在点处连续是函数在该点可导的( )(A)必要条件(B)充分条件(C)充要条件(D)既非充分也非必要条件3.设在内单增,则在内( )(A)无驻点(B)无拐点(C)无极值点(D)4.设在内连续,且,则至少存在一点使()成立。
(A) (B)(C) (D)5.广义积分当()时收敛。
(A) (B)(C)(D)二、填空题(15分,每小题3分)1、若当时,,则;2、设由方程所确定的隐函数,则;3、函数在区间单减;在区间单增;4、若在处取得极值,则;5、若,则;三、计算下列极限。
(12分,每小题6分)1、2、四、求下列函数的导数(12分,每小题6分)1、,求2、,求五、计算下列积分(18分,每小题6分)1、2、3、设,计算六、讨论函数的连续性,若有间断点,指出其类型. (7分)七、证明不等式:当时,(7分)八、求由曲线所围图形的面积。
武汉大学2011年数学分析试题解答

武汉⼤学2011年数学分析试题解答武汉⼤学2011年数学分析试题解答1:计算题(1)解:原极限\text{=}\underset{n\to \infty }{\mathop{\lim }}\,\frac{\sqrt[n]{n}}{n}\cdot {{n}^{1-\alpha }}={{e}^{-1}}\underset{n\to \infty }{\mathop{\lim }}\,{{n}^{1-\alpha }}=\left\{\begin{array} +\infty, & \hbox{$0<\alpha<1$;} \\ e^{-1}, & \hbox{$\alpha=1$;} \\ 0, & \hbox{$\alpha>1$.} \end{array} \right.(解释⼀下:\underset{n\to \infty }{\mathop{\lim }}\,\frac{\sqrt[n]{n}}{n}={{e}^{\underset{n\to \infty }{\mathop{\lim }}\,\frac{1}{n}\sum\limits_{i=1}^{n}{In\frac{i}{n}}}}={{e}^{\int\limits_{0}^{1}{Inxdx}}}={{e}^{-1}}(来源于数学分析上册第⼆章课后习题)(2)解:考虑等价⽆穷⼩:\underset{x\to 0}{\mathop{\lim }}\,\frac{1-\cos x}{\frac{1}{2}{{x}^{2}}}=1,则1-\cos \sqrt{\tan x-\sin x}=2{{\sin }^{2}}\frac{\sqrt{\tan x-\sin x}}{2}\sim \frac{1}{2}(\tan x-\sin x)=\frac{\sin x}{2\cos x}(1-\cos x)\sim \frac{1}{4} {{x}^{3}}另⼀⽅⾯:\sqrt[3]{1+{{x}^{3}}}-\sqrt[3]{1-{{x}^{3}}}=\frac{2{{x}^{3}}}{{{(\sqrt[3]{1+{{x}^{3}}})}^{2}}+\sqrt[3]{(1+{{x}^{3}})(1-{{x}^{3}})}+{{(\sqrt[3]{1-{{x}^{3}}})}^{2}}}\sim \frac{2{{x}^{3}}}{3}从⽽原式 =\frac{3}{8}(3)法⼀:解:原式=\int{\frac{1+\cos x}{\sqrt{1+\cos x}}dx=}\int{\frac{2{{\cos }^{2}}\frac{x}{2}}{\sqrt{1+\cos x}}dx=}\int{\frac{2{{\cos }^{2}}\frac{x}{2}(1-{{\sin }^{2}}\frac{x}{2})}{{{\cos }^{2}}\frac{x}{2}\sqrt{1+\cos x}}dx}=\int{\frac{1+\cos x-\sin x\sin \frac{x}{2}\cos \frac{x}{2}}{{{\cos }^{2}}\frac{x}{2}\sqrt{1+\cos x}}dx=}\int{\sqrt{1+\cos x}{{\sec }^{2}}\frac{x} {2}+\frac{-\sin x}{\sqrt{1+\cos x}}\tan \frac{x}{2}dx}=2\int{d(\sqrt{1+\cos x}\tan \frac{x}{2})=2}\sqrt{1+\cos x}\tan \frac{x}{2}+C法⼆:由于\int{\sqrt{\text{1+}\cos x}dx}=\sqrt{2}\int{\left| \cos \frac{x}{2} \right|}dx考虑到\int{\left| x \right|}dx=\frac{{{x}^{2}}}{2}sgn x+C于是\int{\sqrt{\text{1+}\cos x}dx}=2\sqrt{2}\sin \frac{x}{2}sgn (\cos \frac{x}{2})+C(C为常数)法三:由于\int{\sqrt{\text{1+}\cos x}dx}=\sqrt{2}\int{\left| \cos \frac{x}{2} \right|}dx\overset{t=\frac{x}{2}}{\mathop{=}}\,2\sqrt{2}\int{\left| \cos t \right|}dt⽽\int {\left| {\cos t} \right|} dt=\left\{\begin{array}{ll} \sin t + {c_k}, & \hbox{$- \frac{\pi }{2} + 2k\pi \le t \le \frac{\pi }{2} + 2k\pi$;} \\ - \sin t + {d_k}, & \hbox{$\frac{\pi }{2} + 2k\pi \le t \le \frac{{3\pi }}{2} + 2k\pi$.} \end{array} \right.+C为连续函数,其中C为常数于是\left\{\begin{array}{ll} {c_k} + 1 = - 1 + {d_k} \\ {c_{k + 1}} - 1 = 1 + {d_k} \end{array} \right.,令{{c}_{0}}=0则{{c}_{k}}=4k,{{d}_{k}}=4k+2于是\int {\left| {\cos t} \right|} dt=\left\{\begin{array}{ll} \sin t + 4k, & \hbox{$ - \frac{\pi }{2} + 2k\pi \le t \le \frac{\pi }{2} + 2k\pi$;} \\ - \sin t + 4k + 2, & \hbox{$\frac{\pi }{2} + 2k\pi \le t \le \frac{{3\pi }}{2} + 2k\pi$.} \end{array} \right.+C即\int {\sqrt {{\rm{1 + }}\cos x} dx}=\left\{\begin{array}{ll} 2\sqrt 2 (\sin \frac{x}{2} + 4k), & \hbox{$ - \pi + 4k\pi \le x \le \pi + 4k\pi$;} \\ 2\sqrt 2 ( - \sin \frac{x}{2} + 4k + 2), & \hbox{$\pi + 4k\pi \le x \le 3\pi + 4k\pi$.} \end{array} \right.+C,其中C为常数(4)解:F(x,y)=x\int_{\frac{y}{x}}^{xy}{zf(z)dz-y\int_{\frac{y}{x}}^{xy}{f(z)dz}}则F_{x}^{'}=\int_{\frac{y}{x}}^{xy}{zf(z)dz+x[xyf(xy)\cdot y-\frac{y}{x}f(\frac{y}{x})\cdot \frac{-y}{{{x}^{2}}}]-y[f(xy)\cdot y-f(\frac{y}{x})\cdot \frac{-y} {{{x}^{2}}}]}=\int_{\frac{y}{x}}^{xy}{zf(z)dz+({{x}^{2}}-1){{y}^{2}}f(xy)}F_{xx}^{''}=xyf(xy)\cdot y-\frac{y}{x}f(\frac{y}{x})\cdot \frac{-y}{{{x}^{2}}}+2x{{y}^{2}}f(xy)+({{x}^{2}}-1){{y}^{2}}f'(xy)\cdot y=3x{{y}^{2}}f(xy)+\frac{{{y}^{2}}}{{{x}^{3}}}f(\frac{y}{x})+({{x}^{2}}-1){{y}^{3}}f'(xy)(5)解:原式=\int\limits_{0}^{1}{dy\int\limits_{-1}^{{{y}^{2}}}{({{y}^{2}}-x)dx+}}\int\limits_{0}^{1}{dy\int\limits_{{{y}^{2}}}^{1}{(-{{y}^{2}}+x)dx}}=\frac{6}{5}2:说明,原版的试卷中的题⽬可能有点问题,原版试题如下:已知f(x),g(x)在[a,b]上连续,在(a,b)上可微,且g'(x)在(a,b)上⽆零点,证明:\exists \xi \in (a,b),st\frac{f'(\xi )}{g'(\xi )}=\frac{f(b)-g(\xi )}{g(\xi )-g(a)}如果有思路的话,欢迎补充!