概率统计实验报告(三)剖析
概率统计方程实验报告

《概率统计》实验报告
专业 班级 姓名 学号 实验地点 实验时间
一、实验目的
1.学会用matlab 计算常见分布的概率。
2.熟悉matlab 中用于描述性统计的基本操作与命令
3.学会matlab 进行参数估计与假设检验的基本命令与操作
二、实验内容:(给出实验程序与运行结果)
实验一:
1、 设随机变量()23,2X N ,求()25P X <<;()2P X >
2、 一批产品的不合格率为0.02,现从中任取40件进行检查,若发现两件或两件以上不合格品就拒收这批产品,求拒收的概率。
实验二:根据调查,某集团公司的中层管理人员的年薪(单位:万元)数据如下:
40.6 39.6 37.8 36.2 38.8 38.6 39.6 40.0 34.7 41.7
38.9 37.9 37.0 35.1 36.7 37.1 37.7 39.2 36.9 38.3
求其公司中层管理人员年薪的样本均值、样本方差、样本修正方差,画出经验分布函数图、直方图。
实验三:
1、 假设轮胎的寿命服从正态分布,现随机抽取12只轮胎试用,测得它们的寿命(单位:万千米)如下:4.68 4.85 4.32 4.85 4.61 5.02 5.20 4.60 4.58 4.72 4.38 4.70 求平均寿命的最大似然估计值,以及置信度为0.95的置信区间。
2、 已知维尼纤度在正常条件下服从正态分布,方差为2
0.048,从某天产品中抽取5根纤维,测得纤度为1.32 1.55 1.36 1.40 1.44 问这一天纤度的总体方差是否正常? 三、 实验总结与体会
实验分析:。
概率统计学实验报告

《概率统计》实验报告实验人员:系(班):矿业工程系机械设计制造及其自动化1404班 学号:20141804408 姓名:李君阳 实验地点:电教楼四层三号机房实验名称:《概率统计》实验时间:2016.5.10,2016.5.17 16:30——18:30.实验目的:1.加强学生的动手能力,让学生掌握对MATLAB 软件的应用。
2.为以后的数学计算节省时间,提高精确度,准确度,合理的利用科学技术。
实验内容:(给出实验程序与运行结果)一、古典概型2、在50个产品中有18个一级品,32个二级品,从中任意抽取30个,求其中恰有20个二级品的概率.解:p=C 3220C 1810c 5030=0.2096>> p=nchoosek(32,20)*nchoosek(18,10)/nchoosek(50,30)p =0.2096二、计算概率1、某人进行射击,设每次射击的命中率为0.02,独立射击200次,试求至少击中两次的概率.2、一铸件的砂眼(缺陷)数服从参数为0.5的泊松分布,求此铸件上至多有1个砂眼的概率和至少有2个砂眼的概率. 解:1.p=1-c 2000∗0.98400-c 2001*0.98199*0.02=0.1458>> p=binopdf(2,200,0.02)p =0.1458 2.P(ζ=0)= 5.00*!05.0-e P(ζ=1)= 5.01*!15.0-e P(ζ1)=0.9098P(ζ)=0.09024、设随机变量()23,2X N ,求()25P X <<;()2P X >解:P(2<X<5)=F(5)-F(2)= )5(1,0σa F -=)235(1,0-F -)232(1,0-F = -=0.08413-(1-0.6915)=0.5328P(|X |>2)=P(X<-2)+P(X>2)=P(X<-2)+1-P(X<2)=0.6977normcdf(5,3,2)-normcdf(2,3,2) ≤2≥吕梁学院《概率统计》实验报告ans =0.5328>> normcdf(-2,3,2)-normcdf(2,3,2)+1ans =0.6977三、作图1、画出N(2,9),N(4,9),N(6,9)的图像进行比较;(图1)画出N(0,1),N(0,4),N(0,9)的图像进行比较.解:y1=normpdf(x,2,3);y2=normpdf(x,4,3);y3=normpdf(x,6,3);plot(x,y1,x,y2,x,y3)>> x=-40:0.01:40;y1=normpdf(x,0,1);y2=normpdf(x,0,2);y3=normpdf(x,0,3);plot(x,y1,x,y2,x,y3)(图2)四、常见统计量的计算1、根据调查,某集团公司的中层管理人员的年薪(单位:万元)数据如下:42 41 39.2 37.6 40.2 40 41 41.4 36.1 43.140.3 39.3 38.4 36.5 38.1 38.5 39.1 40.6 38.3 39.7求其公司中层管理人员年薪的样本均值、样本方差、样本标准差,绘制直方图。
