《机械优化设计》第6章习题解答-1
机械优化设计课后习题答案

机械优化设计课后习题答案(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章习题答案1-1 某厂每日(8h 制)产量不低于1800件。
计划聘请两种不同的检验员,一级检验员的标准为:速度为25件/h ,正确率为98%,计时工资为4元/h ;二级检验员标准为:速度为15件/h ,正确率为95%,计时工资3元/h 。
检验员每错检一件,工厂损失2元。
现有可供聘请检验人数为:一级8人和二级10人。
为使总检验费用最省,该厂应聘请一级、二级检验员各多少人 解:(1)确定设计变量;根据该优化问题给定的条件与要求,取设计变量为X = ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡二级检验员一级检验员21x x ;(2)建立数学模型的目标函数;取检验费用为目标函数,即:f (X ) = 8*4*x 1+ 8*3*x 2 + 2(8*25* +8*15* ) =40x 1+ 36x 2(3)本问题的最优化设计数学模型:min f (X ) = 40x 1+ 36x 2 X ∈R 3·. g 1(X ) =1800-8*25x 1+8*15x 2≤0g 2(X ) =x 1 -8≤0 g 3(X ) =x 2-10≤0g 4(X ) = -x 1 ≤0 g 5(X ) = -x 2 ≤01-2 已知一拉伸弹簧受拉力F ,剪切弹性模量G ,材料重度r ,许用剪切应力[]τ,许用最大变形量[]λ。
欲选择一组设计变量T T n D dx x x ][][2321==X 使弹簧重量最轻,同时满足下列限制条件:弹簧圈数3n ≥,簧丝直径0.5d ≥,弹簧中径21050D ≤≤。
试建立该优化问题的数学模型。
注:弹簧的应力与变形计算公式如下322234881,1,(2n s s F D FD D k k c d c d Gd τλπ==+==旋绕比), 解: (1)确定设计变量;根据该优化问题给定的条件与要求,取设计变量为X = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡n D d x x x 2321; (2)建立数学模型的目标函数;取弹簧重量为目标函数,即:f (X ) =322124x x rx π(3)本问题的最优化设计数学模型:min f (X ) =322124x x rx π X ∈R 3·. g 1(X ) = ≤0g 2(X ) =10-x 2 ≤0 g 3(X ) =x 2-50 ≤0 g 4(X ) =3-x 3 ≤0 g 5(X ) =[]τπ-+312218)21(x Fx x x ≤0 g 6(X ) =[]λ-413328Gx x Fx ≤01-3 某厂生产一个容积为8000 cm 3的平底、无盖的圆柱形容器,要求设计此容器消耗原材料最少,试写出这一优化问题的数学模型。
机械优化设计课后习题答案

6 0 海赛矩阵H ( X ) 0 4
a 各阶主子式: a11 6 0,11 a 21 a12 a 22 6 0 0 0 4
H(X)是正定的,所以, f (X) 为凸函数。
得:极值点 X* [1/ 3 1/ 4]T ,极值f ( x* ) 229/ 24
X( k ) ( k )S( k ) 的几何意义。
2-2 已知两向量 P 1 [1 2
2 0]T , P 2 1]T ,求该两向量之间的夹角 。 2 [2 0
2-3 求四维空间内两点 (1,3,1,2) 和 (2,6,5,0) 之间的距离。 2-4 计 算 二 元 函 数 f (X) x13 x1 x22 5x1 6 在 X(0) [1 1]T 处 , 沿 方 向
x1 d 根据该优化问题给定的条件与要求,取设计变量为 X = x2 D2 ; n x3
(2)建立数学模型的目标函数; 取弹簧重量为目标函数,即:
1
f(X) =
2
4
rx1 x2 x3
2
(3)本问题的最优化设计数学模型: min s.t. f (X) =
2
4
rx1 x2 x3
2
X∈R
3·
g1(X) =0.5-x1 ≤0 g2(X) =10-x2 ≤0 g3(X) =x2-50 ≤0 g4(X) =3-x3 ≤0 g5(X) = (1
x1 8Fx2 ) ≤0 2 x2 x13
3
8Fx2 x3 g6(X) = ≤0 4 Gx1
求:
2、 3、 4 时的四条等值线,并在图上 (1) 以一定的比例尺画出当目标函数依次为 f ( X) 1、
机械优化设计习题参考答案--孙靖民-第四版第6章习题解答-1教学内容

第六章习题解答1.已知约束优化问题:2)(0)()1()2()(min 21222112221≤-+=≤-=⋅-+-=x x x g x x x g ts x x x f试从第k 次的迭代点[]T k x21)(-= 出发,沿由(-1 1)区间的随机数0.562和-0.254所确定的方向进行搜索,完成一次迭代,获取一个新的迭代点)1(+k x 。