证明:作辅助函数F\left( x \right)=f\left( x \right)g\left( x \right)-g\left( b \right)f\left( x \right)-f\left( a \right)g\left( x \right)虽然F\left( x \right) 在[a,b]上连续,在(a,b)上可微, F\left( a \right)=F\left( b \right)=-f\left( a \right)g\left( b \right)由罗尔中值定理,存在\xi \in \left( a,b \right)使得{F}'\left( \xi \right)=0即{f}'\left( \xi \right)g\left( \xi \right)+f\left( \xi \right){g}'\left( \xi \right)-g\left( b \right){f}'\left( \xi \right)-f\left( a \right){g}'\left( \xi \right)=0整理\left[ f\left( a \right)-f\left( \xi \right) \right]{g}'\left( \xi \right)-{f}'\left( \xi \right)\left[ g\left( \xi \right)-g\left( b \right) \right]=0即\frac{f\left( a \right)-f\left( \xi \right)}{g\left( \xi \right)-g\left( b \right)}=\frac{{f}'\left( \xi \right)}{{g}'\left( \xi \right)} ,证得3:(⽅法⼀)证明:\left| \frac{{{a}_{1}}{{b}_{n}}+{{a}_{2}}{{b}_{n-1}}+\cdots +{{a}_{n}}{{b}_{1}}}{{{a}_{1}}+{{a}_{2}}+\cdots +{{a}_{n}}}-b \right|=\left|\frac{{{a}_{1}}({{b}_{n}}-b)+{{a}_{2}}({{b}_{n-1}}-b)+\cdots +{{a}_{n}}({{b}_{1}}-b)}{{{a}_{1}}+{{a}_{2}}+\cdots +{{a}_{n}}} \right| \le \frac{{{a}_{1}}\left| {{b}_{n}}-b \right|+\cdots +{{a}_{n-N}}\left| {{b}_{N+1}}-b \right|}{{{a}_{1}}+\cdots +{{a}_{n}}}+\frac{{{a}_{n-N+1}}\left| {{b}_{N}}-b \right|+\cdots +{{a}_{n}}\left| {{b}_{1}}-b \right|}{{{a}_{1}}+\cdots +{{a}_{n}}}\le \underset{N+1\le k\le n}{\mathop \max }\,\left| {{b}_{k}}-b \right|+\underset{N+1\le k\le n}{\mathop \max }\,\left| {{b}_{k}}-b \right|\cdot \frac{N}{n-N+1}=I_{1}^{n}+I_{2}^{n}从⽽对\forall \varepsilon >0,先取定N使得I_{1}^{n}<\frac{\varepsilon }{2},后让n充分⼤即有I_{2}^{n}<\frac{\varepsilon }{2},于是有结论成⽴。
武大高数试题及答案

武大高数试题及答案一、选择题(每题5分,共20分)1. 函数 \( f(x) = x^3 - 3x \) 的导数是()。
A. \( 3x^2 - 3 \)B. \( x^2 - 3 \)C. \( 3x^2 + 3 \)D. \( x^3 - 3 \)答案:A2. 极限 \( \lim_{x \to 0} \frac{\sin x}{x} \) 的值是()。
A. 0B. 1C. \( \frac{\pi}{2} \)D. \( \infty \)答案:B3. 级数 \( \sum_{n=1}^{\infty} \frac{1}{n^2} \) 是()。
A. 收敛的B. 发散的C. 条件收敛的D. 绝对收敛的答案:A4. 函数 \( y = \ln(x^2 + 1) \) 的定义域是()。
A. \( (-\infty, 0) \)B. \( (0, +\infty) \)C. \( (-\infty, +\infty) \)D. \( \{0\} \)答案:C二、填空题(每题5分,共20分)1. 如果 \( f'(x) = 2x \),那么 \( f(x) =\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \)。