大学概率统计实验报告

大学概率统计实验报告引言在概率统计学中,实验是一种重要的数据收集方法。
通过实验,我们可以收集到一系列随机变量的观测值,然后利用统计方法对这些观测值进行分析和推断。
本实验旨在通过一个简单的骰子实验来介绍概率统计的基本理论和方法。
实验目标本实验的目标是通过投掷骰子的实验,验证骰子的随机性,并研究骰子的概率分布。
实验步骤1.准备一个六面骰子和一张记录表格。
2.将骰子投掷20次,并记录每次投掷的结果。
将结果按照出现的次数填入表格中。
3.统计记录表格中每个数字出现的频数,并计算频率。
4.绘制柱状图展示各个数字的频率分布情况。
实验结果与分析根据实验记录表格,我们统计得到了每个数字出现的频数如下:数字 1 2 3 4 5 6频数 4 3 6 2 4 1根据频数,我们可以计算出每个数字的频率。
频率是指某个数字出现的次数与总次数的比值。
通过计算,我们得到了每个数字的频率如下:数字 1 2 3 4 5 6频率0.2 0.15 0.3 0.1 0.2 0.05通过绘制柱状图,我们可以更直观地观察到各个数字的频率分布情况。
柱状图如下所示:0.3 | █| █| █| █0.25 | █| █| █| █0.2 | █ █ █| █ █ █ █| █ █ █ █| █ █ █ █0.15 | █ █ █ █| █ █ █ █| █ █ █ █| █ █ █ █0.1 | █ █ █ █| █ █ █ █| █ █ █ █| █ █ █ █0.05 | █ █ █ █| █ █ █ █| █ █ █ █| █ █ █ █----------------1 2 3 4 5 6根据实验结果,我们可以观察到以下现象和结论: - 各个数字的频率接近于理论概率,表明骰子的结果具有一定的随机性。
- 数字3的频率最高,约为0.3,而数字6的频率最低,约为0.05。
这说明骰子的结果并不完全均匀,存在一定的偏差。
结论与讨论通过本次实验,我们了解了概率统计的基本理论和方法,并通过投掷骰子的实验验证了骰子的随机性。
概率论教学实践报告总结(3篇)

第1篇一、前言概率论是数学的一个重要分支,它研究随机现象及其规律。
随着我国教育事业的不断发展,概率论在教学中的地位日益重要。
为了提高教学质量,探索有效的教学策略,我们开展了一系列概率论教学实践活动。
现将本次实践活动的总结如下:二、实践目的1. 提高学生对概率论知识的掌握程度,培养学生的逻辑思维能力。
2. 探索适合我国学生特点的概率论教学方法,提高课堂教学效果。
3. 加强师生互动,培养学生的自主学习能力。
4. 丰富教师的教学经验,提高教师的专业素养。
三、实践内容1. 教学方法改革(1)启发式教学:教师在课堂上注重引导学生思考,通过提问、讨论等方式,激发学生的学习兴趣,提高学生的思维能力。
(2)案例教学:结合实际生活中的例子,让学生理解概率论知识在实际中的应用,提高学生的实践能力。
(3)小组合作学习:将学生分成若干小组,共同完成教学任务,培养学生的团队协作能力。
2. 教学手段创新(1)多媒体教学:利用PPT、视频等多媒体手段,使教学内容更加生动形象,提高学生的学习兴趣。
(2)网络教学:通过在线课程、论坛等网络平台,拓宽学生的学习渠道,提高学生的学习效果。
(3)实验教学:开展概率实验,让学生亲身体验概率现象,加深对概率论知识的理解。
3. 教学评价改革(1)过程性评价:关注学生在学习过程中的表现,如课堂发言、作业完成情况等。
(2)结果性评价:关注学生对知识掌握程度,如期中、期末考试等。
(3)多元评价:结合学生自评、互评、教师评价等多种方式,全面评价学生的学习成果。
四、实践效果1. 学生对概率论知识的掌握程度有了明显提高,课堂参与度显著提升。
2. 学生在解决实际问题时,能够运用概率论知识进行分析,提高了解决问题的能力。
3. 学生在团队协作、自主学习等方面取得了较好成绩,综合素质得到提高。
4. 教师的教学经验得到了丰富,教学水平得到提高。
五、存在问题及改进措施1. 存在问题(1)部分学生对概率论知识缺乏兴趣,学习积极性不高。