并作图画出目标函数的等值线、可行域和本次迭代的搜索路线。
[解] 1)确定本次迭代的随机方向:[]T TRS 0.4120.9110.2540.5620.2540.2540.5620.5622222-=⎥⎥⎦⎤⎢⎢⎣⎡++=2) 用公式:R k k S x xα+=+)()1( 计算新的迭代点。
步长α取为搜索到约束边界上的最大步长。
到第二个约束边界上的步长可取为2,则:176.1)412.0(22822.0911.0212212111=-⨯+=+==⨯+-=+=++R kk R k k S x x S x xαα⎥⎦⎤⎢⎣⎡=+176.1822.01k X即: 该约束优化问题的目标函数的等值线、可行域和本次迭代的搜索路线如下图所示。
2.已知约束优化问题:)(0)(025)(124)(m in 231222211221≤-=≤-=≤-+=⋅--=x x g x x g x x x g ts x x x f试以[][][]T T T x x x 33,14,12030201===为复合形的初始顶点,用复合形法进行两次迭代计算。
[解] 1)计算初始复合形顶点的目标函数值,并判断各顶点是否为可行点:[][][]935120101-=⇒==⇒=-=⇒=030302023314f x f x f x 经判断,各顶点均为可行点,其中,为最坏点。
为最好点,0203x x2)计算去掉最坏点 02x 后的复合形的中心点:⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡==∑≠=3325.221132103312i i i c x Lx3)计算反射点1R x (取反射系数3.1=α)20.693.30.551422.51.322.5)(1102001-=⎥⎦⎤⎢⎣⎡=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=-+=R R c c R f x x x x x 值为可行点,其目标函数经判断α 4)去掉最坏点1R0301x x x x 和,,由02构成新的复合形,在新的复合形中 为最坏点为最好点,011R x x ,进行新的一轮迭代。
最新机械优化设计课后习题答案知识分享

第一章习题答案1-1某厂每日(8h制)产量不低于1800件。
计划聘请两种不同的检验员,一级检验员的标准为:速度为25件/ h,正确率为98%,计时工资为4元/ h;二级检验员标准为:速度为15件/力,正确率为95%,计时工资3 元/ ho检验员每错检一件,工厂损失2元。
现有可供聘请检验人数为:一级8人和二级10人。
为使总检验费用最省, 该厂应聘请一级、二级检验员各多少人?解:(1)确定设计变量;根据该优化问题给定的条件与要求,取设计变量为(2)建立数学模型的目标函数;取检验费用为目标函数,即:f(力二8*4**+ 8*3*X2 + 2 ( 8*25*0.02*+8*15*0. 05x2 )二40K+ 36x2(3) 本问题的最优化设计数学模型:min f (X)二40K+36X2X W Rs. t. g y (力=800-8*25^+8*15匕WOgi (X) =Xi-8W0§3 (A) ~%2_1 0^0闽(力二—Xi WOgs (A) —~x2 WO1-2已知一拉伸弹簧受拉力F,剪切弹性模量5 材料重度「,许用剪切应力国,许用最大变形量〔刃。
欲选择一组设计变量X = [X| x2x3]r =[d D2 n]r使弹簧重量最轻,同时满足下列限制条件:弹簧圈数心簧丝直径〃沖10<D2<50 o 试建立该优化问题的数学模型。
注:弹簧的应力与变形计算公式如下S罟,—1 +瘁,心牛(旋绕比),"器解:(1)确定设计变量;根据该优化问题给定的条件与要求,取设计变量为X二(2) 建立数学模型的目标函数;取弹簧重量为目标函数,即:心二分也(3) 本问题的最优化设计数学模型: min f (X -匚心山XwR4s. t. gi (力—0. 5-Xi WO §2(A)—10—%2 WO 戲(力—^2—50 WO切(力~3—%3 W0馬(无二(1+宀警十]W02X2兀勺说(力二氾*]W01-3某厂生产一个容积为8000 co?的平底、无盖的圆柱形容器,要求设计此容器消耗原材料最少,试写出这一优化问题的数学模型。
机械设计(第八版)课后答案高等教育出版社第六章习题

解: 1. 选择键联接的类型和尺寸
联轴器,选用单圆头普通平键 (C型), 20x12x110
齿轮处,选用圆头普通平键 (A型),25x14x80 —一定要分别说明选择的键型,当然选择其他型式键也可
2. 校核键联接的强度
机械优化设计第六章

第六章 约束优化方法
第一节 概
间接解法:
基本思路: 原目标函数 加权 新的目标函数
(无约束优化问题)
述
约束函数
(约束优化问题)
第六章 约束优化方法
第一节 概
间接解法:
迭代过程:
min f ( x) f ( x1 , x2 , s.t. g j ( x) g j ( x1 , x2 , hk ( x) hk ( x1 , x2 , , xn ) , xn ) 0 ( j 1, 2, , xn ) 0 ( k 1, 2, , m) , l)
第六章 约束优化方法
第二节 随机方向法
随机方向法基本思路:
迭代公式: xk 1 xk d k (k 0,1, )
探索 :x k 1 x k d k 满足:f ( x k 1 ) f ( x k ) g j ( x k 1 ) 0( j 1, 2, , m)
述
x, 1 , 2 f x 1G hk x g j x 2 H
j 1 k 1
mቤተ መጻሕፍቲ ባይዱ
l
第六章 约束优化方法
第一节 概
间接解法:
述
第六章 约束优化方法
第一节 概
间接解法的特点:
①计算效率和数值计算的稳定性有较大提高。 ②可以有效地处理具有等式约束的约束优化问题。
(4)当同一次迭代的初始点与末点的函数值满足式 | f ( x) f ( x 0 ) | 1和步长已达到 || x x 0 || 2 时,则结束迭代计算,并取x* x, f ( x* ) f ( x)。(式中1, 2为给定的收敛精度)
随机方向法的步骤:
机械优化设计课后习题答案

2、 3、 4 时的四条等值线,并在图上 (1) 以一定的比例尺画出当目标函数依次为 f ( X) 1、
画出可行区的范围。 (2) 找出图上的无约束最优解 X1 和对应的函数值 f ( X1 ) , 约束最优解 X 2 和 f ( X2 ) ; (3) 若加入一个等式约束条件:
h(X) x1 x2 0
1-3 某厂生产一个容积为 8000 cm 的平底、无盖的圆柱形容器,要求设计此容器消耗 原材料最少,试写出这一优化问题的数学模型。 解:根据该优化问题给定的条件与要求,取设计变量为 X = 表面积为目标函数,即: minf(X) =
3
x1 底面半径r , h x2 高
求此时的最优解 X3 , f ( X3 ) 。
解:下图为目标函数与约束函数(条件) 设计平面 X1OX2 。其中的同心圆是目标 函数依次为 f(X)=1、2、3、4 时的四条等 值线;阴影的所围的部分为可行域。 由于目标函数的等值线为一同心圆,所以 无约束最优解为该圆圆心即: X1*=[3,4]T 函数值 f(X1*)= 0 。
3·
g1(X) =1800-8*25x1+8*15x2≤0 g2(X) =x1 -8≤0 g3(X) =x2-10≤0 g4(X) = -x1 ≤0 g5(X) = -x2 ≤0
1-2
已知一拉伸弹簧受拉力 F ,剪切弹性模量 G ,材料重度 r ,许用剪切应力 [ ] ,
许用最大变形量 [ ] 。欲选择一组设计变量 X [ x1
6
a 各阶主子式: a11 2 0,11 a 21
a12 a 22
2 1 0 1 2
H(X)是正定的, 所以, f (X) 为凸函数。
机械优化设计复习题及答案

机械优化设计复习题一.单项选择题1.一个多元函数()F X 在X *附近偏导数连续,则该点位极小值点的充要条件为( )A .()*0F X ∇= B. ()*0F X ∇=,()*H X 为正定 C .()*0H X = D. ()*0F X ∇=,()*H X 为负定2.为克服复合形法容易产生退化的缺点,对于n 维问题来说,复合形的顶点数K 应( )A . 1K n ≤+ B. 2K n ≥ C. 12n K n +≤≤ D. 21n K n ≤≤- 3.目标函数F (x )=4x 21+5x 22,具有等式约束,其等式约束条件为h(x)=2x 1+3x 2-6=0,则目标函数的极小值为( )A .1B . 19.05C .0.25D .0.14.对于目标函数F(X)=ax+b 受约束于g(X)=c+x ≤0的最优化设计问题,用外点罚函数法求解时,其惩罚函数表达式Φ(X,M (k))为( )。
A. ax+b+M (k){min [0,c+x ]}2,M (k)为递增正数序列B. ax+b+M (k){min [0,c+x ]}2,M (k)为递减正数序列C. ax+b+M (k){max [c+x,0]}2,M (k)为递增正数序列hnD. ax+b+M (k){max [c+x,0]}2,M (k)为递减正数序列1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A 19.B.20.D 21.A 22.D 23.C 24.B 25.D 26.D 27.A 28.B 29.B 30.B5.黄金分割法中,每次缩短后的新区间长度与原区间长度的比值始终是一个常数,此常数是( )。
