高分子物理----高分子的力学性能.

合集下载

高分子物理高分子的力学性能

高分子物理高分子的力学性能

高分子物理高分子的力学性能引言高分子是由大量重复单元组成的长链聚合物,具有广泛的应用领域。

高分子材料的力学性能是评估其性能和应用范围的重要指标之一。

本文将重点介绍高分子物理高分子的力学性能,包括拉伸性能、弯曲性能和压缩性能。

拉伸性能拉伸性能是衡量高分子材料抵抗拉伸变形的能力。

引伸模量是评估高分子材料刚度的指标,反映了材料在受力下沿着拉伸方向的抗弯刚度。

拉伸模量越大,材料刚度越高,说明材料越难被拉伸变形。

另一个重要的指标是断裂伸长率,即材料在断裂前所能延伸的长度与原始长度之比。

断裂伸长率越大,材料的延展性越好,能够在受力下更好地承受高应变。

弯曲性能弯曲性能是评估高分子材料在受力下的弯曲变形能力。

弯曲模量是衡量材料刚度和弯曲抗弯能力的指标,它反映了材料在弯曲过程中所需的力和弯曲程度之间的关系。

弯曲模量越大,材料的刚度越好,弯曲变形能力越低。

另一个重要的指标是弯曲强度,即材料在抵抗内部应力下断裂弯曲的能力。

弯曲强度越高,材料越能够承受弯曲应力而不断裂。

压缩性能压缩性能是评估高分子材料在受力下的抗压能力。

压缩模量是衡量材料在受压过程中抗弯刚度的指标,它反映了材料在压缩过程中所需的力和压缩程度之间的关系。

压缩模量越大,材料的刚度越高,抗压变形能力越低。

另一个重要的指标是压缩强度,即材料在抵抗内部应力下断裂压缩的能力。

压缩强度越高,材料越能够承受压缩应力而不断裂。

影响高分子材料力学性能的因素高分子材料的力学性能受多种因素影响。

其中,聚合度是一个重要的因素,即聚合物链的长度。

聚合度越高,链段之间的力学相互作用越多,因此材料的力学性能越好。

另一个重要因素是材料的结晶度。

高结晶度的材料通常具有更好的力学性能,因为结晶区域可以提供更多的强度和刚度。

此外,材料的处理方式和加工工艺也会对力学性能产生影响。

高分子物理高分子的力学性能是评估其应用潜力和性能表现的关键指标。

拉伸性能、弯曲性能和压缩性能是评估高分子材料力学性能的重要指标。

高分子物理课程电子教案

高分子物理课程电子教案

高分子物理课程电子教案第一章:高分子物理概述1.1 教学目标了解高分子的基本概念掌握高分子材料的分类和特点理解高分子物理的研究内容和方法1.2 教学内容高分子的定义和基本概念高分子材料的分类和特点高分子物理的研究内容和方法高分子材料的结构和性质关系1.3 教学方法采用多媒体课件进行讲解结合实例和案例分析高分子材料的分类和特点通过实验演示高分子物理的研究方法和原理1.4 教学评估课堂提问和讨论课后作业和练习题实验报告和分析第二章:高分子链的结构与运动2.1 教学目标了解高分子链的结构特点掌握高分子链的运动方式和动力学行为理解高分子链的构象和统计分布2.2 教学内容高分子链的结构特点和构象高分子链的运动方式和动力学行为高分子链的统计分布和相变现象2.3 教学方法采用多媒体课件进行讲解结合数学模型和物理图像分析高分子链的运动行为通过实验观察高分子链的构象变化和相变现象2.4 教学评估课堂提问和讨论课后作业和练习题实验报告和分析第三章:高分子材料的力学性能3.1 教学目标了解高分子材料的力学性能特点掌握高分子材料的应力-应变关系和断裂行为理解高分子材料的粘弹性行为和疲劳性能3.2 教学内容高分子材料的力学性能特点和测试方法高分子材料的应力-应变关系和断裂行为高分子材料的粘弹性行为和疲劳性能3.3 教学方法采用多媒体课件进行讲解结合实验数据和图像分析高分子材料的力学性能特点通过实验操作和观察理解高分子材料的粘弹性行为和疲劳性能3.4 教学评估课堂提问和讨论课后作业和练习题实验报告和分析第四章:高分子材料的热性能4.1 