金属复合材料
金属复合材料的制备与性能及其应用

金属复合材料的制备与性能及其应用金属复合材料是将两种或两种以上的金属或非金属材料通过物理、化学手段合成为一种新型组合材料。
相对于单一材料,金属复合材料具有更优异的力学性能、耐磨、耐蚀、耐高温、难燃等性能。
金属复合材料的制备和应用是近年来金属材料领域中的重要课题,本文将对其制备与性能及应用进行讨论。
一、金属复合材料的制备1. 直接冶炼法直接冶炼法是指将两种以上的金属材料一起进行冶炼制备金属复合材料。
该方法具有生产效率高、成本低等优点。
然而,直接冶炼法会使金属材料的结构和化学成分发生变化,导致材料性能下降。
2. 热压法热压法是指将两种或两种以上的金属材料先进行加热处理,再进行压制,制备金属复合材料。
该方法制备的复合材料相对于直接冶炼法更为均匀,适用于制备高性能的金属复合材料。
3. 焊接法焊接法是指将两种或两种以上的金属材料通过热焊、爆炸焊或搅拌摩擦焊等方式进行制备。
该方法能够制备出高密度、高强度的金属复合材料,但需要借助大量的设备和技术。
二、金属复合材料的性能1. 优良的力学性能金属复合材料具有高强度、高韧性等力学性能。
其力学性能可根据所用材料的种类、组合方式和制备工艺的不同而变化。
2. 耐腐蚀性能金属复合材料具有优异的耐腐蚀性能,可以在腐蚀剂等恶劣环境中使用。
不同的金属复合材料具有不同的耐腐蚀性能,对于某些特殊环境,需要选择对应的金属复合材料。
3. 良好的导热性和导电性金属复合材料具有良好的导热性和导电性,特别适用于工业领域需要散热、传热的场合。
三、金属复合材料的应用1. 航天领域金属复合材料在航天领域中得到了广泛应用,例如战斗机上的发动机叶片、航天器上的整流罩等重要部件。
2. 汽车领域金属复合材料的轻量化特性,使其在汽车领域受到重视。
目前,许多汽车零部件都采用了金属复合材料,例如车轮、车架等。
3. 其他领域金属复合材料除了上述领域外,还被广泛应用于电子、机械制造、化工、建筑等领域中。
总的来说,金属复合材料因其优异的力学性能、良好的耐腐蚀性能和导热导电性能,以及在各种特殊环境中的应用,使其成为新材料领域的一大趋势,随着科学技术的发展,金属复合材料的应用领域将不断扩大。
金属基复合材料特点

金属基复合材料特点一、金属基复合材料的特点1. 高强度和刚性:金属基复合材料具有很高的强度和刚性,比一般的金属材料更加坚固和耐用。
这种材料通常用于需要承受高强度和高压力的工程应用中。
2. 耐高温性能:金属基复合材料通常具有良好的耐高温性能,可以在高温环境下保持稳定的物理和化学性质。
这种特性使其在航空航天和发动机制造领域得到广泛应用。
3. 耐腐蚀性能:金属基复合材料具有出色的耐腐蚀性能,可以抵抗各种化学物质的侵蚀和腐蚀。
这使其成为在化学工业和海洋工程中广泛使用的材料。
4. 良好的导热性和导电性:金属基复合材料保留了金属材料良好的导热性和导电性,可以有效传递热量和电流,适用于需要热传导和电导的应用。
5. 易加工性:金属基复合材料在加工过程中具有较好的可塑性和可加工性,可以通过锻造、压铸、热处理等工艺加工成各种形状和尺寸,满足不同工业领域的需求。
6. 轻量化:金属基复合材料相比纯金属材料更轻,可以有效降低结构重量,提高整体性能。
因此,在航空航天、汽车制造等领域有着广泛的应用前景。
7. 良好的疲劳性能:金属基复合材料具有较好的疲劳性能,可以在多次载荷循环下保持稳定的性能,延长材料的使用寿命。
8. 损伤容限性:金属基复合材料在遭受外部冲击或应力时,具有较好的损伤容限性,能够有效减缓损伤扩张速度,延缓失效。
