大学概率统计实验报告

合集下载

概率论与数理统计投币实验报告

概率论与数理统计投币实验报告
4.产生10000个区间(0,1)上的均匀分布随机数,分别记录其中小于0.5(表示出现正面)和不小于0.5(表示出现反面)的随机数个数,并对试验结果进行分析.
实验所用软件及版本: Excel 2003
实验过程:
1. 在第一行和第一列分别填充1、2、…、9,利用对单元格的相对引用构造九九乘法表;
2. 在[-3,3]区间内以0.1为间距填充数据,分别计算各点x处的函数x2,19sinx和ex的值,并作图;
实验一、Excel基本操作和投币试验模拟
实验序号:1日期:2013年3月27日
班级
数学学院2011级B班
学号
104200339
姓名
朱佩珍
实验名称
Excel基本操作和投币试验模拟
问题的背景:
掌握Excel中的一些基本命令的使用是后面的实验和今后实际工作所必须的;
频率的稳定性在实际生活中随处可见,如投币试验中正面出现的频率、英文文献中各个字母的使用频率都具有稳定性;又如一个地区人口中男女所占的比例、一个城市居民每天的用水量、用电量等都相对稳定,这些现象均是频率稳定性的体现。
教师评语与成绩:
实验目的和内容:
1.在Excel中利用对单元格的相对引用构造九九乘法表;
2.利用数据自动填充、数据变换和作图工具作出幂函数、三角函数和指数函数的图形;
3.在Excel中利用随机数发生器产生10000个伯努利随机数(即0-1随机数来模拟10000次投币试验,用1和0分别表示每次试验出现正面和反面,统计事件A={出现正面}正面出现的频率。观察体会事件频率的稳定性。
4产生(0,1)上的均匀分布可采用类似“3”的方法。
实验结果与实验总结(体会):
九九乘法表
1
2

概率统计实验报告

概率统计实验报告

P( 2 X 2 )=P( P( 3 X 3 )=P( 输入: P1=2*normcdf(1)-1 P1=2*normcdf(2)-1 P1=2*normcdf(3)-1
2 X U 2
实 验 结 果
实 验 总 结
评分小项 1.实验报告格式排版
分值 2分 6分 6分 4分 2分
得分
总分:
实 验 成 绩 评 定
2.实验设计思路(科学性、可行性、创新性) 3.实验代码编写(规范性、正确性、复杂性) 4.实验结果分析(正确性、合理性) 5.实验心得总结
解:设 n 个人中至少有两个人生日相同的概率 P
n C365 n! P 1 365n
当 n=365,k=40 时,输入 p=1-nchoosek(365,40)*factorial(40)/365^40 当 nn=365,k=50 时,输入 p=1-nchoosek(365,50)*factorial(50)/365^50 当 nn=365,k=60 时,输入 p=1-nchoosek(365,60)*factorial(60)/365^60
一、古典概型 1、求 n 个人中至少有两个人生日相同的概率。(n=30、40、 50、60) 二、计算概率
实 验 内 容
1、某人进行射击,设每次射击的命中率为 0.02,独立射击 200 次,试求至少击中两次的概率。
2 , 3 2、 设随机变量 X ~ N (, 2 ) , 求它的取值在 ,
)= (2) (2) = (2) 1
3 X U 3 )= (3) (3) = (3) 1
实 验 操 作 步 骤
一、1、n=365,k=40 >>p=1-nchoosek(365,40)*factorial(40)/365^40 p= 0.8912 n=365,k=50 >> p=1-nchoosek(365,50)*factorial(50)/365^50 p= 0.9704 n=365,k=60 >> p=1-nchoosek(365,60)*factorial(60)/365^60 p= 0.9941 二、1、方法一: >> p=1-binocdf(0,200,0.02)-binocdf(1,200,0.02) p= 0.8930 方法二: >> p=1-poisscdf(1,4) p= 0.9084 2、>> P1=2*normcdf(1)-1 P1 = 0.6827 >> P2=2*normcdf(2)-1 P2 = 0.9545 >> P3=2*normcdf(3)-1 P3 = 0.9973