教学目标了解高分子材料的热性能特点掌握高分子材料的熔融行为和热稳定性理解高分子材料的热膨胀和导热性能4.2 教学内容高分子材料的热性能特点和测试方法高分子材料的熔融行为和热稳定性高分子材料的热膨胀和导热性能4.3 教学方法采用多媒体课件进行讲解结合实验数据和图像分析高分子材料的热性能特点通过实验操作和观察理解高分子材料的热膨胀和导热性能课堂提问和讨论课后作业和练习题实验报告和分析第五章:高分子材料的电性能5.1 教学目标了解高分子材料的电性能特点掌握高分子材料的导电性和绝缘性理解高分子材料的电荷注入和电荷传输5.2 教学内容高分子材料的电性能特点和测试方法高分子材料的导电性和绝缘性高分子材料的电荷注入和电荷传输5.3 教学方法采用多媒体课件进行讲解结合实验数据和图像分析高分子材料的电性能特点通过实验操作和观察理解高分子材料的电荷注入和电荷传输5.4 教学评估课堂提问和讨论课后作业和练习题实验报告和分析第六章:高分子材料的溶液性质了解高分子材料在溶液中的溶解行为掌握高分子材料的溶液性质和溶液模型理解高分子材料溶液的相行为和溶液理论6.2 教学内容高分子材料在溶液中的溶解行为和相行为高分子材料的溶液性质和溶液模型高分子材料溶液的粘度和流变性质6.3 教学方法采用多媒体课件进行讲解结合实验数据和图像分析高分子材料的溶液性质通过实验操作和观察理解高分子材料溶液的粘度和流变性质6.4 教学评估课堂提问和讨论课后作业和练习题实验报告和分析第七章:高分子材料的界面性质7.1 教学目标了解高分子材料在不同界面上的行为掌握高分子材料界面性质的表征方法理解高分子材料在界面上的相互作用和功能化7.2 教学内容高分子材料在不同界面上的行为和相互作用高分子材料界面性质的表征方法和技术高分子材料界面功能化和应用7.3 教学方法采用多媒体课件进行讲解结合实验数据和图像分析高分子材料界面的性质通过实验操作和观察理解高分子材料界面的功能化和应用7.4 教学评估课堂提问和讨论课后作业和练习题实验报告和分析第八章:高分子材料的光学性能8.1 教学目标了解高分子材料的光学性能特点掌握高分子材料的光吸收和发射行为理解高分子材料的光化学反应和光物理过程8.2 教学内容高分子材料的光学性能特点和测试方法高分子材料的光吸收和发射行为高分子材料的光化学反应和光物理过程8.3 教学方法采用多媒体课件进行讲解结合实验数据和图像分析高分子材料的光学性能特点通过实验操作和观察理解高分子材料的光化学反应和光物理过程8.4 教学评估课堂提问和讨论课后作业和练习题实验报告和分析第九章:高分子材料的环境稳定性和可持续性9.1 教学目标了解高分子材料的环境稳定性和可持续性重要性掌握高分子材料的环境稳定性和降解行为理解高分子材料的可持续性和环境影响评估9.2 教学内容高分子材料的环境稳定性和降解行为高分子材料的可持续性和环境影响评估高分子材料的生物降解和回收利用9.3 教学方法采用多媒体课件进行讲解结合实验数据和图像分析高分子材料的环境稳定性通过实验操作和观察理解高分子材料的可持续性和环境影响评估9.4 教学评估课堂提问和讨论课后作业和练习题实验报告和分析第十章:高分子材料的应用和未来发展10.1 教学目标了解高分子材料在各个领域的应用掌握高分子材料的功能化和智能化理解高分子材料的未来发展趋势和挑战10.2 教学内容高分子材料在各个领域的应用和实例高分子材料的功能化和智能化技术高分子材料的未来发展趋势和挑战10.3 教学方法采用多媒体课件进行讲解结合实例和案例分析高分子材料的应用和功能化通过讨论和思考题引导学生理解高分子材料的未来发展趋势10.4 教学评估课堂提问和讨论课后作业和练习题思考题和研究报告重点和难点解析1. 高分子链的结构与运动:理解高分子链的结构特点,掌握高分子链的运动方式和动力学行为,以及高分子链的统计分布和构象。

