拉曼光谱实验问题

合集下载

拉曼常见问题

拉曼常见问题

一、测试了一些样品,得到的是Ramanshift,但是文献是wavenumber,不知道它们之间的转换公式是怎么样的?激光波长632.8nm。

1. 两者是一回事。

ramanshift即为拉曼位移或拉曼频移,频率的增加或减小常用波数差表示,拉曼光谱仪得到的谱图横坐标就是波数wavenumber,单位cm-1。

2.两者一回事。

拉曼频移ramanshift指频率差,但通常用波数wavenumber表示,单位cm-1,可以说某个谱峰拉曼位移是??波数,或??cm-1。

3.在Raman谱中,wavenumber有两种理解,一种是相对波数,这时就等于Ramanshift;另一种是绝对波数(这在荧光光谱中用的比较多),这个绝对波数是与激发波长有关,不同的激发波长得到的绝对波数是不一样的,这时Ramanshift等于(10000000/激发波长减去Raman峰的绝对波数)。

所以通常在Raman谱中,wavenumber一般可理解为Ramanshift。

二、如何用拉曼光谱仪测透明的有机物液体,测试时放到了玻璃片上测出来的结果是玻璃的光谱。

1. 我今天还在用激光拉曼测聚苯乙烯,没有出现你说的情况啊是不是玻璃管被污染的厉害?2. 你测出的玻璃的信号,有没有可能们焦点位置不对?3. 应该是聚焦位置不对,聚在玻璃上了,我以前也犯过同样的错误。

4. 用凹面载玻片,液体量会比较多,然后用显微镜聚焦好就可以了,如果液体有挥发性,最好液体上用盖玻片,然后焦点聚焦到盖玻片以下。

如果还不行,你可以查一下“液芯光纤”这个东东5.建议:(1)有机液体里面的分析物质浓度多大? Raman测定的是散射光,所以在溶液中的强度相对比较底,故分析物浓度要大些。

(2)你用的是共聚焦Raman吗?聚焦点要在毛细管的溶液里面才好。

可以在溶液中放点“杂物”方便聚焦。

(3)玻璃是无定形态物质,应该Raman信号比较弱才对。

三、我们这里有做生物样品的拉曼光谱的,在获得的图里面有很强的荧光,有的说,如果拉曼得不到就用其荧光谱。

催化剂拉曼光谱比值低原因

催化剂拉曼光谱比值低原因

催化剂拉曼光谱比值低原因
催化剂拉曼光谱比值低的原因可能有以下几种:
1. 催化剂的组成元素经过高温焙烧后发生氧化等反应,导致元素的化学计量数发生变化,从而影响催化剂的比表面积。

2. 催化剂中金属氧化物的含量较低,对拉曼光谱的响应较低,导致比值较低。

3. 催化剂制备过程中存在分散不良、负载量偏高或载体表面含有吸附或化学夹杂等问题,也可能导致拉曼光谱的比值偏低。

4. 催化剂中的组分在高温下挥发损失,影响了催化剂的比表面积和活性。

综上所述,催化剂拉曼光谱比值低的因素涉及催化剂的元素组成、金属氧化物的含量、制备过程以及高温焙烧处理等方面,需要对具体原因进行详细分析才能得出准确结论。

拉曼光谱分析实验报告

拉曼光谱分析实验报告

拉曼光谱分析实验报告
拉曼光谱分析实验报告
拉曼光谱分析实验用于研究物体的键合性能,这是一种非常有用的工具,可用于检测物体的状态,它可以很好地鉴定有机化合物的结构和物性特性。

本次实验准备了两种生物样品,绿原酸和白芍甙,使用红外拉曼技术将样品逐渐加热,以观察拉曼光谱变化。

拉曼光谱分析得出,绿原酸和白芍甙的吸收峰位置几乎完全一致,均发生在沸点,拉曼光谱的强度与激素的温度成反比,表明其结构稳定性高。

此外,这一实验还发现,绿原酸在加热后发生了结构变化,其吸收峰位置比白芍甙低。

结论:绿原酸和白芍甙的拉曼光谱表明其结构稳定性高,绿原酸在加热后发生结构变化,其吸收峰位置比白芍甙低。

因此,拉曼光谱分析实验是一种非常有用的工具,它可以很好地鉴定有机物结构和特性,并帮助我们了解化合物的键合性性能。

激光拉曼实验讲义

激光拉曼实验讲义

激光拉曼实验讲义实验七激光拉曼实验预习思考题:1.什么叫瑞利散射线、斯托克斯线和反斯托克斯线,它们各⾃产⽣的原因是什么?2.拉曼光谱仪中的聚光镜、集光镜的作⽤分别是什么?3.简述如何实现单光⼦计数?⼀、实验⽬的1.了解拉曼散射的基本原理;2.学习使⽤拉曼光谱仪测量物质的谱线,知道简单的谱线分析⽅法。