概率统计方程实验报告

概率统计方程实验报告

《概率统计》实验报告
专业 班级 姓名 学号 实验地点 实验时间
一、实验目的
1.学会用matlab 计算常见分布的概率。

2.熟悉matlab 中用于描述性统计的基本操作与命令
3.学会matlab 进行参数估计与假设检验的基本命令与操作
二、实验内容:(给出实验程序与运行结果)
实验一:
1、 设随机变量()23,2X N ,求()25P X <<;()2P X >
2、 一批产品的不合格率为0.02,现从中任取40件进行检查,若发现两件或两件以上不合格品就拒收这批产品,求拒收的概率。

实验二:根据调查,某集团公司的中层管理人员的年薪(单位:万元)数据如下:
40.6 39.6 37.8 36.2 38.8 38.6 39.6 40.0 34.7 41.7
38.9 37.9 37.0 35.1 36.7 37.1 37.7 39.2 36.9 38.3
求其公司中层管理人员年薪的样本均值、样本方差、样本修正方差,画出经验分布函数图、直方图。

实验三:
1、 假设轮胎的寿命服从正态分布,现随机抽取12只轮胎试用,测得它们的寿命(单位:万千米)如下:4.68 4.85 4.32 4.85 4.61 5.02 5.20 4.60 4.58 4.72 4.38 4.70 求平均寿命的最大似然估计值,以及置信度为0.95的置信区间。

2、 已知维尼纤度在正常条件下服从正态分布,方差为2
0.048,从某天产品中抽取5根纤维,测得纤度为1.32 1.55 1.36 1.40 1.44 问这一天纤度的总体方差是否正常? 三、 实验总结与体会
实验分析:。

概率论实验报告_2

概率论实验报告_2

概率论试验报告试验一:随机掷硬币1、模拟掷一枚硬币的随机试验(可用0——1随机数来模拟试验结果),取n=100,模拟掷n次硬币的随机试验。

记录试验结果,观察样本空间的确定性及每次试验结果的偶然性,统计正面出现的次数,并计算正面的出现的频率;试验结果如下:测试中出现零代表正面,出现一代表反面,其中共计50次正面50次反面。

2、取试验次数n=1000,将过程(1)重复三次,比较三次试验结果试验结果如下3、三次结果分别是0.501,0.503,0.521 。

这充分说明模拟情况接近真实情况,频率接近概率0.5。

试验二:高尔顿钉板试验1、自高尔顿钉板上端放一个小球, 任其自由下落. 在其下落过程中,当小球碰到钉子时从左边落下的概率为p , 从右边落下的概率为,1p -碰到下一排钉子又是如此, 最后落到底板中的某一格子. 因此任意放入一球, 则此球落入哪个格子事先难以确定. 设横排共有20=m 排钉子, 下面进行模拟实验:(1) 取,5.0=p 自板上端放入一个小球, 观察小球落下的位置; 将该实验重复作5次, 观察5次实验结果的共性及每次实验结果的偶然性;(2) 分别取,85.0,5.0,15.0=p 自板上端放入n 个小球, 取,5000=n 观察n 个小球落下后呈现的曲线我们分析可知,这是一个经典的古典概型试验问题2、具体程序:3、我们分析实验结果可知,若小球碰钉子后从两边落下的概率发生变化, 则高尔顿钉板实验中小球落入各个格子的频数发生变化, 从而频率也相应地发生变化. 而且, 当,5.0p曲线峰值的格子位置向右偏; 当><p曲线峰值的格子位置向左偏。