高分子物理——第六章 聚合物的力学性能

高分子物理——第六章   聚合物的力学性能

二、橡胶弹性的统计理论
热力学分析只能给出宏观物理量之间的关 系,利用统计理论,可以通过微观的结构参数, 求得高分子熵值的定量表达式,进而导出熵变与 宏观的应力—应变关系。
研究步骤: 1)运用构象统计计算形变时单个柔性链的构象熵 2)运用构象统计计算形变时网络链的熵变 3)获得交联网络的状态方程 4)与试验结果比较,进行评价
第六章
聚合物的力学性能
一、聚合物的力学性能的内涵
普弹
弹性 高弹 形变性能 粘性 粘弹性 强度 断裂性能 韧性 固体高分子材料的力 学性能,也就是研究 受力后,它的尺寸稳 定性和强度问题,或 者说是形变的特征和 破坏的规律问题。
力学性能
研究力学性能有两个相关的目的。 1、获得描述聚合物力学行为的数据和一般规律。 2、深入了解力学性能与分子结构的内在联系。
ζ
大球晶 小球晶
ε
ζ
高结晶度
低结晶度
ε
第二节:高弹态聚合物的力学性质
橡胶材料是重要的高分子材料之一,在Tg以上, 处于聚合物特有的高弹性力学状态。高弹性无疑是 这类材料显著的特征或说独特的性质,是材料中一 项十分难得的可贵性能,被广泛用于各个领域,其 作用是不可替代的。
橡胶的分子结构和高弹性的本质长期以来一直 受到人们的注视和研究;提高橡胶的耐寒性和耐热 性即扩大橡胶的使用范围,成了人们新的课题。
u ( )T ,V 0, l
f S f T( )l , p T ( )T ,V T l
说明理想弹性体被拉伸时内能几乎不变,主要 引起熵的变化。橡胶弹性完全是由拉伸时熵的减少
而引起的。故高弹性又称熵弹性。即高弹形变的本
质是熵变。 拉伸时熵值由大→小,终态是一种不稳定体系, 故拉伸后的橡皮于外力除去后会自发地回复到初态, 这就说明了高弹形变是可回复的,表现出高弹性。

高分子材料力学性能

高分子材料力学性能

高分子材料力学性能姓名:程小林学号:5701109004 班级:高分子091 学院:材料学院研究背景:在世界范围内, 高分子材料的制品属於最年轻的材料.它不仅遍及各个工业领域, 而且已进入所有的家庭, 其产量已有超过金属材料的趋势,將是2 1世纪最活跃的材料支柱.高分子材料在我们身边随处可见。

在我们的认识中,高分子材料是以高分子化合物为基础的材料。

高分子材料按特性分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料。

今天,我想就高分子材料为主线,简单研究一下高分子材料所具有的一些方面的力学性能。

从我们以前学过的化学知识中可以知道,高分子材料其实是有机化合物, 有机化合物是碳元素的化合物.除碳原子外, 其他元素主要是氢、氧、氮等.碳原子与碳原子之间, 碳原子与其他元素的原子之间, 能形成稳定的结构.碳原子是四价, 每个一价的价键可以和一个氢原子键连接, 所以可形成为数众多的、具有不同结构的有机化合物.有机化合物的总数已接近千万种, 远远超过其他元素的化合物的总和, 而且新的有机化合物还不断地被合成出來.這样, 由於不同的特殊结构的形成, 使有机化合物具有很独特的功能.高分子中可以把某些有机物结构(又称为功能团)替换, 以改变高分子的特性.高分子具有巨大的分子量,达到至少1 万以上,或几百万至千万以上所以, 人們將其称为高分子、大分子或高聚物.高分子材料包括三大合成材料, 即塑料、合成纤维和合成橡胶研究理论:高分子材料的使用性能包括物理、化学、力学等性能。

