理想电压源外特性曲线数据

合集下载

电压源和电流源

电压源和电流源
一 、 电压源
1、 理想电压源 定义: 输出的电压与流过该元件的电流无关。
电路符号: i + _uS
I+ _US
u us
0
i
理想电压源的伏安特性
理想电压源的V-A特性
特点: 恒压不恒流。
US恒定,I由电源和外电路共同决定。
理想电压源的开路与短路
i=0
++
uS
_
u=_uS
开路
+
+
i=∞
RL
iS
, 当R0很小时,iSC很大,
0
此种情况不允许出现。
二、 电流源
1、 理想电流源
定义: 输出的电流与该元件的端电压无关。
电路符号:
i
iS
+
i
iS
u
-
理想电流源的伏安特性
0
u
理想电流源的V-A特性
特点: 恒流不恒压。 iS恒定,u由电源和外电路共同决定。
理想电流源的开路与短路
i=iS
+
Байду номын сангаас
iS
外部特性曲线
i
is
k
0
u
电流源模型外特性
特例:
(1)a,b端开路,不接负载时,此时
i=0,u
uOC
iS GS
(2)a,b短路,电源短路时, u=0 i iSC iS
一般情况下,为带负载正常工作。
ia
iS R0
u=0 iSC
b
小结
1、理想电压源和理想电流源是忽略了实际电源内阻后的理想电路元件。
u=0
_
RL
短路
i=iS

实验报告1

实验报告1

实验名称:电源的等效变换姓名:陈庚学号:1138360117同组人:郭盛、全卓越学号:1138360110 、1138360138专业、班级:土木工程1班评分:日期:2013. 5. 6 指导老师:一、实验目的1、掌握电源外特性的测试方法。

2、验证电压源与电流源等效变换的条件。

二、原理说明1.一个直流稳压电源在一定的电流范围内,具有很小的内阻。

故在实用中,常将它视为一个理想的电压源,即其输出电压不随负载电流而变。

其外特性曲线,即其伏安特性曲线U=f(I)是一条平行于I轴的直线。

一个实用中的恒流源在一定的电压范围内,可视为一个理想的电流源。

2.一个实际的电压源(或电流源),其端电压(或输出电流)不可能不随负载而变,因它具有一定的内阻值。

故在实验中,用一个小阻值的电阻(或电流源)。

3.一个实际的电源,就其外部特性而言,既可以看成是一个电压源,又可以看成是一个电流源。

若视为电压源,则可用一个理想的电压源Us与一个电阻Ro相串联的组合来表示;若视为电流源,则可用一个理想电流源Is与一电导go相并联的组合来表示。

如果这两种电源能向同样大小的负载供出同样大小的电流和端电压,则称这两个电源是等效的,即具有相同的外特性。

一个电压源与一个电流源等效变换的条件为:Is=Us/Ro,go=1/Ro 或Us=IsRo,Ro=1/go。

如图3-1所示。

三、实验设备图3-1序号名称型号与规格数量备注1 可调直流稳压电源0~30V 1 DG042 可调直流恒流源0~500mA 1 DG043 直流数字电压表0~200V 1 D314 直流数字毫安表0~200mA 1 D315 万用表 1 自备6 电阻器120Ω,200Ω,510Ω,1KΩDG097 可调电阻箱0~99999.9Ω 1 DG098 实验线路DG05 1.测定直流稳压电源与实际电压源的外特性。

(1)按图1接线。

Us为+12V直流稳压电源(将Ro短接)。

调节R2,令其阻值由大至小变化,记录数据结果在表3-1。

电路原理实验

电路原理实验
返回
二.实验原理
基氏定律是电路理论中最基本的定律之一,应用极为广
泛. 该定律有两条:一是电流定律(KCL),二是电压定律
(KVL).
(1)KCL: 在任一时刻,流入到电路任一节点的电流代数和 为零.其实质上是电流连续性的表现.
运用该定律时,一定要注意电流的方向,若不知道电流的 真实方向可以先假设每一电流的参考方向,根据参考方向就
4.有源二端网络等效参数
U 、I OC
SC