,5.0试验三:抽签试验1、我们做模拟实验,用1-10的随机整数来模拟实验结果。

在1-10十个随机数中,假设10代表抽到大王,将这十个数进行全排,10出现在哪个位置,就代表该位置上的人摸到大王。

每次随机排列1-10共10个数,10所在的位置随机变化,分别输出模拟实验10次, 100次,1000次的结果, 将实验结果进行统计分析, 给出分析结果。

大学本科概率论与数理统计实验报告

大学本科概率论与数理统计实验报告

xx大学xx学院数学类课程实习报告课程名称:概率论与数理统计实习题目:概率论与数理统计姓名:系:信息与计算科学系专业:信息与计算科学年级:2010学号:指导教师:职称:讲师年月日福建农林大学计算机与信息学院数学类课程实习报告结果评定目录1实习的目的和任务 (2)2实习要求 (2)3实习地点 (2)4主要仪器设备(实验用的软硬件环境) (2)5实习内容 (2)5.1 MATLAB基础与统计工具箱初步 (2)5.2 概率分布及应用实例 (4)5.3 统计描述及应用实例 (5)5.4 区间估计及应用实例 (8)5.5 假设检验及应用实例 (11)5.6 方差分析及应用实例 (13)5.7 回归分析及应用实例 (15)5.8 数理统计综合应用实例 (18)6 结束语 (26)7 参考文献 (27)概率论与数理统计(Probabilily theroy and Mathemathical Statistics)1.实习的目的和任务目的:通过课程实习,让学生巩固所学的理论知识并且能够应用MATLAB数学软件来解决实际问题。

任务:通过具体的案例描述,利用MATLAB软件计算问题的结果,作出图形图象分析问题的结论。

2.实习要求要求:学生能够从案例的自然语言描述中,抽象出其中的数学模型,能够熟练应用所学的概率论与数理统计知识,能够熟练使用MATLAB软件。

3.实习地点:校内数学实验室,宿舍4.主要仪器设备计算机Microsoft Windows XPMatlab 7.05.实习内容5.1 MATLAB基础与统计工具箱初步一、目的:初步了解和掌握MATLAB的操作和统计工具箱的简单应用.二、任务:熟悉MATLAB的基本命令的调用和基本函数及其基本操作.三、要求:掌握安装MATLAB的方法,并运用统计工具箱进行简单MATLAB编程.四、项目:(一)、实例:产生一组试验,假设随机变量X的分布函数为X~N(10,42)的随机数,并绘出该正态分布的图像。

概率统计学实验报告

概率统计学实验报告

《概率统计》实验报告实验人员:系(班):矿业工程系机械设计制造及其自动化1404班 学号:20141804408 姓名:李君阳 实验地点:电教楼四层三号机房实验名称:《概率统计》实验时间:2016.5.10,2016.5.17 16:30——18:30.实验目的:1.加强学生的动手能力,让学生掌握对MATLAB 软件的应用。

2.为以后的数学计算节省时间,提高精确度,准确度,合理的利用科学技术。

实验内容:(给出实验程序与运行结果)一、古典概型2、在50个产品中有18个一级品,32个二级品,从中任意抽取30个,求其中恰有20个二级品的概率.解:p=C 3220C 1810c 5030=0.2096>> p=nchoosek(32,20)*nchoosek(18,10)/nchoosek(50,30)p =0.2096二、计算概率1、某人进行射击,设每次射击的命中率为0.02,独立射击200次,试求至少击中两次的概率.2、一铸件的砂眼(缺陷)数服从参数为0.5的泊松分布,求此铸件上至多有1个砂眼的概率和至少有2个砂眼的概率. 解:1.p=1-c 2000∗0.98400-c 2001*0.98199*0.02=0.1458>> p=binopdf(2,200,0.02)p =0.1458 2.P(ζ=0)= 5.00*!05.0-e P(ζ=1)= 5.01*!15.0-e P(ζ1)=0.9098P(ζ)=0.09024、设随机变量()23,2X N ,求()25P X <<;()2P X >解:P(2<X<5)=F(5)-F(2)= )5(1,0σa F -=)235(1,0-F -)232(1,0-F = -=0.08413-(1-0.6915)=0.5328P(|X |>2)=P(X<-2)+P(X>2)=P(X<-2)+1-P(X<2)=0.6977normcdf(5,3,2)-normcdf(2,3,2) ≤2≥吕梁学院《概率统计》实验报告ans =0.5328>> normcdf(-2,3,2)-normcdf(2,3,2)+1ans =0.6977三、作图1、画出N(2,9),N(4,9),N(6,9)的图像进行比较;(图1)画出N(0,1),N(0,4),N(0,9)的图像进行比较.解:y1=normpdf(x,2,3);y2=normpdf(x,4,3);y3=normpdf(x,6,3);plot(x,y1,x,y2,x,y3)>> x=-40:0.01:40;y1=normpdf(x,0,1);y2=normpdf(x,0,2);y3=normpdf(x,0,3);plot(x,y1,x,y2,x,y3)(图2)四、常见统计量的计算1、根据调查,某集团公司的中层管理人员的年薪(单位:万元)数据如下:42 41 39.2 37.6 40.2 40 41 41.4 36.1 43.140.3 39.3 38.4 36.5 38.1 38.5 39.1 40.6 38.3 39.7求其公司中层管理人员年薪的样本均值、样本方差、样本标准差,绘制直方图。