对于用于工程中作为构件和零件的结构高分子材料,人们最关心的是它的力学性能。

力学性能也称为机械性能。

任何材料受力后都要产生变形,变形到一定程度即发生断裂。

这种在外载作用下材料所表现的变形与断裂的行为叫力学行为,它是由材料内部的物质结构决定的,是材料固有的属性。

同时, 环境如温度、介质和加载速率对于高分子材料的力学行为有很大的影响。

因此高分子材料的力学行为是外加载荷与环境因素共同作用的结果。

高分子物理----高分子的力学性能

高分子物理----高分子的力学性能

7.1 玻璃态与结晶态聚合物的力学性质
(4)当温度升至Tg以上,试样进入高弹态,在应力不大 时,就可发生高弹形变,如曲线④,无屈服点,而呈现一段 较长的平台,直到试样断裂前,曲线又出现急剧的上升。
7.1 玻璃态与结晶态聚合物的力学性质
2. 结晶态高聚物的拉伸
7.1 玻璃态与结晶态聚合物的力学性质
引言
高分子材料具有所有已知材料中可变性范围最宽 的力学性质,包括从液体、软橡胶态到刚性固体。然 而,与金属材料相比,高分子材料对温度和时间的依 赖型要强烈得多,表现为高分子材料的粘弹性。高分 子材料的这种力学行为显得复杂而有趣,为不同的应 用提供了广阔的选择余地。
内容提要
1. 玻璃态和结晶态聚合物的力学性质 2. 高弹态聚合物的力学性质 3. 聚合物的力学松弛-粘弹性
7.1 玻璃态与结晶态聚合物的力学性质
比较玻璃态高聚物的拉伸与结晶态高聚物的拉伸相同点与区别
(1) 相同点:两种拉伸过程都经历弹性变形,屈 服(“成颈”),发展大形变,应变硬化。断裂前的大 形变在室温时都不能自发恢复,加热后才能恢复原状态。
7.1 玻璃态与结晶态聚合物的力学性质
(2) 不相同点: ① 冷拉温度范围不同 a. 玻璃态高聚物拉伸温度区间是:Tb-Tg b. 结晶态高聚物拉伸温度区间是:Tg-Tm
7.1 玻璃态与结晶态聚合物的力学性质
4. 硬度 硬度是衡量材、洛氏、和邵氏等名称,通 常布氏硬度最为常见。
7.1 玻璃态与结晶态聚合物的力学性质
三、 屈服现象 1. 应力与应变曲线
图7-9 玻璃态和结晶态高聚物的应力-应变曲线
7.1 玻璃态与结晶态聚合物的力学性质
料抵抗外力破坏的能力。机械强度的测试是参照国际 标准和本国标准进行。

高分子物理-第9章(1高分子的屈服和强度)

高分子物理-第9章(1高分子的屈服和强度)
变(响应)
• 力学性能是高聚物优异物理性能的基础 • 如:某高聚物摩擦、磨耗性能优良,但力学性能
不好,很脆——不能用它作减摩材料
• 如:作电线绝缘材料的高聚物,也要求它们有一
定的力学性能:强度和韧性。如果折叠几次就破 裂,那么这种材料的电绝缘性虽好,也不能用作 电线。
弹性 Elasticity
普弹性 高弹性 High elasticity
Strain softening 应变软化 B
B Y
Y
N
D
A A
plastic deformation
塑性形变
Strain hardening 应变硬化
E A A
O A
B
y
从曲线上可得评价聚合物性能的力学参数:
Y: yield point屈服点
y yield strength 屈服强度 yelongation at yield 屈服伸长率
产生强迫形变-“冷拉”
不同点:冷拉的温度范围:
非晶态Tb~Tg 结晶态Tg~Tm
对晶态聚合物拉伸过程,伴随着凝聚态结构的变化
2.3 取向聚合物的应力-应变曲线:
– 聚合物材料在取向方向上的强度随取向程度的 增加而很快增大,此时,分子量和结晶度的影响 较小,性能主要由取向状况所决定。高度取向时, 垂直于取向方向上材料的强度很小,容易开裂。
F
a
F
Fas =Fsina
横截面A0, 受到的应力 0=F/A0
斜截面Aa = A0 / cosa
法向应力
σαn
=
Fαn Aα
= σ0cos2α
剪切应力
σαs
=
Fαs Aα
=
1 2