Rs的测量方法
(1)当网络输出端开路时,用电压表直
接测出开路电压,将其输出端短路,用电
流表测出短路电流,则Rs= UOC / ISC。
(2)对于二端网络,可以用电桥、万
用表的欧姆档、伏安法等进行测量,也可
在输出端接一负载RL ,测出RL两端电压UL, 则Rs=( UOC / UL-1)* RL ,采用此方法时, RL与Rs值越接近,测出的Rs越准确。
2.正弦信号的观察与测试
由函数信号发生器输出正弦波形,输出频率分别为 150Hz,500Hz,50kHz,输出有效值分别为1V,5V,10V,调节示 波器扫描速度灵敏度及幅度灵敏度旋钮至合适位置,将测得的 数据记入下表。
V\DIV
竖直方向格数
1V
5V
10V
UP-P
计算有效值
TIME\DIV
水平方向一周期格数
减震荡。
3.动态电路过渡过程是十分短暂的单次变化过 程。用普通的双踪示波器观察过渡过程和测 量有关参数时,必须使单次变化的过程重复 出现,因此,可以用方波来代替阶跃信号, 将方波的上升沿做为零状态响应的正阶跃激 励信号,方波的下降沿作为零输入响应的负 阶跃激励信号,只要方波的半个周期大于被 观察电路的时间常数τ的3~5倍,在方波的 每半个周期内就会出现一次过渡过程,所观 察到的响应的性质与单次过程完全相同。

电路实验4电压源与电流源的等效变换

电路实验4电压源与电流源的等效变换

实验四电压源与电流源的等效变换一、实验目的1.通过实验加深对电流源及其外特性的认识;2.掌握电流源和电压源进行等效变换的条件。

二、原理电压源是给外电路提供电压的电源,电压源分理想电压源和实际电压源。

理想电压源的输出电压为恒定值,不随外接负载变化。

理想电压源的电路模型及其伏安特性如图4-1所示。

图4-1实际电压源的输出电压随外接负载变化。

负载的阻值越大,电压源的输出电压越高,当负载的阻值达到无穷大时,实际电压源的输出电压达到最大值。

实际电压源可以用一个理想电压源与一个内阻的串联的电路模型表示。

其伏安特性曲线如果4-2所示。

图4-2电流源是除电压源以外的另一种形式的电源,它可以产生电流提供给外电路。

电流源可以分为理想电流源和实际电流源。

理想电流源可以向外电路提供一个恒值电流,不论外电路电阻的大小如何,其伏安特性曲线如图4-3所示。

图4-3实际电流源当其端电压增加时,通过外电路的电流并非恒定值而是减小。

端电压越高,电流下降得越多;相反,端电压越低通过外电路的电流越大,当端电压为零时,流过外电路的电流最大。

实际电流源的电路模型及伏安特性曲线如图4-4所示。

图4-4某些器件的伏安特性具有近似理想电流源的性质,如硅光电池,晶体三极管输出特性等。

本实验中的电流源是用晶体管来实现的。

图4-5给出了晶体三极管在共基极连接时,集电极电流和集电极与集极间的电压关系曲线。

图4-5一个实际的电源,就其外部特性而言,既可以看成是一个电压源,也可以看成是一个电流源。

其具体说明如下图所示。

图4-6三、实验仪器和器材1.直流可调电压0~30V板2.+15直流稳压电源和200mA恒流源3.电阻4.电位器5.三极管6.交直流电压电流表/电流表7.标准型导线8.标准型短接桥9.九孔实验方板四、实验内容及步骤1.测绘理想电压源的伏安特性曲线按图4-7所示连接电路。