概率统计实验报告结论

概率统计实验报告结论引言概率统计是数学中非常重要的一个分支,它利用统计方法对一定的随机现象进行描述、分析和预测。
本次实验中我们通过模拟实验的方式,利用概率统计的方法对一些实际问题进行了研究和分析。
实验一:骰子实验我们进行了一系列的骰子实验,通过投掷骰子并记录点数的方式来研究骰子的概率分布。
实验结果表明,投掷骰子时,每个面出现的概率是均等的,即每个面的概率是1/6。
这符合理论预期,也验证了概率统计中的等概率原理。
实验二:扑克牌实验通过抽取一副扑克牌中的若干张牌,并记录其点数和花色,我们研究了扑克牌中各个点数和花色的概率分布情况。
实验结果表明,52张扑克牌中各个点数和花色的概率分布近似均等,并且点数和花色之间是相互独立的。
这进一步验证了概率统计中的等概率原理和独立事件的性质。
实验三:掷硬币实验通过进行大量的抛硬币实验,我们研究了硬币正反面出现的概率分布情况。
实验结果表明,掷硬币时正面和反面出现的概率非常接近,都是1/2。
这也符合理论预期,并且进一步验证了概率统计中的等概率原理。
实验四:随机数生成器实验通过计算机程序生成随机数,并对其进行统计分析,我们研究了随机数生成器的质量问题。
实验结果表明,一个好的随机数生成器应该具备均匀分布、独立性和不可预测性等特征。
我们的实验结果显示,所使用的随机数生成器满足这些条件,从而可以被广泛应用于概率统计领域。
实验五:二项分布实验通过进行大量的二项分布实验,我们研究了二项分布的特性。
实验结果表明,二项分布在一定条件下可以近似成正态分布,这是概率统计中的重要定理之一。
实验结果还显示,二项分布的均值和方差与试验的次数和成功的概率有关,进一步验证了概率统计中与二项分布相关的理论。
总结通过本次概率统计实验,我们对骰子、扑克牌、硬币、随机数和二项分布等与概率统计相关的问题进行了研究和分析。
实验结果与理论预期基本一致,验证了概率统计中的一些重要原理和定理。
这些实验结果对我们的概率统计学习和应用有着重要的意义,同时也为我们在探索更深层次的概率统计问题提供了一定的启示和思路。
概率统计实验报告

概率统计实验报告班级学号姓名2016年 01月 06日问题概述和分析(1)实验内容说明:在常见随机变量中选择3种计算它们的期望和方差。
(2)本门课程与实验的相关内容:通过用matlab 软件对常见随机变量进行期望与方差计算,熟悉变量,深化理解。
实验目的:练习使用matlab软件进行概率论问题分析,熟练使用密度函数,分布函数等命令。
实验设计总体思路(1)引论利用matlab工具实现对基本随机变量的期望与方差计算。
(2)实验主题部分设计思路:设计三个随机变量,计算方差及期望。
2、实验设计总体思路2.1、引论2.2、实验主题部分2.2.1、实验设计思路1、理论分析2、实现方法用概率分布函数(cdf)求各种分布中的不同事件的概率;用逆概率分布函数(Inv )求各种分布的 分位点。
2.2.2、实验结果及分析实验结果见下,可见用matlab可有效地解决一些与常见分布的密度函数分布函数有关的问题。
2.2.3、程序及其说明a.均匀分布的期望和方差>>a = 1:6; b = 2.*a;>>[M,V] = unifstat(a,b)M =1.5000 3.0000 4.5000 6.0000 7.5000 9.0000V =0.0833 0.3333 0.7500 1.33332.08333.0000b.正态分布的期望和方差>> [M,V]=normstat(a,b)M =1 2 3 4 5 6V =4 16 36 64 100 144c.二项分布的均值和方差>>n = logspace(1,5,5)10 100 1000 10000 100000>>[M,V] = binostat(n,1./n)M =1 1 1 1 1V =0.9000 0.9900 0.9990 0.99991.0000>>[m,v] = binostat(n,1/2)m =5 50 500 5000 500002.3、对教材正文的深入理解和创新性说明2.3.1、对教材正文的深入理解通过使用matlab,我发现教材中的许多问题也可以用matlab来更方便更快的解决2.3.2、对论文中探索性内容或创新点说明2.4、体会运用matlab不仅能比较快速准确地计算各种概率,而且也可用于作图,并运用于统计等方面,总之掌握它对我们以后一些方面的研究有帮助。