高分子物理----高分子的力学性能

高分子物理----高分子的力学性能

一般刻痕试样的冲击强度小于这一数值为脆性断裂,大
于这一数值时为韧性断裂。但这一指标并不是绝对的,
例如玻璃纤维增强的聚酯塑料,甚至在脆性破坏时也有
很高的冲击强度。
7.1 玻璃态与结晶态聚合物的力学性质
2. 高聚物的理论强度 从分子结构的角度来看,高聚物的断裂要破坏分子 内的化学键,分子间的范德华力与氢键。
7.2 高弹态聚合物的力学性质
加入增塑剂虽然可以降低Tg,但有利条件,因此选
用增塑法来降低Tg必须考虑结晶速度增大和结晶形成的 可能性。
7.2 高弹态聚合物的力学性质
(2)共聚法
共聚法也能降低聚合物的Tg,如:PS的主链上带有体 积庞大的苯基,聚丙烯腈有强极性腈基存在,Tg都在室温 以上,只能作为塑料和纤维使用,如果用丁二烯分别与苯 乙烯和丙烯腈共聚可得丁苯橡胶和丁腈橡胶,使Tg下降。 例如:丁苯30,Tg=-53℃,丁腈26,Tg=-42℃。
7.1 玻璃态与结晶态聚合物的力学性质
(3)当温度升高到Tg以下几十度范围内,如曲线③,过
了屈服点后,应力先降后升,应变增大很多,直到C点断裂,
C点的应力称为断裂应力,对应的应变称为断裂伸长率ε 。
7.1 玻璃态与结晶态聚合物的力学性质
(4)当温度升至Tg以上,试样进入高弹态,在应力不大
时,就可发生高弹形变,如曲线④,无屈服点,而呈现一段
应力称为屈服应力或屈服强度。
7.1 玻璃态与结晶态聚合物的力学性质
屈服点之后,应力有所下降,在较小的负荷下即可产生形 变,称为应变软化。之后应力几乎不变的情况下应变有很大 程度的增加,最后应力又随应变迅速增加,直到材料断裂。
7.1 玻璃态与结晶态聚合物的力学性质
四、几类高聚物的拉伸行为 1. 玻璃态高聚物的拉伸