A.0.382 B.0.186 C.0.618 D.0.8166.F(X)在区间[x 1,x 3]上为单峰函数,x 2为区间中一点,x 4为利用二次插值法公式求得的近似极值点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章习题解答1.已知约束优化问题:2)(0)()1()2()(min ≤-+=≤-=⋅-+-=xx x g xxx g ts xx x f试从第k 次的迭代点[]x21-= 出发,沿由(-1 1)区间的随机数0.562和-0.254所确定的方向进行搜索,完成一次迭代,获取一个新的迭代点+x 。
并作图画出目标函数的等值线、可行域和本次迭代的搜索路线。
[解] 1)确定本次迭代的随机方向:[]S0.4120.9110.2540.5620.2540.2540.5620.5622222-=⎥⎥⎦⎤⎢⎢⎣⎡++=2)用公式:Sx x α+=+计算新的迭代点。
步长α取为搜索到约束边界上的最大步长。
到第二个约束边界上的步长可取为2,则:176.1)412.0(22822.0911.021=-⨯+=+==⨯+-=+=++Sx xS x x αα⎥⎦⎤⎢⎣⎡=+176.1822.0X即:该约束优化问题的目标函数的等值线、可行域和本次迭代的搜索路线如下图所示。
2.已知约束优化问题:)(0)(025)(124)(min ≤-=≤-=≤-+=⋅--=xx g x x g x x x g ts xx x f试以[][][]x x x33,14,12===为复合形的初始顶点,用复合形法进行两次迭代计算。
[解] 1)计算初始复合形顶点的目标函数值,并判断各顶点是否为可行点:[][][]93512-=⇒==⇒=-=⇒=03032023314f xf x fx经判断,各顶点均为可行点,其中,为最坏点。
为最好点,x x 2)计算去掉最坏点 02x后的复合形的中心点:⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡==∑≠=3325.22113312x Lx 3)计算反射点x(取反射系数3.1=α)20.693.30.551422.51.322.5)(11021-=⎥⎦⎤⎢⎣⎡=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=-+=fx xxx x值为可行点,其目标函数经判断α4)去掉最坏点1R 0301x x x x 和,,由构成新的复合形,在新的复合形中为最坏点为最好点,011R x x ,进行新的一轮迭代。
5)计算新的复合形中,去掉最坏点后的中心点得:⎥⎦⎤⎢⎣⎡=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡= 3.151.7753.30.553321x6)计算新一轮迭代的反射点得:,完成第二次迭代。
值为可行点,其目标函数经判断413.14 5.9451.4825123.151.7751.33.151.775)(121112-=⎥⎦⎤⎢⎣⎡=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=-+=fx x xxxα3.设已知在二维空间中的点[]xxx =,并已知该点的适时约束的梯度[]g 11--=∇,目标函数的梯度[]f 15.0-=∇,试用简化方法确定一个适用的可行方向。
[解] 按公式6-32 计算适用的可行方向:)(xf P xf P d ∇∇-=/)(x 点的目标函数梯度为:[]xf 15.0)(-=∇x点处起作用约束的梯度G 为一个J n ⋅ 阶的矩阵,题中:n=2,J=1:[]xg G 11)(--=∇=梯度投影矩阵P 为:[][][]⎥⎦⎤⎢⎣⎡--=-⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡----⎥⎦⎤⎢⎣⎡---⎥⎦⎤⎢⎣⎡=-=--5.05.05.05.00111111111001GGGG I P则:适用可行方向为:⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡---=707.0707.010.50.50.50.50.510.50.50.50.50.5d4.已知约束优化问题:00)(34)(min ≤-=≤-=≤-=⋅-+-=xgx g x g ts xxxx xx f试求在[]x1/21/4=点的梯度投影方向。
[解] 按公式6-32 计算适用的可行方向:)(x f P x f P d ∇∇-=/)(x 点的目标函数梯度为:[]xf 125.0125.0--=∇)(x点处起作用约束的梯度G 为一个J n ⋅ 阶的矩阵,题中:n=3,J=1:[]xg G 001)(1-=∇=梯度投影矩阵P 为:[][][]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-⎪⎪⎪⎭⎫⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-=--10001000000100100100110001000111GGGG I P则:适用可行方向为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=97.0243.00125.0100010.250.1251000100000.12500100d312)(2112221≤-=⋅+-+=xg ts x xx x f m in(提示:可构造惩罚函数 []∑=-=)(ln )(),(x g r x f r x φ,然后用解析法求解。