将图中的电压源调至US=15V,负载电阻R为电阻箱。

调整电阻箱阻值,测量负载电阻R两端的电压U、流过负载电阻R的电流I。

伏安特性曲线

伏安特性曲线

(一)线性电阻的伏安特性曲线由图可知,伏安特性曲线的斜率为0.9944,故实验测得线性电阻阻值为1/994.4=1005.6Ω。

实际电阻的标称值为1000Ω,相对误差为E=(|1000-1005.6|/1000)*100%=0.56%。

误差原因:实验中采用电流表内接法,电压表的读数包括了电流表的压降,因此计算所得电阻为电流表内阻和线性电阻之和,偏大。

(二)半导体二极管伏安特性曲线 1、正向特性U/V 2.0 4.0 6.0 8.0 10.0 I/mA 1.992 3.976 5.956 7.953 9.947U/V 0.20 0.40 0.60 0.62 0.64 0.66 0.68 0.70 I/mA0.004 0.004 0.013 0.023 0.042 0.084 0.173 0.3592、反向特性U/V 2.00 4.00 6.00 6.20 6.40 6.60 6.80 I/mA 0.004 0.004 0.004 0.004 0.004 0.004 8.034(三)理想电压源伏安特性曲线I/mA 10.0 20.0 30.0 40.0 50.0U/V 10.032 10.032 10.031 10.030 10.030(四)实际电压源伏安特性曲线I/mA 10.0 20.0 30.0 40.0 50.0U/V 9.406 8.853 8.545 7.842 7.421由公式U=Us-IRs,伏安特性曲线的斜率为电源内阻,可求得实际电源内阻49.8Ω.实验中,实际内阻为51.2Ω,相对误差为E=|51.2-51|/51*100%=0.39%。

误差原因:实验中采用电流表外接法,电流表的读数包括了电压表中的电流,因此,根据公式U=Us-IRs计算所得电阻值偏小。

电路实验报告一(伏安特性的测量)

电路实验报告一(伏安特性的测量)

U
I
U
I
锗二极管
I
硅二极管
稳压管
0.4
0.20.60.81
-5
-10
图1-1 线性电阻的图1-2白炽灯泡的图1-3 二极管、稳压管的伏安特性曲线伏安特性曲线伏安特性曲线
图1-4理想电压源的输出特性曲线图1-5实际电压源的输出特性
图1-6 伏-安特性实验线路
实验电路图






mA
V
200Ω
+
-
实验步骤
1、测量线性电阻的伏-安特性。

按图1-6接线,调节直流稳压电源的输出(从小到大),分别测出电阻R的电流和电压。

2、测量白炽灯泡的伏-安特性。

将电阻去掉,接入白炽灯泡,调节直流稳压电源的输出(注意:白炽灯泡的最大电压值),分别测出白炽灯泡的电流和电压。

3、测量二极管的伏-安特性。

将白炽灯泡去掉,接入二极管(注意二极管的导通方向),调节直流稳压电源的输出(注意:锗二极管导通电压0.4V,硅二极管导通电压0.7V),分别测出二极管的电流和电压。

4、测量稳压管的伏-安特性。

将二极管去掉,接入稳压管(注意稳压管的方向),调节直流稳压电源的输出(注意:稳压管最大稳压电压),分别测出稳压管的电流和电压。

(选做)
二、数据分析处理(参照实验教材“实验报告”要求分析处理)
误差分析:误差主要是万用表的内阻
三.思考题(参照实验教材“思考题”要求回答问题)。

电压源与电流源(理想电流源与理想电压源)的串

电压源与电流源(理想电流源与理想电压源)的串

四、 电压源与电流源(理想电流源与理想电压源)的串、并、和混联1. 电压源的串联,如图2-1-7所示:计算公式为:u s =u s1+u s2+u s32. 电压源的并联,如图2-1-8所示:只有电压源的电压相等时才成立。