高分子材料(力学性能) ppt课件

高分子材料(力学性能)  ppt课件

三、粘弹性
§5.1 力学性能
三、粘弹性
§5.1 力学性能
2、动态粘弹性 (滞后)
• 滞后:一定温度下,受交变的应力,形变随时
间的变化跟不上力随时间的变化
应力周期性变化:σ=σ 0 Sin ω t 应变:ε =ε 0 Sin(ω t +δ )
落后一相位角
结果:产生滞后圈--能耗
(机械能(弹性能)--热能) ----力学损耗
如何§解5.决1 ?力学性能
1、特征
➢涂料涂装时流挂问题如何 解决?
1) 粘度大;分子量越大,粘度越大;分布越宽,粘度越大;
2) 流动机理:分子重心相对位移,是由链段的相继跃迁实 现的
3) 伴有高弹形变---具有粘弹性
现象:出口膨大、爬杆效应、融体破裂
一、高聚物的流动性 ???
§5.1 力学性能
4)是一假塑性流体:
运动单元高度取向(m 不为零)
1、拉伸过程 (非晶、结晶高聚物)
C 断裂:
脆性断裂:没有屈服,断裂面光滑;
§5.1 力学性能
四 屈服、强度与断裂
韧性断裂:出现屈服后的断裂,断裂面粗糙。
T < Tb 时: σB <σY ---脆性断裂
1、拉伸过程 (非晶、结晶高聚物)
2) 结晶高聚物的应力~应变曲线
1、拉伸过程 (非晶、结晶高聚物) §5.1 力学性能
四 屈服、强度与断裂
注意: • 使用时υ趋于很小---长期强度,其远远小于所测值 ,
例:PVC: σB(1000h)=1/2σB (测) • Tb、Tg测定时,是在一定时间尺度下,
( υ比较小,时间长) 实际受力时(特别是在冲击力时)往往υ很高, 例:PVC 的Tb= - 50度,T使> - 30 ~ -15度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.1 玻璃态与结晶态聚合物的力学性质
7.1 玻璃态与结晶态聚合物的力学性质
4. 硬度
硬度是衡量材料表面抵抗机械压力的能力的一种
指标。常见的硬度有布氏、洛氏、和邵氏等名称,通 常布氏硬度最为常见。
7.1 玻璃态与结晶态聚合物的力学性质
三、 屈服现象
1. 应力与应变曲线
图7-9
玻璃态和结晶态高聚物的应力-应变曲线
7.1 玻璃态与结晶态聚合物的力学性质
五、高聚物的强度与破坏 1. 脆性断裂与韧性断裂
(1) 应力-应变曲线:如果材料只发生普弹形变,在
屈服之前就发生断裂,则这种断裂为脆性断裂;如果材
7.1 玻璃态与结晶态聚合物的力学性质
(2) 不相同点: ① 冷拉温度范围不同 a. 玻璃态高聚物拉伸温度区间是:Tb-Tg
b. 结晶态高聚物拉伸温度区间是:Tg-Tm
7.1 玻璃态与结晶态聚合物的力学性质