9. 界面结合强度高:金属基复合材料的金属基体和非金属增强相之间具有良好的界面结合强度,提高了材料的整体性能和稳定性。
10. 抗磨损性能:金属基复合材料具有良好的抗磨损性能,可以在高摩擦和磨损环境下保持长久的使用寿命,适用于摩擦材料和润滑部件。
二、金属基复合材料的优点1. 综合性能优异:金属基复合材料综合了金属材料和陶瓷、聚合物等非金属材料的优点,具有较好的强度、刚性、耐热耐腐等性能。
2. 可调性强:金属基复合材料的组分和结构可以根据具体需求进行调整和设计,以获得满足不同工程应用需求的材料。
3. 轻量化设计:金属基复合材料比纯金属材料更轻,可以实现结构轻量化设计,提高整体性能和效率。
金属基复合材料

四、挤压铸造法
挤压铸造法是制造金属基复合材料较理 想的途径,此工艺先将增强体制成预成型 体,放入固定模型内预热至一定温度,浇 人金属熔体,将模具压下并加压,迅速冷 却得到所需的复合材料。
挤压铸造法特点:可以制备出增强相非常 高体积分数(40 %~50 %)的金属基复合 材料,由于在高压下凝固,既改善了金属 熔体的浸润性,又消除了气孔等缺陷,因 此,挤压铸造法是制造金属基复合材料质 量较好,可以一次成型。
六、熔体浸渗法
熔体浸渗工艺包括压力浸渗和无压浸渗。 当前是利用惰性气体和机械装置作为压力 媒体将金属熔体浸渗进多气孔的陶瓷预制 块中,可制备体积分数高达50 %的复合材 料,随后采用稀释的方法降低体积分数。
三、原位生成法
原位生成法指增强材料在复合材料制造 过程中,并在基体中自己生成和生长的方 法,增强材料以共晶的形式从基体中凝固 析出,也可与加入的相应元素发生反应、 或者合金熔体中的某种组分与加入的元素 或化合物之间的反应生成。前者得到定向 凝固共晶复合材料,后者得到反应自生成 复合材料。
原位生成复合材料的特点:增强体是 从金属基体中原位形核、长大的热力学稳 定相,因此,增强体表面无污染,界面结 合强度高。而且,原位反应产生的增强相 颗粒尺寸细小、分布均匀,基体与增强材 料间相容性好,界面润湿性好,不生成有 害的反应物,不须对增强体进行合成、预 处理和加入等工序,因此,采用该技术制 备的复合材料的综合性能比较高,生产工 艺简单,成本较低。
一、搅拌铸造法
搅拌铸造法制备金属基复合材料起源于 1968年,由S.Ray在熔化的铝液中加入氧化 铝,并通过搅拌含有陶瓷粉末的熔化状态 的铝合金而来的。
搅拌铸造法的特点是:工艺简单,操作 方便,可以生产大体积的复合材料(可到 达500 kg),设备投入少,生产成本低, 适宜大规模生产。但加入的增强相体积分 数受到制,一般不超过20 %,并且搅拌后 产生的负压使复合材料很容易吸气而形成 气孔,同时增强颗粒与基体合金的密度不 同易造成颗粒沉积和微细颗粒的团聚等现 象。
金属基复合材料的主要特点

金属基复合材料的主要特点金属基复合材料(Metal Matrix Composites, MMCs)是一种由金属或合金作为基体,与一种或多种其他材料(如陶瓷、石墨、碳纤维等)作为增强相组成的复合材料。
这种材料结合了金属和非金属材料的优点,具有许多独特的性能特点。
以下将详细阐述金属基复合材料的主要特点,包括其力学性能、热稳定性、耐磨性、抗腐蚀性以及设计灵活性等方面。
一、优异的力学性能金属基复合材料最显著的特点之一是其优异的力学性能。
由于金属基体具有良好的韧性和塑性,而增强相则具有高强度和高刚度,因此金属基复合材料在保持金属基体良好塑性的同时,能够显著提高材料的强度和刚度。
这种优异的力学性能使得金属基复合材料在航空航天、汽车、机械等领域具有广泛的应用前景。
二、良好的热稳定性金属基复合材料通常具有良好的热稳定性,能够在高温环境下保持较好的力学性能。