12==s s s u u u3. 电流源的串联,如图2-1-9所示: 只有电流源的电流相等时才成立。

12s s s i i i ==4. 电流源的并联,如图2-1-10所示:公式为:12s s s I I I =+5. 电流源和电压源的串联,如图2-1-11所示:u s1u s2us3u sI图2-1-7 电压源串联图2-1-8 电压源并联uII图2-1-10 电流源并联图2-1-9 电流源串联6. 电流源和电压源的并联,如图2-1-12所示:五、实际电源模型及相互转换我们曾经讨论过的电压源、电流源是理想的、实际上是不存在的。

那实际电源是什么样的呢?下面我门作具体讨论。

1. 实际电压源模型实际电压源与理想电压源的区别在于有无内阻R s 。

我们可以用一个理想电压源串一个内阻Rs 的形式来表示实际电压源模型。

如图2-1-13所示uu I s3Is3II图2-1-11 电流源和电压源串联uIII 图2-1-12 电流源和电压源的并联a bR s U U SabIU(a)实际电源 (b)实际电压源模型图2-1-13 实际电压源模型依照图中U 和I 的参考方向 得S S U U R I =- (2-1-5)由式(2-1-5)得到图2-1-13(c )实际电压源模型的伏安关系。

该模型用U S 和R s 两个参数来表征。

其中U S 为电源的开路U oc 。

从式(2-1-5)可知,电源的内阻R s 越小,实际电压源就越接近理想电压源,即U 越接近U S 。

2. 实际电流源模型实际电流源与理想电流源的差别也在于有无内阻R s ,我们也可以用一个理想电流源并一个内阻R s 的形式来表示实际的电流源,即实际电流源模型。

电学实验论文电路元件伏安特性的测绘及电源外特性的测量

电学实验论文电路元件伏安特性的测绘及电源外特性的测量

基本电学实验论文实验一电路元件伏安特性的测绘及电源外特性的测量一、实验目的1、学习测量线性和非线性电阻元件伏安特性的方法,并绘制其特性曲线2、学习测量电源外特性的方法3、掌握运用伏安法判定电阻元件类型的方法4、学习使用直流电压表、电流表,掌握电压、电流的测量方法二、实验设备名称数量型号1、直流恒压源恒流源1台自备2、数字万用表2台自备3、电阻11只1Ω×1 5.1Ω×110Ω×120Ω×1 47Ω×2100Ω×2200Ω×1 1kΩ×1 3kΩ×14、白炽灯泡1只12V/3W5、灯座1只M=9.3mm6、稳压二极管1只2CW567、电位器1只470 /2W8、短接桥和连接导线若干SJ-009和SJ-3019、九孔插件方板1块SJ-010三、实验原理与说明1、电阻元件(1) 伏安特性二端电阻元件的伏安特性是指元件的端电压与通过该元件电流之间的函数关系。

通过一定的测量电路,用电压表、电流表可测定电阻元件的伏安特性,由测得的伏安特性可了解该元件的性质。

通过测量得到元件伏安特性的方法称为伏安测量法(简称伏安法)。

把电阻元件上的电压取为纵(或横)坐标,电流取为横(或纵)坐标,根据测量所得数据,画出电压和电流的关系曲线,称为该电阻元件的伏安特性曲线。

(2) 线性电阻元件线性电阻元件的伏安特性满足欧姆定律。

在关联参考方向下,可表示为:U=IR,其中R为常量,称为电阻的阻值,它不随其电压或电流改变而改变,其伏安特性曲线是一条过坐标原点的直线,具有双向性。

如图1-1(a)所示。

(3) 非线性电阻元件非线性电阻元件不遵循欧姆定律,它的阻值R 随着其电压或电流的改变而改变,就是说它不是一个常量,其伏安特性是一条过坐标原点的曲线,如图1-1(b)所示。

(4) 测量方法在被测电阻元件上施加不同极性和幅值的电压,测量出流过该元件中的电流;或在被测电阻元件中通入不同方向和幅值的电流,测量该元件两端的电压,便得到被测电阻元件的伏安特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档