概率统计实验报告

概率统计实验报告班级1403012学号14030120005 姓名巨玉2015年12 月27 日一、问题概述和分析(1)实验内容说明:使用Matlab软件绘制正态分布、指数分布、均匀分布密度函数图象。
(2)本门课程与实验的相关内容正态分布密度函数指数分布密度函数均匀分布密度函数(3)实验目的熟练掌握MA TLAB软件,并观察密度函数图象特点二、实验结果及分析1:绘制正态分布密度函数图象2、绘制指数分布密度函数图象3、绘制均匀分布密度函数图象三、程序及其说明1、绘制正态分布函数图像代码:mu=2;sigma=5;x=mu+sigma*(-4:0.1:4);x1=mu+[-1,1]*sigma;y=normpdf(x,mu,sigma);y1=normpdf(x1,mu,sigma);plot(x,y,x1,y1,'*')%plot(x1,y1)2、绘制指数分布密度函数图象代码:ezplot(@(x)exppdf(x,1),[-3,3])3、绘制均匀分布密度函数图象代码:ezplot(@(x)unifpdf(x,-1,1),[-3,3])四、体会对于概率论与数理统计这门课程,高中曾经接触了一点。
到了大学,对于这门课程又进行了更深入层次的学习,本人最大的体会,这是联系日常生活最深,表现最直接的一门课程。
首先,学习这门课程需要具有较强的数学运算以及心算能力。
这门课程中夹杂了许多数学基本知识,以及在对这门课程的许多问题求解过程中,也会用到一些基本数学知识,但这门课程和高等代数不同的是,它并不需要认为大量的计算,很多复杂的运算都已经被算出来了,我们只需要用到其中的答案验证其猜测即可。
再有,这门课程能给人在生活中带来很多启示。
其中蕴含的数学道理直接关系到我们的生活,而其中解决的数学问题,则是对生活有很大的促进。
五、建议这门课程是联系日常生活的一门课程,如果按照高等代数等课程教学方法来进行教学,势必会降低这门课程的趣味性。
统计与概率的实践活动报告

统计与概率的实践活动报告1. 引言统计与概率是一门重要的数学分支,它涉及到数据的收集、整理、分析和解释。
为了更好地理解和应用统计与概率的知识,我们进行了一次实践活动,通过实际操作和观察,提升了我们的统计分析能力和概率思维。
2. 实践活动内容我们的实践活动主要包括了数据收集和数据分析两个阶段。
2.1 数据收集我们小组选择了统计一天中人们乘坐地铁的时间和人数的数据。
我们事先规划好了观测点和观测时间,并派出小组成员在不同的地铁站进行观测。
每位小组成员记录了每5分钟内乘坐地铁的人数和进站的时间。
2.2 数据分析在收集到数据之后,我们对数据进行了分类和整理,并使用统计方法进行了分析。
首先,我们将数据按照时间段进行分类,比如早高峰、午餐时间、晚高峰等。
然后,我们计算了每个时间段内的平均乘坐人数,并绘制了柱状图来展示不同时间段内的客流量。
接下来,我们对数据进行了概率分析。
我们计算了在不同时间段内乘坐地铁的人数与总人数的比例,并根据比例的大小进行了排序。
通过对概率进行排序,我们可以得出在不同时间段内乘坐地铁的概率大小。
最后,我们根据数据分析的结果,提出了一些建议,比如增加车厢数量、增加班次等,以提高地铁的运营效率。
3. 实践心得通过这次实践活动,我们收获了很多。
首先,实践活动增强了我们对统计和概率的理解。
通过亲自进行数据收集和分析,我们更深入地了解了统计和概率的应用,并掌握了一些实际操作的技巧。
其次,实践活动培养了我们的团队协作能力。
在数据收集过程中,我们需要相互配合、分工合作,才能获得准确的数据。
在数据分析过程中,我们需要相互讨论、交流思路,才能得出准确的结论。
最后,实践活动提高了我们的问题解决能力。
在数据分析过程中,我们遇到了一些困难和挑战,需要思考和探索解决的办法。
通过克服这些困难,我们的问题解决能力得到了提升。
4. 结论通过这次统计与概率的实践活动,我们不仅对课堂上学到的知识有了更深入的理解,也通过实际操作提升了我们的统计分析能力和概率思维。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性回归实验报告(三)
实验目的:通过本次实验,了解matlab和spss在非参数检验中的应用,学会用matlab和spss做非参数假设检验,主要包括单样本和多样本非参数假设检验。
实验内容:
1.单样本假设检验;
2.多样本假设检验.