本质差别
a. 玻璃态高聚物只发生分子链的取向,不发生相变
b. 结晶态高聚物发生结晶的破坏,取向,再结晶。
7.1 玻璃态与结晶态聚合物的力学性质
(1)当T<<Tg是,应力与应变成正比,最后应变
不到10%就发生断裂的(曲线①),称为脆性断裂。
7.1 玻璃态与结晶态聚合物的力学性质
(2)当温度稍升高些,但仍在Tg以下,曲线②上出现了一
个屈服点B,过了B点,应力反而下降,试样应变增大,继续拉
伸,试样将发生断裂,总的应变不超过20%,称为韧性断裂。
7.1 玻璃态与结晶态聚合物的力学性质
(1) B点以前是弹性部分,应力与应变成正比,去 除应力,材料可恢复原样,不产生永久形变,由直线 的斜率可求出材料的弹性模量。
7.1 玻璃态与结晶态聚合物的力学性质
(2) B点以后,材料呈现塑性行为,去除应力,材
料无法复原,留有永久形变。 B 点为屈服点,对应的
根据材料受力的方式,将各向同性材料分为三类:
a. 拉伸应力和拉伸应变
b. 剪切应力和剪切应变 c. 围压力和压缩应变
7.1 玻璃态与结晶态聚合物的力学性质
2. 弹性模量
对于理想的弹性固体,应力与应变关系服从虎克定
律:弹性模量=应力/应变 上述三种类型的弹性模量相应地为: (1)杨氏模量:E=σ/ε (2)剪切模量:G=σs/γ (3)体积模量:B=P×V0/ΔV
3. 聚合物的力学松弛-粘弹性
7.1 玻璃态与结晶态聚合物的力学性质
一、 描述力学性质的基本物理量
1. 应力与应变
(1)应力:单位面积上的附加内力,其值与单位面 积上所受的外力相等。 (2)应变:当材料受到外力时,其几何形状和尺寸 将发生变化,这种变化称为应变。
7.1 玻璃态与结晶态聚合物的力学性质
应力称为屈服应力或屈服强度。
7.1 玻璃态与结晶态聚合物的力学性质
屈服点之后,应力有所下降,在较小的负荷下即可产生形 变,称为应变软化。之后应力几乎不变的情况下应变有很大 程度的增加,最后应力又随应变迅速增加,直到材料断裂。
7.1 玻璃态与结晶态聚合物的力学性质
四、几类高聚物的拉伸行为 1. 玻璃态高聚物的拉伸
较长的平台,直到试样断裂前,曲线又出现急剧的上升。
7.1 玻璃态与结晶态聚合物的力学性质
2. 结晶态高聚物的拉伸
7.1 玻璃态与结晶态聚合物的力学性质
(1)应力随应变线性增加,试样被均匀的拉长, 伸长率可达百分之几到十几。
7.1 玻璃态与结晶态聚合物的力学性质
(2)到B点后,被拉伸的试样出现一个或几个“细颈”,
高分子的力学性能
Polymer Mechanical Properties
引 言
高聚物作为材料使用时,总是要求高聚物具有必 要的力学性能,可以说,对于其大部分应用而言,力 学性能比高聚物的其他物理性能显得更为重要。
引 言
随着高分子材料的大量应用,人们迫切需要了解 和掌握聚合物的力学性质的一般规律和特点及其与结 构之间的关系,以恰当选择所需要的高分子材料,正 确地控制加工的条件以获得所需的力学性能,并合理
使用。
引 言
高分子材料具有所有已知材料中可变性范围最宽 的力学性质,包括从液体、软橡胶态到刚性固体。然 而,与金属材料相比,高分子材料对温度和时间的依 赖型要强烈得多,表现为高分子材料的粘弹性。高分 子材料的这种力学行为显得复杂而有趣,为不同的应 用提供了广阔的选择余地。
内容提要
1. 玻璃态和结晶态聚合物的力学性质 2. 高弹态聚合物的力学性质
7.1 玻璃态与结晶态聚合物的力学性质
(3)当温度升高到Tg以下几十度范围内,如曲线③,过
了屈服点后,应力先降后升,应变增大很多,直到C点断裂,
C点的应力称为断裂应力,对应的应变称为断裂伸长率ε 。
7.1 玻璃态与结晶态聚合物的力学性质
(4)当温度升至Tg以上,试样进入高弹态,在应力不大
时,就可发生高弹形变,如曲线④,无屈服点,而呈现一段
7.1 玻璃态与结晶态聚合物的力学性质
7.1 玻璃态与结晶态聚合物的力学性质
2. 弯曲强度(挠曲强度) 弯曲强度是在规定试验条件下,对标准试样施力。 静弯曲力矩直到试样折断为止 。
7.1 玻璃态与结晶态聚合物的力学性质
3. 冲击强度 冲击强度是衡量材料韧性的一种强度指标,表征 材料抵抗冲击载荷破坏的能力。通常定义为试样受冲 击载荷而折断时单位载面积所吸收的能量。
细颈部长不断扩展,直到整个试样完全细变为止,在这个
阶段,应力变化不大,而应变增加幅度很大。
7.1 玻璃态与结晶态聚合物的力学性质
பைடு நூலகம்
(3)变为细颈的试样重新被均匀拉伸,直到出现断裂 。
7.1 玻璃态与结晶态聚合物的力学性质
比较玻璃态高聚物的拉伸与结晶态高聚物的拉伸相同点与区别
( 1) 相同点:两种拉伸过程都经历弹性变形,屈 服(“成颈”),发展大形变,应变硬化。断裂前的大 形变在室温时都不能自发恢复,加热后才能恢复原状态。
7.1 玻璃态与结晶态聚合物的力学性质
3. 机械强度 机械强度是材料力学性能的重要指标,它是指材 料抵抗外力破坏的能力。机械强度的测试是参照国际 标准和本国标准进行。
7.1 玻璃态与结晶态聚合物的力学性质
二、 几种常用力学性能的指标 1. 拉伸强度 拉伸强度是在规定的试验温度、湿度和试验速度 下,在标准试样上沿轴向施加拉伸载荷,直到试样被 拉断为止。
相关文档
最新文档