这是因为金属基体本身具有较好的导热性和热膨胀性,而增强相则能够有效地阻碍热裂纹的扩展。
因此,金属基复合材料在高温环境下具有较好的结构稳定性和耐久性,适用于高温工况下的结构件和零部件。
三、出色的耐磨性由于增强相的加入,金属基复合材料的硬度和耐磨性得到了显著提高。
在摩擦过程中,增强相能够有效地承受和分散载荷,减少磨损和剥落。
因此,金属基复合材料在摩擦磨损严重的场合(如轴承、齿轮等)具有广泛的应用前景。
四、优异的抗腐蚀性金属基复合材料中的增强相通常具有较好的化学稳定性,能够有效地提高材料的抗腐蚀性能。
此外,通过合理的成分设计和表面处理,还可以进一步提高金属基复合材料的耐腐蚀性能。
这使得金属基复合材料在化工、海洋等腐蚀环境中具有广阔的应用前景。
五、设计灵活性高金属基复合材料的设计灵活性较高,可以通过调整基体和增强相的成分、含量和分布来实现对材料性能的定制和优化。
例如,通过改变增强相的种类、形状和取向,可以调整材料的强度和刚度;通过调整基体的成分和处理工艺,可以改善材料的塑性和韧性。
金属层状复合材料与金属基复合材料

金属层状复合材料与金属基复合材料一、金属层状复合材料与金属基复合材料的概念与分类1.1 金属层状复合材料的定义与特点金属层状复合材料是由多层金属片通过堆叠、压制或焊接等工艺制备而成的一类复合材料。
其具有以下特点: - 高强度和刚度:由于金属片的堆叠层数多,可以提高材料的强度和刚度。
- 轻质:相比传统的实心金属材料,金属层状复合材料的重量更轻。
- 耐高温:金属层状复合材料通常由高温合金制备,具有良好的高温性能。
- 优异的抗疲劳性能:金属层状复合材料能够承受长时间的重复加载而不容易疲劳破坏。
1.2 金属基复合材料的定义与特点金属基复合材料是以金属为基体,通过添加一定量的非金属相(如陶瓷颗粒、纤维等)形成的复合材料。
其具有以下特点: - 高强度和硬度:添加非金属相后可以显著提高材料的强度和硬度。
- 低密度:相对于普通金属材料,金属基复合材料的密度更低,有利于减轻结构负荷。
- 耐磨损性能:添加的非金属相可以增加金属基复合材料的耐磨损性能。
- 良好的导热性能:金属基复合材料具有良好的导热性能,适用于高温工况。
二、金属层状复合材料的制备方法与应用领域2.1 金属层状复合材料的制备方法2.1.1 堆叠法通过将多层金属片按一定顺序堆叠在一起,并加热至一定温度进行压制,形成金属层状复合材料。
### 2.1.2 焊接法利用金属的焊接工艺将多层金属片进行连接,形成金属层状复合材料。
### 2.1.3 粘结法通过在金属片之间涂布粘结剂,然后将金属片经过压制黏合在一起,形成金属层状复合材料。
2.2 金属层状复合材料的应用领域•航空航天领域:金属层状复合材料具有优异的强度和轻质特性,适用于航空航天结构件的制造,如飞机机身、发动机部件等。
•汽车领域:金属层状复合材料可以用于制造汽车车身结构,降低整车的重量,提高燃油经济性。
•建筑领域:金属层状复合材料的高强度和刚度特性,使其成为建筑结构中的重要材料,如大跨度屋顶、桥梁等。
金属基复合材料应用举例

金属基复合材料应用举例金属基复合材料是指以金属为基体,添加一种或多种增强相(如纤维、颗粒、片材等)来改善金属材料的性能和功能的一类材料。
金属基复合材料具有高强度、高韧性、高温稳定性等优点,因此在航空航天、汽车、船舶、电子等领域得到广泛应用。
以下是十个金属基复合材料的应用举例:1. 铝基复合材料:铝基复合材料由铝基体和增强相(如陶瓷颗粒、碳纤维等)构成,具有低密度、高强度、耐磨损等特点。
在航空航天领域,铝基复合材料被用于制造飞机机身、航天器传动系统等部件。