答案:\( x^2 + C \)(其中 \( C \) 为常数)2. 函数 \( y = x^3 - 6x^2 + 9x + 1 \) 的极值点是\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_。
答案:\( x = 0 \) 或 \( x = 3 \)3. 函数 \( y = e^x \) 的反函数是\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_。
答案:\( y = \ln(x) \)4. 曲线 \( y = x^2 \) 在点 \( (1, 1) \) 处的切线方程是\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_。
武汉大学2018-2019学年第一学期《高等数学B1》考试试卷

1+ x 2 1+ e 2 x ⎰⎰《高等数学 B1》考试试卷(A 卷)一、 计算题:(每题 7 分,共 56 分)1. 求由方程ln xy = e x + y 所确定的隐函数 y = y (x ) 的导数dy .dx2. 求lim 2 - 1+ cos x .3. 求 limxsin t 3dt0 .x →0-1x →0+x cos t 2dtlim 1 ⎡⎛ x + 2 ⎫ + ⎛ x + 4 ⎫ + + ⎛ x + 2n ⎫⎤ 4. 求n →∞ n ⎢ n ⎪ n⎪ n ⎪⎥ . ⎣⎝⎭ ⎝⎭⎝⎭⎦5. 求不定积分⎰ 1dx .π6. 求定积分 2 x (1- sin x )dx .7. 求方程 y '+2xy = xe - x 2的通解.8. 设 f '(x ) = e - x2,lim x →+∞f (x ) = 0, 求 +∞x 2f (x )dx . 0 二、(7 分) 证明当0 < x < π 时, sin x > 2x .2 π三、(10 分) 设抛物线 y = ax 2 + bx + c 过原点,当0 ≤ x ≤ 1时,y ≥ 0. 又已知 该抛物线与x 轴及直线 x = 1所围成的图形的面积为1,试确定a ,b , c , 使3 此图形绕x 轴旋转一周而成的旋转体的体积V 最小。
四、(7 分) 试判断函数 f (x ) = lim x2n -1 -1 2n的间断点及其类型。
n →∞x +1五、(10 分) 设函数 f (x ), g (x ) 满足 f '(x ) = g (x ), g '(x ) = 2e x - f (x ), 且f (0) = 0,g (0) = 2, 求 f (x ), g (x ) 的表达式。
六、(10 分)设函数 f (x ) 在[0, 3] 上连续,在(0, 3) 内可导,且f (0) + f (1) + f (2) = 3, f (3) = 1 ,试证:必存在ξ ∈(0,3), 使 f '(ξ ) = 0.⎰ ⎰1+ e 2 x +11+ e 2 x -⎨《高等数学 B1》标准答案(A 卷)一、1、y (xe x + y -1);2、 1;3 、 0; 4、 + ;5、 1x (1- ye x + y)+ 2 2 ;6、π 2 - ;7、x = 1 2 +1- x 2;ln C 2 1 y ( 8 2 x C )e8、⎰+∞ x 2f (x )dx = 1x 3 f (x ) +∞ - 1 ⎰+∞ x 3 f '(x )dx3 0 3 0= 1limf (x ) + 1 (x 2e - x 2 + e - x 2 -1) +∞ = - 1 + 1 lim f '(x ) = - 1 3 x →+∞ x -3 60 6 3 x →+∞ -3x -4 6 二、证明:设 f (x ) = sin x ,则 f '(x ) = x cos x -sin x = cos x(x - tan x ) < 0 ,x所以在(0, π) 内 f (x ) 单调递减,故 f (x ) > 2三、a = - 5 ,b = 3, c = 04 2⎧⎪-1, | x |< 1, x = -1, x 2 π f ( ) 2 x 2 = 2 . 即证得结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010-2011第一学期《高等数学B1》期末考试试题解
一、计算题(7⨯8分)
1、求由方程ln()x y xy e +=确定的隐函数()y y x =的导数dy dx。
2
、求x →3、求3002
0sin lim cos x x x t dt
t dt →⎰⎰。
4、求1242lim n n x x x n n n n →∞⎡⎤⎛⎫⎛⎫⎛⎫++++++ ⎪ ⎪ ⎪⎢⎥⎝
⎭⎝⎭⎝⎭⎣⎦ 。
5
、求不定积分。
6、求定积分2
0(1sin )x x dx π-⎰。
7、求方程22x y xy xe -'+=的通解。
8、设2(),lim ()0x x f x e f x -→+∞'==求20()x f x dx +∞⎰。
