概率论与数理统计实验报告
概率论与数理统计上机实验报告

概率论与数理统计上机实验报告实验一【实验目的】熟练掌握 MATLAB 软件的关于概率分布作图的基本操作会进行常用的概率密度函数和分布函数的作图绘画出分布律图形【实验要求】掌握 MATLAB 的画图命令 plot掌握常见分布的概率密度图像和分布函数图像的画法【实验容】2 、设X : U (−1,1)(1 )求概率密度在 0 ,0.2 ,0.4 ,0.6 ,0.8,1 ,1.2 的函数值;(2 )产生 18 个随机数(3 行 6 列)(3 )又已知分布函数F ( x) = 0.45 ,求x(4 )画出X 的分布密度和分布函数图形。
【实验方案】熟练运用基本的MATLAB指令【设计程序和结果】1.计算函数值Fx=unifcdf(0, -1,1)Fx=unifcdf(0.2, -1,1)Fx=unifcdf(0.4, -1,1)Fx=unifcdf(0.6, -1,1)Fx=unifcdf(0.8, -1,1)Fx=unifcdf(1.0, -1,1)Fx=unifcdf(1.2, -1,1)结果Fx =0.5000Fx =0.6000Fx =0.7000Fx =0.8000Fx =0.9000Fx =1Fx =12.产生随机数程序:X=unifrnd(-1,1,3,6)结果:X =0.6294 0.8268 -0.4430 0.9298 0.9143 -0.7162 0.8116 0.2647 0.0938 -0.6848 -0.0292 -0.1565 -0.7460 -0.8049 0.9150 0.9412 0.6006 0.83153.求x程序:x=unifinv(0.45, -1,1)结果:x =-0.10004.画图程序:x=-1:0.1:1;px=unifpdf(x, -1,1);fx=unifcdf(x, -1,1);plot(x,px,'+b');hold on;plot(x,fx,'*r');legend('均匀分布函数','均匀分布密度');结果:【小结】运用基本的MATLAB指令可以方便的解决概率论中的相关问题,使数学问题得到简化。
概率论与数理统计实验2:抛硬币实验的随机模拟实验报告

10000000
5000153
4999847
0.5000153
2.数据处理
实验编号
频率
3.数据分析
(1)对于每次实验,实验之前,实验的结果是不确定的;
(2)对于每次实验,正面向上的频率有时大于0.5,有时小于0.5,正面向上的频率并不是确定值;
(3)随着实验次数的增加,正面出现的频率逐渐趋近于0.5
scanf("%d,&m"); //无用输入函数,只是为了让此程序直接可以在win7系统上以dos窗口运行
}
三、实验结果及分析
1.实验数据
投硬币实验
实验编号
实验次数
正面向上的次数
反面向上的次数
正面向上的频率
1
10
3
7
0.3
2
30
15
15
0.5
3
50
28
22
0.56
4
100
48
52
0.48
5
1000
507
30000
15088
14912
0.502933333
14
50000
24124
25876
0.48248
15
100000
50145
49855
0.50145
16
200000
1002Байду номын сангаас8
99792
0.50104
17
500000
249955
250045
0.49991
18
1000000
500198
499802
0.500198
概率论与数理统计实验