2. 镁基复合材料:镁基复合材料具有低密度、高比强度和良好的导热性能,广泛应用于航空航天、汽车、电子等领域。
例如,在汽车行业中,镁基复合材料被用于制造车身结构和发动机零部件,可以减轻车重,提高燃油效率。
3. 钛基复合材料:钛基复合材料由钛基体和增强相(如陶瓷颗粒、纤维等)构成,具有高强度、低密度和良好的耐腐蚀性能。
在航空航天领域,钛基复合材料被用于制造飞机发动机叶片、航天器外壳等高温部件。
4. 镍基复合材料:镍基复合材料由镍基体和增强相(如陶瓷颗粒、纤维等)构成,具有高温强度和良好的耐腐蚀性能。
在航空航天领域,镍基复合材料被用于制造航空发动机涡轮叶片、燃烧室等高温部件。
5. 铜基复合材料:铜基复合材料由铜基体和增强相(如碳纤维、陶瓷颗粒等)构成,具有高导电性和高热导率。
在电子领域,铜基复合材料被用于制造高性能散热器、电子封装材料等。
6. 钨基复合材料:钨基复合材料由钨基体和增强相(如碳纤维、陶瓷颗粒等)构成,具有高密度、高熔点和高强度。
在核工业领域,钨基复合材料被用于制造核反应堆材料、高温组件等。
7. 铁基复合材料:铁基复合材料由铁基体和增强相(如碳纤维、陶瓷颗粒等)构成,具有高强度和良好的耐磨性。
在机械制造领域,铁基复合材料被用于制造高性能齿轮、轴承等零部件。
8. 锆基复合材料:锆基复合材料由锆基体和增强相(如陶瓷颗粒、纤维等)构成,具有高温稳定性和良好的耐腐蚀性能。
金属复合材料的优势和应用前景

金属复合材料的优势和应用前景金属复合材料(metal matrix composites,MMC)是一种由金属基体和增强相组成的复合材料。
与传统的金属材料相比,金属复合材料具有许多优势,如高强度、高刚度、良好的耐磨性和热稳定性等。
这些优势使得金属复合材料在诸多领域具有广泛的应用前景。
一、金属复合材料的优势1. 高强度和高刚度:金属复合材料采用增强相(如纤维、颗粒等)与金属基体的复合结构,能够显著提高材料的强度和刚度。
这使得金属复合材料在需要承受大应力和重载情况下具有优越的性能。
2. 良好的耐磨性:金属复合材料中的增强相能够有效地抵抗磨损和磨削,这使得金属复合材料在摩擦、磨损和磨削严重的环境下具有较长的使用寿命。
3. 耐高温性能:金属复合材料中的增强相通常具有良好的耐高温性能,可以在高温环境下保持较好的力学性能和稳定性。
这使得金属复合材料在航空航天、汽车发动机等高温应用领域有着广泛的应用前景。
4. 良好的导热性和导电性:金属基体具有良好的导热性和导电性,而增强相通常也具有较高的导热性和导电性。
这使得金属复合材料能够在需要良好导热性和导电性的领域中发挥重要作用,如电子器件散热和电磁屏蔽。
二、金属复合材料的应用前景1. 航空航天领域:金属复合材料由于其高强度、高刚度和耐高温的特点,在航空航天领域具有广泛的应用前景。
例如,金属复合材料可以用于制造飞机结构件、发动机零部件和航天器热防护材料等。
2. 汽车工业:随着汽车行业对轻量化和节能环保要求的提升,金属复合材料作为一种重要的替代材料,其在汽车工业中的应用也越来越广泛。
金属复合材料可以应用于汽车发动机、底盘和车身结构等部件,以减轻整车重量、提高燃油效率和降低尾气排放。
3. 电子行业:金属复合材料具有良好的导热性和导电性,因此在电子行业中具有广泛的应用前景。
金属复合材料可以用于制造散热片、电磁屏蔽材料、半导体基底等,以提高电子器件的性能和稳定性。
4. 能源领域:金属复合材料的高强度、良好的耐高温性能和导热性,使其在能源领域具有潜在的应用前景。
离子聚合物-金属复合材料

a.通常在低频时产生较大的
位移,如果频率上升到几十 HZ时,将不产生位移。
b.不同频率下,弯曲位移达到