概率实验报告_蒙特卡洛积分

概率实验报告_蒙特卡洛积分

本科实验报告实验名称:《概率与统计》随机模拟实验随机模拟实验实验一设随机变量X 的分布律为-i P{X=i}=2,i=1,2,3......试产生该分部的随机数1000个,并作出频率直方图。

一、实验原理采用直接抽样法:定理:设U 是服从[0,1]上的均匀分布的随机变量,则随机变量-1()Y F U =与X 有相同的分布函数-1()Y F U =(为F(x)的逆函数),即-1()Y F U =的分部函数为()F x .二、题目分析易得题中X 的分布函数为1()1- ,1,0,1,2,3, (2i)F x i x i i =≤≤+=若用ceil 表示对小数向正无穷方向取整,则F(x)的反函数为产生服从[0,1]上的均匀分布的随机变量a ,则m=F -1(a)则为题中需要产生的随 机数。

三、MATLAB 实现f=[]; i=1;while i<=1000a=unifrnd(0,1); %产生随机数a ,服从【0,1】上的均匀分布 m=log(1-a)/log(1/2);b=ceil(m); %对m 向正无穷取整 f=[f,b]; i=i+1; enddisplay(f);[n,xout]=hist(f); bar(xout,n/1000,1)产生的随机数(取1000个中的20个)如下:-1ln(1-)()1ln()2a F a ceil ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦频率分布直方图实验二设随机变量X 的密度函数为24,0,()0,0x xe x f x x -⎧>=⎨≤⎩试产生该分布的随机数1000个,并作出频率直方图 一、实验原理取舍抽样方法,当分布函数的逆函数难以求出时,可采用此方法。

取舍抽样算法的流程为:(1) 选取一个参考分布,其选取原则,一是该分布的随机样本容易产生;二是存在常数C ,使得()()f x Cg x ≤。

(2) 产生参考分布()g x 的随机样本0x ; (3) 独立产生[0,1]上的均匀分布随机数0u ;(4) 若000()()u Cg x f x ≤,则保留x 0,作为所需的随机样本;否则舍弃。

概率统计上机实验报告(电子版)

概率统计上机实验报告(电子版)