实验结果与分析:
1.单样本K-S儿童身高
操作步骤:
⑴分析-非参数检验-旧对话框-1-样本KS;
⑵将“周岁儿童身高”变换到检验变量列表,由于样本量太少,点击精确按钮,选择精确检验方法;
⑶回到K-S检验对话框,点击选项按钮,设置输出参数,勾选描述性和四分位数;
⑷输出检验结果。
从图形特征上看,儿童身高的分布非常接近正态分布,但是仍需要用K-S来检验
诊断。
结论:K-S检验统计量Z值为0.936,显著性为0.344,大于显著性水平0.05,所以不能拒绝原假设,认为周岁儿童的身高服从正态分布。
2.单样本游程——电缆
操作步骤:
⑴分析-非参数检验-旧对话框-游程;
⑵将“耐电压值”变换到检验变量列表;
⑶回到游程检验对话框,点击选项按钮,设置输出参数,勾选描述性和四分位数;
⑷输出检验结果。
结论:中位数渐进显著性为0.491,平均数和众数为1,大于显著性水平0.05,所以不能拒绝原假设,所以该组电缆耐电压值是随机的。
3.多独立样本——儿童身高
操作步骤:
⑴分析-非参数检验-旧对话框-K个独立样本检验;
⑵将“周岁儿童身高”变换到检验变量列表;将“城市标志”变换到分组变量,设置分组变量范围;
⑶回到多独立样本检验对话框,点击选项按钮,设置输出参数,勾选描述性和四分位数;
⑷输出检验结果。
结论:多个样本的K-W检验,即秩和检验目的是看各总体的位置参数是否一样,渐近显著性值为0.003,小于显著性水平0.05,所以拒绝原假设,因而四个城市儿童身高的分布存在显著性差异。
4.多样本配对——促销方式
操作步骤:
⑴分析-非参数检验-旧对话框-K个相关样本检验;
⑵将“促销形式1”、“促销形式2”、“促销形式3”变换到检验变量列表;
⑶回到多个关联样本检验对话框,点击选项按钮,设置输出参数,勾选描述性和四分位数;
⑷输出检验结果。
结论:渐进显著性为0.045,小于显著性水平0.05,所以要拒绝原假设,三种促销形式对商品的销售存在显著性差异。
5.多配对样本——航空公司
操作步骤:
⑴分析-非参数检验-旧对话框-K个相关样本检验;
⑵将“甲航空公司”、“乙航空公司”、“丙航空公司”变换到检验变量列表;
⑶回到多个关联样本检验对话框,点击选项按钮,设置输出参数,勾选描述性和四分位数;
⑷输出检验结果。
结论:渐进显著性为0.001,小于显著性水平0.05,所以要拒绝原假设,三个航空公司的服务态度存在显著性差异。
6.多配对样本——评委打分
操作步骤:
⑴分析-非参数检验-旧对话框-K个相关样本检验;
⑵将6名“歌手得分”变换到检验变量列表;
⑶回到多个关联样本检验对话框,点击选项按钮,设置输出参数,勾选描述性和四分位数;
⑷输出检验结果。
结论:渐进显著性为0.002,小于显著性水平0.05,所以要拒绝原假设,协同系数0.955反映了四位评委评分一致性的高低,所以四位评委的评判标准是一致的,而且一直性系数很高。
7. 两独立样本——使用寿命 操作步骤:
⑴分析-非参数检验-旧对话框-2个独立样本检验;
⑵将“使用寿命”变换到检验变量列表;“使用工艺”变换到分组列表;
⑶回到两个独立样本检验对话框,点击选项按钮,设置输出参数,勾选描述性和四分位数;
⑷输出检验结果以及分析。
结论:渐进显著性为0.005,小于显著性水平,所以要拒绝原假设,两种工艺生产的产品寿命存在显著性差异。
8.两配对样本——统计学
操作步骤:
⑴分析-非参数检验-旧对话框-2个配对样本检验;
⑵将“学习前的认识”、“学习后的认识”变换到检验对;
⑶输出检验结果以及分析。
结论:统计量z值为-0.816,,渐进显著性为0.414,大于显著性水平0.05,所以不能拒绝原假设,因而学习前后认识无显著性差异。
9、两配对样本——训练成绩
操作步骤:
⑴分析-非参数检验-旧对话框-2个配对样本检验;
⑵将“学习前的认识”、“学习后的认识”变换到检验对;
⑶输出检验结果以及分析。
结论:统计量z值为-1.599,,渐进显著性为0.11,大于显著性水平0.05,所以不能拒绝原假设,因而训练前后成绩无显著性差异。
10、非参数检验——心脏病猝死
操作步骤:
⑴分析-非参数检验-旧对话框-卡方检验;
⑵选定待检验变量:死亡日期;设定期望值2.8:1:1:1:1:1:1
⑶输出检验结果以及分析。
概率论与数理统计实验报告
结论:设定一周七天心脏病人猝死理论比例2.8:1:1:1:1:1:1,卡方检验渐进显著性0.256,大于显著性水平0.05,不能拒绝原假设,表示实际分布与理论分布无显著差异,所以心脏病死亡人数的变动只是随机引起的。
11。