饱和时的驱动电压值不同, 在频率较高时,电压值较小。
11
三、IPMC的特性:
3. 电致动机理:
可以从膜内部平衡离子的迁移来考虑
a.水合离子
b.膜的厚度
c.外加电场强弱
变化频率
膜内电阻、 微观电荷密度变化、 聚集层内部电荷的平衡、 离子迁移速率
17
四、IPMC的应用前景实例:
3.泳动微机器人推进器:
无噪声推动,可以躲避声纳的探测
18
四、IPMC的应用前景实例:
4.微型蠕动泵:
5.其它执行器及传感器:
如计量阀、滑行结构、微飞行器件、隔膜泵、微电机传感器等。
19
四、IPMC的应用前景实例:
(二)医学应用:人体内辅助驱动材料
1、人造心脏辅助肌肉:
16
四、IPMC的应用前景实例:
2.刮尘器:
通过从海盗宇宙探测器和火星探 险器任务中所获取的教训,研究人 员了解到在火星上执行任务的硬件 装置表面很容易积上灰尘。积累的 灰尘是妨碍光学装置长期工作的关 键性问题,并且降低了太阳能电池 产生功率的效率。 使用了类似于汽车挡风玻璃刮雨器 的刮尘器。与常规的致动器相比, IPMC 具有能制成简单、轻质、低 功率刮擦机构的理想特性。尤其是 当给定大约0.3Hz 的激励信号时, IPMC 能产生大于90 度的弯曲,其弯 曲方向取决于所施加信号的极性。
NASA/JPL(美国宇航局喷气推进实验室)reported that the actuation properties of IPMC muscles in a harsh space environment such as 1 Torr of pressure and −140 ◦C temperature are noticeable for space applications.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属基复合材料论金属基复合材料(MMC),这一术语包括很广的成分与结构,共同点是有连续的金属基体(包括金属间化合物基体)。
现代科学技术对现代新型材料的强韧性,导电、导热性,耐高温性,耐磨性等性能都提出了越来越高的要求。
与传统的金属材料相比,金属基复合材料具有较高的比强度与比刚度,而与高分子基复合材料相比,它又具有优良的导电性而耐热性,与陶瓷材料相比,它又具有较高的韧性和较高的抗冲击性能。
这些优良的性能决定了它从诞生之日起就成了新材料家庭中的重要一员。
它已经在一些领域里得到应用并且其应用领域正在逐步扩大一、金属基复合材料分类通常,金属基复合材料根据增强相、基体种类或材料特性进行分类。
由于金属基复合材料的特性,特别是力学性能与增强相的形态、体积分数、取向,以及分散等直接相关,故多采用增强相对复合材料进行分类。
但是,具有两种以上的增强相的混合复合材料是很难包括在增强相分类复合材料中的。
例如,采用晶须和颗粒两种增强材料的复合材料。
随着新型复合材料的不断开发,其分类的界线将变得模糊。
1.1. 按用途分类:⑴结构复合材料:高比强度、高比模量、尺才稳定性、耐热性等是其主要性能特点。
用于制造各种航天、航空、汽车、先进武器系统等高性能结构件。
⑵功能复合材料:高导热、导电性、低膨胀、高阻尼、高耐磨性等物理性能的优化组合是其主要特性,用于电子、仪器、汽车等工业。
强调具有电、热、磁等功能特性⑶智能复合材料则强调具有感觉、反应、自监测、自修复等特性。
1.2.按增强材料形态分类可分为纤维增强金属基复合材料、颗粒和晶须增强金属基复合材料。
1.3.按金属基体分类可分为铝基复合材料,钛基复合材料、镁基复合材料、高温合金复合材料和金属间化合物复合材料。