⼆、实验原理当波束为0ν的单⾊光⼊射到介质上时,除了被介质吸收、反射和透射外,总会有⼀部分被散射。

按散射光相对于⼊射光波数的改变情况,可将散射光分为三类:第⼀类,其波数基本不变或变化⼩于5110cm --,这类散射称为瑞利散射;第⼆类,其波数变化⼤约为10.1cm -,称为布利源散射;第三类是波数变化⼤于11cm -的散射,称为拉曼散射;从散射光的强度看,瑞利散射最强,拉曼散射最弱。

在经典理论中,拉曼散射可以看作⼊射光的电磁波使原⼦或分⼦电极化以后所产⽣的,因为原⼦和分⼦都是可以极化的,因⽽产⽣瑞利散射,因为极化率⼜随着分⼦内部的运动(转动、振动等)⽽变化,所以产⽣拉曼散射。

在量⼦理论中,把拉曼散射看作光量⼦与分⼦相碰撞时产⽣的⾮弹性碰撞过程。

当⼊射的光量⼦与分⼦相碰撞时,可以是弹性碰撞的散射也可以是⾮弹性碰撞的散射。

在弹性碰撞过程中,光量⼦与分⼦均没有能量交换,于是它的频率保持恒定,这叫瑞利散射,如图7-1(a );在⾮弹性碰撞过程中光量⼦与分⼦有能量交换,光量⼦转移⼀部分能量给散射分⼦,或者从散射分⼦中吸收⼀部分能量,从⽽使它的频率改变,它取⾃或给予散射分⼦的能量只能是分⼦两定态之间的差值12E E E ?=-,当光量⼦把⼀部分能量交给分⼦时,光量⼦则以较⼩的频率散射出去,称为频率较低的光(斯托克斯线),散射分⼦接受的能量转变成为分⼦的振动或转动能量,从⽽处于激发态1E ,如图7-1(b ),这时的光量⼦的频率为0ννν'=-?;当分⼦已经处于振动或转动的激发态1E 时,光量⼦则从散射分⼦中取得了能量E ?(振动或转动能量),以较⼤的频率散射,称为频率较⾼的光(反斯托克斯线),这时的光量⼦的频率为0ννν'=+?。