2.(1)BINOMDIST(2,15,0.05,FALSE)=0.13475BINOMDIST(2,15,0.05,TRUE)=0.9638(2)EXPONDIST(1,0.1,FALSE)=0.09048EXPONDIST(4,0.1,TRUE)=0.32968(3)NORMDIST(2,0,1, TRUE)=0.97725NORMSDIST(2)-- NORMSDIST(--2)=0.9545=NORMINV(0.98,0,1)=2.05NORMSDIST(0.1)-- NORMSDIST(--1)=0.3812=NORMINV(0.05,5,100)=--159.49(4)POISSON(4,2,FALSE)=0.090POISSON(4,2,TRUE)=0.9473(5) BINOMDIST(2,15,0.05,FALSE)=0.13475营业税金与社会商品总额关系(1)打开EXCEL,建立数据文件如下图:税收Y 销售X3.93 142.085.96 177.307.85 204.689.82 242.6812.50 316.2415.55 341.9915.79 332.6916.39 389.2918.45 453.40调用线性回归分析程序:单击工具/数据分析/回归/确定,填写对话框,确定后输出结果,分析结果知回归方程为:Y=-2.258+0.0487X(2)对数据调用相关分析程序:依次单击工具/数据分析/相关系数/确定,填写对话框后,单击确定得到下面表格:所以,Y与X的皮尔逊相关系数为: 0.981069(3)建立假设H0:b=0 ,H1:b=/0,统计检验量F=(SSR/k)/(SSE/n-k-1)有数据分析结果知:F=179.6507P(F(1,7)>179.6507)=3.02E-06<<0.05所以认为回归方程是显著有效的。

(4)在(1)中表的B11中补充数据X=320在A11中输入公式=-2.258+0.0487X320运行课的到X=320的点预测值y=13.326。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学概率统计实验报告
引言
在概率统计学中,实验是一种重要的数据收集方法。

通过实验,我们可以收集到一系列随机变量的观测值,然后利用统计方法对这些观测值进行分析和推断。

本实验旨在通过一个简单的骰子实验来介绍概率统计的基本理论和方法。

实验目标
本实验的目标是通过投掷骰子的实验,验证骰子的随机性,并研究骰子的概率分布。

实验步骤
1.准备一个六面骰子和一张记录表格。

2.将骰子投掷20次,并记录每次投掷的结果。

将结果按照出现的次数
填入表格中。

3.统计记录表格中每个数字出现的频数,并计算频率。

4.绘制柱状图展示各个数字的频率分布情况。

实验结果与分析
根据实验记录表格,我们统计得到了每个数字出现的频数如下:
数字 1 2 3 4 5 6
频数 4 3 6 2 4 1
根据频数,我们可以计算出每个数字的频率。

频率是指某个数字出现的次数与总次数的比值。

通过计算,我们得到了每个数字的频率如下:
数字 1 2 3 4 5 6
频率0.2 0.15 0.3 0.1 0.2 0.05
通过绘制柱状图,我们可以更直观地观察到各个数字的频率分布情况。

柱状图如下所示:
0.3 | █
| █
| █
| █
0.25 | █
| █
| █
| █
0.2 | █ █ █
| █ █ █ █
| █ █ █ █
| █ █ █ █
0.15 | █ █ █ █
| █ █ █ █
| █ █ █ █
| █ █ █ █
0.1 | █ █ █ █
| █ █ █ █
| █ █ █ █
| █ █ █ █
0.05 | █ █ █ █
| █ █ █ █
| █ █ █ █
| █ █ █ █
----------------
1 2 3 4 5 6
根据实验结果,我们可以观察到以下现象和结论: - 各个数字的频率接近于理
论概率,表明骰子的结果具有一定的随机性。

- 数字3的频率最高,约为0.3,而
数字6的频率最低,约为0.05。

这说明骰子的结果并不完全均匀,存在一定的偏差。

结论与讨论
通过本次实验,我们了解了概率统计的基本理论和方法,并通过投掷骰子的实
验验证了骰子的随机性。

实验结果表明,骰子的结果具有一定的随机性,但同时也存在一定的偏差。

在实际应用中,概率统计是一种重要的分析工具。

通过概率统计的方法,我们
可以对随机事件进行建模和推断,从而帮助我们做出合理的决策。

然而,本次实验只是一个简单的示例,实际的概率统计问题往往更加复杂和多
样化。

在实际应用中,我们需要根据具体问题的要求,选择合适的统计方法和模型,并进行更加精确和细致的分析。

参考文献
[1] Wackerly, D., Mendenhall, W., & Scheaffer, R. L. (2014). Mathematical statistics with applications. Cengage Learning.。

相关文档
最新文档