1.4.按增强体类型分类则可分为单片、晶须(或者纤维)和颗粒二、金属基复合材料的制备2.1粉末冶金复合法粉末冶金复合法基本原理与常规的粉末冶金法相同,包括烧结成形法、烧结制坯加塑法加工成形法等适合于分散强化型复合材料(颗粒强化或纤维强化型复合材料)的制备与成型。
粉末冶金复合法的工艺主要优点是:基体金属或合金的成分可自由选择,基体金属与强化颗粒之间不易发生反应;可自由选择强化颗粒的种类、尺寸,还可多种颗粒强化;强化颗粒添加量的范围大;较容易实现颗粒均匀化。
缺点是:工艺复杂,成本高;制品形状、尺寸受限制;微细强化颗粒的均匀分散困难;颗粒与基体的界面不如铸造复合材料等目前金属基复合材料的制备工艺主要有哪些?2.2、半固态复合铸造法半固态复合铸造法是从半固态铸造法发展而来的。
通常金属凝固时,初生晶以枝晶方式长大,固相率达0.2%左右时枝晶就形成连续网络骨架,失去宏观流动性。
如果在液态金属从液相到固相冷却过程中进行强烈搅拌则使树枝晶网络骨架被打碎而保留分散的颗粒状组织形态,悬浮于剩余液相中,这种颗粒状非枝晶的微组织在固相率达0.5%~0.6%仍具有一定的流变性。
液固相共存的半固态合金因具有流变性,可以进行流变铸造;半固态浆液同时具有触变性,可将流变铸锭重新加热到固、液相变点软化,由于压铸时浇口处及型壁的剪切作用,可恢复流变性而充满铸型。
强化颗粒或短纤维强化材料加入到受强烈搅拌的半固态合金中,由于半固态浆液球状碎晶粒对添加颗粒的分散和捕捉作用,既防止颗粒的凝聚和偏析,又使颗粒在浆液中均匀分布,改善了润湿性并促进界面的结合。
2.3、离心铸造法广泛应用于空心件铸造成形的离心铸造法,可以通过两次铸造成型法成形双金属层状复合材料,此方法简单,具有成本低、铸件致密度高等优点,但是界面质量不易控制,难以形成连续长尺寸的复合材料。
2.4、加压凝固铸造法该法是将金属液浇注铸型后,加压使金属液在压力下凝固。
金属从液态到凝固均处于高压下,故能充分浸渗,补缩并防止产生气孔,得到致密铸件。
铸、锻相结合的方法又称挤压铸造、液态模锻、锻铸法等。
加压凝固铸造法可制备较复杂的MMCs零件,亦可局部增强。
由于复合材料易在熔融状态下压力复合,故结合十分牢固,可获得力学性能很高的零件。
这种高温下制成的复合坯,二次成型比较方便,可进行各种热处理,达到对材料的多种要求。
2.5直接氧化(DIMON)法直接氧化法是由氧化性气体在一定工艺条件下使金属合金液直接氧化形成复合材料。
通常直接氧化法的温度比较高,添加适量的合金元素如Mg、Si等,可使反应速度加快。
这类复合材料的强度、韧性取决于形成粒子的状态和最终显微组织形态。
由于形成的增强体可以通过合金化及其反应热力学进行判断,因此可以通过合金化、炉内气氛的控制来制得不同类型增强体的复合材料。
三、复合材料的一般性能特点3.1.高比强度、比刚度:①纤维增强金属基复合材料的比强度、比模量明显高于金属基体。
②颗粒增强金属基复合材料的比强度虽无明显增加,但比模量明显提高。
③横向模量和剪切模量,金属基复合材料远高于聚合物基复合材料。
3.2高韧性和高冲击性能:①金属基复合材料中的金属基体属韧性材料,受到冲击时能通过塑性变形来接受能量,或使裂纹钝化,减少应力集中而改善韧性。
②因而相对聚合物、陶瓷基复合材料而言,金属基复合材料具有较高的韧性和耐冲击性能。
③在硼/铝复合材料中,在铝中扩展的裂纹尖端应力可达到350MPa,而纤维的局部强度接近4.2GPa。
当裂纹在垂直于外张力载荷方向扩展时,会受到纤维/基体界面的阻滞。
因为基体中的裂纹顶端的最大应力接近基体的拉伸强度,而低于纤维的断裂应力时,裂纹或在界面扩展钝化,或因基体的塑性剪切变形而钝化,从而改善了复合材料的断裂韧性。