拉曼光谱实验报告

拉曼光谱实验报告

拉曼光谱实验报告本文的主题是关于拉曼光谱实验的报告。

拉曼光谱是一种非常有用的分析工具,它能够测量物质中分子的振动模式,这对于化学、物理和生物学等领域的研究都非常重要。

在本次实验中,我们使用了拉曼光谱仪来测量几种不同的物质的光谱数据。

我们首先对样品进行了准备,然后将它们放入光谱仪中。

在测量光谱之前,我们还对仪器进行了一些预备工作,例如校准等。

我们选择了几个样品,包括苯乙烯、氯代苯、苯乙酮和正十八烷等,这些样品的分子结构非常不同。

通过对这些样品的拉曼光谱数据的比较和分析,我们可以了解不同样品的分子结构、振动模式和化学键等方面的信息。

对于苯乙烯这个样品,我们得到的拉曼光谱图形中,有一个峰出现在1500 cm^-1附近,这个峰是有机化合物中芳香环的代表性拉曼光谱峰。

此外,苯环C-C键和C-H键的振动也会导致光谱中的拉曼峰。

通过比较苯乙烯的光谱数据和其他样品的数据,我们可以了解分子结构中不同的部分对于拉曼光谱的影响。

在氯代苯的光谱图形中,我们也可以看到一个代表性的拉曼峰,这个峰出现在700 cm^-1的位置,是引入卤素基团后C-Cl化学键的振动导致的。

同样,我们还可以看到苯环C-H键的拉曼峰。

苯乙酮和正十八烷这两个样品的拉曼光谱图形则是比较简单的,因为它们的结构相对简单。

在苯乙酮的光谱图形中,我们可以看到两个比较明显的峰,出现在1700和1500 cm^-1的位置,这是代表了酮基的C=O化学键的振动以及苯环的振动。

正十八烷的光谱图形则相对较为平坦,因为它是一种烷烃,仅有一些C-H化学键的振动能够导致轻微的光谱峰。

通过对各个样品的拉曼光谱数据的比较和分析,我们可以了解它们的分子结构、振动模式和化学键等信息,这对于科学研究中认识物质的性质和结构是非常有用的。

在本次实验中,我们还探究了一些可能存在的实验误差和改进方法。

例如,有些样品在测量时可能会产生较大的噪音或光谱瑕疵,这可能与样品制备不完全或仪器的灵敏度等因素有关。

拉满光谱实验报告

拉满光谱实验报告

一、实验目的1. 熟悉拉曼光谱的原理;2. 了解拉曼光谱仪的使用方法;3. 认识拉曼光谱产生的图像;4. 学习拉曼光谱在物质分析中的应用。

二、实验原理拉曼光谱是研究物质分子振动、转动和声子激发的一种光谱技术。

当一束单色光照射到物质上时,物质中的分子会吸收光子的能量,导致电子跃迁。

在电子跃迁过程中,部分能量会转化为分子振动和转动的能量,使得分子振动和转动状态发生变化。

当分子从激发态返回基态时,会释放出能量,这些能量的一部分以光子的形式辐射出来,另一部分则以热能的形式散失。

拉曼光谱正是通过测量分子振动和转动过程中光子能量变化来研究物质的。

拉曼光谱的原理如下:1. 瑞利散射:当光子与物质分子发生弹性碰撞时,光子的频率和能量不发生变化,这种散射现象称为瑞利散射。

2. 拉曼散射:当光子与物质分子发生非弹性碰撞时,光子的频率和能量发生变化,这种散射现象称为拉曼散射。

拉曼散射分为斯托克斯散射和反斯托克斯散射。

斯托克斯散射是指散射光子的能量小于入射光子的能量,频率低于入射光子;反斯托克斯散射是指散射光子的能量大于入射光子的能量,频率高于入射光子。

三、实验仪器1. 拉曼光谱仪:用于产生单色光、收集散射光以及进行数据处理。

2. 电脑主机:用于控制光谱仪、显示光谱图像以及进行数据处理。

3. 显示器:用于显示光谱图像。

4. 样品:用于测试的物质。

四、实验步骤1. 将样品放置在拉曼光谱仪的样品室中。

2. 调节光谱仪的参数,如波长、分辨率、扫描范围等。

3. 启动光谱仪,开始扫描样品。

4. 收集散射光,并进行数据处理。

5. 分析光谱图像,提取有用信息。

五、实验结果与分析1. 样品的光谱图像:在光谱图像中,斯托克斯散射和反斯托克斯散射分别以正峰和负峰的形式出现。

2. 样品的拉曼光谱分析:通过分析样品的拉曼光谱,可以了解样品的分子结构、化学键、官能团等信息。

3. 实验结果讨论:(1)实验结果表明,拉曼光谱可以有效地分析样品的分子结构、化学键、官能团等信息。

拉曼光谱缺点

拉曼光谱缺点

拉曼光谱缺点
拉曼光谱虽然在化学、物理和生物学等领域得到广泛应用,但也存在一些缺点。

其中主要包括以下几个方面:
1. 信号弱:拉曼光谱的信号弱于红外光谱,需要较长的时间积累信号,从而影响实验效率。

2. 选取激发光源的限制:拉曼光谱需要使用激光光源,而且需要选择适当的激发光源,以保证光谱的准确性和可重复性。

3. 光散射:由于样品中的光子与分子的振动相互作用,会产生散射光。

这种散射光会降低信号强度,从而影响光谱质量。

4. 处理数据的复杂性:拉曼光谱所得到的数据需要进行处理和解释,这需要比红外光谱更高的专业知识和技能。

综上所述,尽管拉曼光谱在许多方面具有优越性,但它也存在一些缺陷和限制。

因此,在选择实验手段时需根据具体需求和实验条件进行综合考虑。