解、1、(1),x y
x y x y y xy dy y xye e y xy dx xye x
+++'+-'=+=-。
2
、
0000222184lim lim lim 111222
x x x x x x x →→→→⎝⎭====
3、330200
20sin sin lim lim 0cos cos x x x x t dt x x t dt →→==⎰⎰。
4、101242lim (2)1n n x x x x t dt x n n n n →∞⎡⎤⎛⎫⎛⎫⎛⎫++++++=+=+ ⎪ ⎪ ⎪⎢⎥⎝
⎭⎝⎭⎝⎭⎣⎦⎰ 。
5
、)
2212(1)11ln ln 121x e t t u v v dt dv v v v C x C v ====--=+=-++⎰。
6、2222
00
(1sin )cos sin 128x x x dx x x x π
ππ⎛⎫-=+-=- ⎪⎝⎭⎰。
7、222
2,,,,2Pdx x x P x Q xe Pdx x Qe dx -⎰====⎰⎰通解:222x x y e C -⎛⎫=+ ⎪⎝⎭。
8、2
344()()lim lim lim 0939x
x x x x f x f x x e x -→+∞→+∞→+∞'==-=-,()22
3233000000()11()()333111(1)666
x x t t t x f x x f x dx x f x dx x e dx te dt t e +∞+∞
+∞+∞-=+∞+∞--'=-=-=-=---=-⎰⎰⎰⎰。
二、(7分)证明当02x π<<时2sin x x π
>。
证、记sin ()12x f x x π=-。
2(cos sin )()2x x x f x x
π-'=。
记()c o s s i n g x x x x =-。
()sin 0(0)2g x x x x π'=-<<<,()g x 在02
x π≤≤严格单调下降。
()(0)0,()0(0)2g x g f x x π'<=<<<。
()f x 在02x π≤≤严格单调下降。
()0(0)22f x f x ππ⎛⎫>=<< ⎪⎝⎭。
故当02x π<<时2sin x x π>。
三、(10分)设抛物线2y ax bx c =++过原点,当01x ≤≤时0y ≥,又已知该抛物线与x
轴及直线1x =所围成图形的面积为
13。
试确定,,a b c 使此图形绕x 轴旋转一周而成的旋转体的体积V 最小。
解、由抛物线2
y ax bx c =++过原点得0c =。
120
()32a b A ax bx dx =+=+⎰。
令13A =得223a b -=。
2222120224(1)4()()352712a a a a a V a ax x dx ππ⎛⎫---⎛⎫=+=++ ⎪ ⎪⎝⎭⎝⎭
⎰。
28(1)12()5
273a a a V a π--⎛⎫'=-+ ⎪⎝⎭。
()V a 有唯一聚点54a =-。
根据问题的实际,54a =-时旋转体的体积V 最小。
53,,042
a b c =-==。
四、(7分)试判断函数2121lim 1
n n n x x -→∞-+的间断点及其类型。
解、记2121()lim 1
n n n x f x x -→∞-=+。
则 1,
11,1()1,110,111x x x f x x x x x
⎧<-⎪⎪-=-⎪⎪=--<<⎨⎪=⎪⎪>⎪⎩ 可见,函数2121lim 1
n n n x x -→∞-+只有一个第一类的跳跃间断点1x =。
五、(10分)设函数(),()f x g x 满足()(),()2x f x g x g x e f x ''==-,且(0)0,(0)f g ==。
求(),()f x g x 的表达式。
解、由假设得()()2x f x f x e ''+=。
0,1n λ==,特征方程210t +=的解t i =±。
0k =。
设特解*()x f x Ae =。
代入方程得*22,1,()x A A f x e ===。
通解12()cos sin x f x C x C x e =++。
由(0)0,(0)2f f '==得121,1C C =-=。
()sin cos ,()sin cos x x f x x x e g x x x e =-+=++。
六、(10分)设函数()f x 在[0,3]上连续,在(0,3)内可导,且(0)(1)(2)3,f f f f ++==。
试证:存在
(0,3)ξ∈使()0f ξ'=。
证、函数()f x 在[0,3]上连续,在[0,2]上
取得最大值M 和最小值m 。
(0)(1)(2)13
f f f m M ++≤=≤。
据介值定理,存在[0,2]η∈使得()1f η=。
()f x 在[,3]η上连续,在(,3)η内可导,且()(3)1f f η==。
据罗尔定理,存在(,3)(0,3)ξη∈⊂使()0f ξ'=。