3.3对温度变化和热冲击的敏感性低:①与聚合物、陶瓷基复合材料相比,金属基复合材料的物理与机械性能具有高温稳定性,即对温度不敏感;耐冲击性能优良。
②特别是聚合物基复合材料的耐热冲击性能对温度变化非常敏感,在接近其玻璃化温度时更为明显;③陶瓷基复合材料的耐热冲击性能与金属基复合材料相比也比较差3.4表面耐久性好,表面缺陷敏感性低金属基复合材料中的金属基体能通过塑性变形来接受能量,或使裂纹钝化,因而表面耐久性好,表面缺陷敏感性低。
尤其是晶须、颗粒增强复合材料常用做工程中的耐磨部件使用。
3.5导热、导电性能好3.6性能再现性好3.7良好的热匹配性:硼纤维与钛合金的热膨胀系数接近,硼/钛复合材料中的热应力可降至很低;石墨/镁、碳/铝复合材料经设计后的热膨胀系数接近于零;晶须、颗粒增强复合材料的热膨胀系数具有各向同性。
四、金属基复合材料的应用由于金属基复合材料具有极高的比强度、比刚度,以及高温强度,首先在航空航天上得到应用,今后也将在航空航天领域占据重要位置。
随后,在汽车、体育用品等领域也得到了应用,特别是晶须增强复合材料和颗粒增强复合材料在日本的民用领域得到较好的应用。
目前以铝基、镁基、铁基复合材料发展较为成熟,己在航天、航空、电子、汽车等工业中应用。
金属基复合材料按组织形态可分为宏观组合型和微观强化型两类五、金属基复合材料的发展金属基复合材料的例子可追溯到古文明时期。
在土耳其发现的公元前7000年的铜锥子,它是经过反复拓平与锤打研制成的。
在这个过程个,非金属夹杂物被拉长。
弥散强化金属材料:始于1924年,Schmit关于铝/氧化铝粉末烧结,导致上世纪50及60年代的广泛研究。
沉淀强化的理论于30年代,并在以后的几十年里得到了发展。
金属基复合材料真正的起步是在20世纪50年代60年代初。
美国国家航空和宇航局(NASA)成功地制备出W丝增强的Cu基复合材料,成为金属基材料研究和开发的标志性起点。
随后,对纤维金属基复合材料的研究在20世纪60年代迅速发展来。
那时,主要的力量集中在以钨和硼纤维增强的铝和铜为基的系统。
在这种复合材料里,基体的主要功能在于把载荷传递和分配给纤维。
增强体的体积分数一般都很高(约40%-80%),得出的轴向性能都很好,因而基体的组织与强度似乎是次要的。
关于连续纤维增强的复合材料的研究在70年代里有点滑坡,主要归咎干该材料的昂贵价格和受生产制造的限制。
涡轮发动机的各个部件对于高温高效性材料的不断需求,触发了对金属基复合材科特别是钛基材料的广泛兴趣的复苏。
七、总结我国金属基复合材料的研究起步仅落后于美、日等国不到五年。
鉴于国际上金属基复合材料尚未大规模生产,因此目前差距不大。
目前主要集中在以轻金属(如铝、镁、钛)等为基体的复合材料研究,少量研究致力于铜、铁、铅的复合材料。
增强的形式包括连续纤维、短纤维、晶须和颗粒。
鉴于国际的发展趋势侧重于连续的颗粒、晶须和短纤维方面,因此我国的研究也早已转向这方面。
但在关于其理论基础性研究的理论深度上与国外有一定的差距,特别是在原子、分子水平上深入认识界面的结构方面不够,这主要是缺少先进的分析表征手段和物理学家的介入不够有关。
另外,复合材料可持续发展实用化降低成本的要求使金属基复合材料的再生问题显得尤为重要,应该加强对金属基复合材料的再生研究工作。
对于大批量生产的复合材料来讲,轧制复合是特别有效的复合方法。
无论采用热轧还是冷轧,在不同的材料复合中都在广泛的研究和应用。
其适用性和经济性是其它复合方法所不能比拟的。
总之,我国对复合材料科学研究正方兴未艾,目前的科学研究正向着使复合材料廉价和提高可靠性方面发展,以加强复合材料与其他传统材料的竞争优势。