- 1 -。

拉曼光谱实验注意事项

拉曼光谱实验注意事项

拉曼光谱实验注意事项一、样品准备在进行拉曼光谱实验前,需要充分了解样品的性质和特点,以便选择合适的实验条件和样品处理方式。

以下是一些需要注意的事项:1. 样品应具有代表性,能够反映所研究对象的特征或性质。

2. 对于不透明的样品,需要将其表面打磨或抛光,以便激光能够穿透样品并获得清晰的拉曼光谱。

3. 对于液体样品,需要将其稀释至一定浓度,以便在拉曼光谱中获得清晰的信号。

4. 对于气体样品,需要确保样品纯净且无杂质,以免干扰拉曼光谱的测量结果。

5. 对于固体样品,需要将其固定在样品台上,以确保其稳定性和可靠性。

二、实验环境拉曼光谱实验需要在一定的实验环境下进行,以确保实验结果的准确性和可靠性。

以下是一些需要注意的事项:1. 实验室应保持干燥、清洁、无尘,避免样品受潮、污染或损坏。

2. 实验室的温度和湿度应保持恒定,以确保仪器的稳定性和可靠性。

3. 实验室内应避免强光直接照射仪器和样品,以免干扰实验结果。

4. 实验室内应保持安静,避免噪音干扰实验结果。

5. 实验室内的电源和接地应符合仪器要求,以确保仪器的正常运行和安全。

三、激光安全拉曼光谱实验中使用的激光具有较高的能量和亮度,需要注意激光安全问题。

以下是一些需要注意的事项:1. 实验时应佩戴合适的防护眼镜或防护面罩,以避免激光直接照射到眼睛或面部。

2. 实验时应避免激光照射到皮肤或衣物上,以免造成损伤或烧伤。

3. 实验时应保持仪器整洁、干净,避免激光照射到灰尘或其他污染物上,以免造成火灾或爆炸等安全事故。

4. 实验时应严格按照仪器操作规程进行操作,避免误操作导致激光能量过高或过低等不安全因素。

5. 实验时应定期检查仪器的安全性能和防护措施,确保其正常、可靠地运行。

四、仪器校准拉曼光谱实验中使用的仪器需要进行定期校准和维护,以确保实验结果的准确性和可靠性。

以下是一些需要注意的事项:1. 仪器应定期进行校准和维护,以确保其正常、可靠地运行。

2. 在进行仪器校准和维护前,需要充分了解仪器的原理、结构、性能和使用方法等方面的知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

拉曼光谱实验问题
请教喇曼谱实验时,如何选择激发波长,1064nm?还是785nm或633nm? 请指教,谢谢!...谢谢专家。

多看看相关文献,我做的蛋白质常用514nm,也可以用紫外200nm附近激发即为共振拉曼,浓度低也可以测。

理论上讲,拉曼光谱与激发光的波长无关。

但有的样品在一种波长的激光激发下会产生强烈荧光,对拉曼光谱产生干扰。

这时要换一种激发光,以避开荧光的干扰。

若样品在不同激光激发下都不发荧光,则随使用哪一种激光都可以。

拉曼散射是光子与分子的相互作用,当激发光子的能量接近两个电子态之间的跃迁能量时,就会出现共振拉曼或者共振荧光。

共振效应(共振拉曼或共振荧光)的存在与否取决于激发激光的波长。

如果激发光子不能给分子提供足够的能量,相应的产生荧光的跃迁将不能发生。

然而,如果产生了荧光,其强度将远远大于拉曼散射光,从而会掩盖拉曼信号的特征。

有时,荧光还来自于被污染的样品中所存在的杂质,或者来自于一种包裹物周围的本底物质。

选择激发激光波长是避免荧光辐射一种行之有效的方法。

对于大多数样品而言,选择近红外或者紫外激光可以避免激发荧光。

近红外激发下,激光光子没有足够的能量以激发出分子荧光;紫外激发下,虽然激发出分子荧光,但是荧光辐射和拉曼信号的能量相差甚多。

原文由wuzl发表:
感谢指教。

喇曼位移应和激发光波长没有关系,但喇曼散射的强度应该和波长的有关,另外仪器光学系统对波长响应也应有最佳选择,选择波长时这2个方面要考虑吗?
根据瑞利定律,拉曼散射线的强度与激发光波长的四次方成反比。

如果不考虑检测器等因素,当然是激发光的波长越短越好,最好是紫外激光。

但可惜的是,现在用于拉曼光谱仪上的CCD最好的响应波长在620nm左右,480nm以下的响应非常差,若CCD技术不进一步改进,紫外激光器对拉曼光谱仪很难说是一种有用的激光器。

一种基于多波长激发的拉曼光谱的荧光消除方法,涉及一种化学分析和光电信号处理方法,它是通过激光光源依次产生的多个相近波长激光照射到同一被测样品上,依次激发出由荧光和拉曼光组成的混合光谱;光谱仪采集到各混合光谱信号,对齐各混合光谱,通过全光谱积分值归一化校正光谱信号幅度,得到经过横坐标对齐和纵坐标幅度校正的光谱;求取各混合光谱两两间差值,该差值即为荧光信号的差分值,计算该差分值的逆差分,逆差分除以差分步长得到的是荧光背景值与一个常数的和,最后从混合光谱中扣除该荧光背景值,即可分离出纯净的拉曼光谱,实现拉曼光谱的荧光消除目的。

本发明方法合理,能有效地消除背景荧光,而且成本低、使用方便,易于推广使用。

相关文档
最新文档