)[解] 构造内点惩罚函数:[]∑=--+-+=-=21)()(),(x r x x xx g r x f r x )3ln(12ln φ令惩罚函数对x 的极值等于零:0)3/()(222=⎥⎦⎤⎢⎣⎡----=x r x x dx d φ得:48366121r xx +±== 舍去负根后,得483662r x++=当 []x xr 31302=→→该问题的最优解为,时,。
0)(min ≤-=≤-=⋅+=xgx x g ts xx x f[解] 将上述问题按规定写成如下的数学模型: subroutine ffx(n,x,fx) dimension x(n) fx=x(1)+x(2) endsubroutine ggx(n,kg,x,gx) dimension x(n),gx(kg) gx(1)=x(1)*x(1)-x(2) gx(2)=-x(1)endsubroutine hhx(n,kh,x,hx) domension x(n),hx(kh) hx(1)=0.0 end然后,利用惩罚函数法计算,即可得到如下的最优解:============== PRIMARY DATA ============== N= 2 KG= 2 KH= 0 X : .1000000E+01 .2000000E+01 FX: .3000000E+01GX: -.1000000E+01 -.1000000E+01 X : .1000000E+01 .2000000E+01 FX: .3000000E+01GX: -.1000000E+01 -.1000000E+01 PEN = .5000000E+01R = .1000000E+01 C = .2000000E+00 T0= .1000000E-01 EPS1= .1000000E-05 EPS2= .1000000E-05=============== OPTIMUM SOLUTION ============== IRC= 21 ITE= 54 ILI= 117 NPE= 3759 NFX= 0 NGR= 0 R= .1048577E-13 PEN= .4229850E-06 X : .9493056E-07 .7203758E-07 FX: .1669681E-06GX: -.7203757E-07 -.9493056E-077.用混合惩罚函数法求下列问题的最优解:1)(0)()(2121112≤-+=≤-=⋅-=xx x h x x g ts x xx f ln m in[解] 将上述问题按规定写成如下的数学模型: subroutine ffx(n,x,fx) dimension x(n) fx=x(2)-x(1) endsubroutine ggx(n,kg,x,gx) dimension x(n),gx(kg) gx(1)=-log(x(1))] gx(2)=-x(1) gx(3)=-x(2) endsubroutine hhx(n,kh,x,hx) domension x(n),hx(kh) hx(1)=x(1)+x(2)-1end然后,利用惩罚函数法计算,即可得到如下的最优解:============== PRIMARY DATA ============== N= 2 KG= 3 KH= 1 X : .2000000E+01 .1000000E+01FX: -.1000000E+01GX: -.6931472E+00 -.2000000E+01 -.1000000E+01 X : .2000000E+01 .1000000E+01 FX: -.1000000E+01GX: -.6931472E+00 -.2000000E+01 -.1000000E+01 HX: .2000000E+01 PEN = .5942695E+01R = .1000000E+01 C = .4000000E+00 T0= .1000000E-01 EPS1= .1000000E-05 EPS2= .1000000E-05=============== OPTIMUM SOLUTION ============== IRC= 29 ITE= 143 ILI= 143 NPE= 1190 NFX= 0 NGR= 172 R= .7205765E-11 PEN= -.9999720E+00 X : .1000006E+01 .3777877E-05FX: -.1000012E+01GX: -.5960447E-05 -.1000006E+01 .6222123E-05 HX: -.2616589E-06。