整理课件
3、指数分布随机数
1) R = exprnd(λ):产生一个指数分布随机数 2)R = exprnd(λ,m,n)产生m行n列的指数分布随机数
例3、产生E(0.1)上的一个随机数,20个随机数, 2行6列的随机数。
整理课件
在Matlab命令行中输入以下命令: binomoni(0.5,1000)
整理课件
在Matlab命令行中输入以下命令: binomoni(0.5,10000)
整理课件
在Matlab命令行中输入以下命令: binomoni(0.3,1000)
整理课件
二、常用统计量
1、表示位置的统计量—平均值和中位数
概率论与数理统计实验
实验2 随机数的产生
数据的统计描述
整理课件
实验目的
学习随机数的产生方法 直观了解统计描述的基本内容。
实验内容
1、随机数的产生 2、统计的基本概念。 3、计算统计描述的命令。 4、计算实例。
整理课件
一、随机数的产生 定义:设随机变量X~F(x),则称随机变量X的 抽样序列{Xi}为分布F(x)的随机数 10常用分布随机数的产生
整理课件
例6 生成单位圆上均匀分布的1行10000列随机数,并 画经验分布函数曲线。
Randnum=unifrnd(0,2*pi,1,10000); %(0,2pi)上均匀分布随机数 xRandnum=cos(Randnum);%横坐标 yRandnum=sin(Randnum);%丛坐标 plot(xRandnum,yRandnum);
例9:产生5组指数分布随机数,每组100个, 计算样本偏度和峰度。
数学实验——第五章 概率论与数理统计

结果为
三、数据的描述与直方图
1.数据描写的常用命令为 ⑴ hist. 功能 格式 生成已知数据的直方图.
hist x, k .
X 近似服从正态分布.
i 1 i
n
相应的图形为
下图是 n 100时泊松分布的图形.
例
产生服从二项分布 B
N , p 的 n个随机数,
,
这里取
N 10, p 0.2, 计算 n个随机数的和Yn 以及
Nnp 1 p Yn Nnp
并把这个过程重复1000次, 用这1000 个
共16层小钉
x -8 -7 -6 -5 -4 -3 -2 -1 O 1 2 3 4 5 6 7 8
1, 小球碰第 1, 小球碰第
Xk
k 层钉后向右落下 k 层钉后向左落下
(k 1, 2, ,16)
程序如下
输出图形
例
掷骰子实验.
掷 n次同一个均匀的骰子, 观察每个点数出现的频率. 程序如下
k!
e ,
例
产生一个 10000 3 的矩阵, 其列向量是参数为 4
的泊松随机数. 输入命令 返回值
⑵正态分布随机数 格式 例
normrnd mu,sigma, m, n
生成一个10000 3 的矩阵, 其列向量服从 N
0,1 .
输入命令 结果为
例
生成一个10000 3 的矩阵, 其列向量服从 N
P X k
我们对上例进行对比.
k
k!
e .
例
设X
E ,
当
的密度函数图形. 程序如下:
1 ,1, 2 时, 画出指数函数 2
温州大学瓯江学院概率论与数理统计实验报告

温州大学瓯江学院
概率论与数理统计实验报告
实验名称:实验2 圆周率的近似计算——蒲丰投针问题
实验目的:
1.加深理解几何概型的概率的概念和计算方法
2.掌握无理数的近似计算方法
3.了解Excel软件在模拟仿真中的应用
实验要求:
1.掌握Excel自带的随机数发生器产生随机数——(a,b)区间上均匀分布的随机数
2.理解等可能产生区间之内任一个随机数函数命令
3理解条件检测函数命令if
4.理解条件计数函数命令countif
实验内容:
1. 1777年,法国科学家蒲丰(Buffon)提出了投针试验问题.平面上画有等距离
为
(0)
a a>
的一些平行直线,现向此平面任意投掷一根长为
()
b b a
<
的针,取4
a=, 3
b=,试求针与某一平行直线相交的概率,并计算圆周率的近似值.
实验步骤(实验代码):实验结果及分析、感想等:(将操作中打开的必要窗口界面抓图放到
R:
****************************************
谢翠华阅,2019年10月30日,成绩:90。
温州大学瓯江学院概率论与数理统计实验报告 (3)

温州大学瓯江学院
概率论与数理统计实验报告
实验名称:实验3 随机变量的分布 实验目的:
1.加深理解随机变量的概率密度和分布函数的概念
2.掌握二项分布与泊松分布的近似关系
3.了解Excel 软件在模拟仿真中的应用
实验要求:
1.掌握二项分布计算概率函数binomdist 和泊松分布计算概率函数possion
2.掌握计算正态分布概率密度值和分布函数值的命令函数normdist 以及标准正态分布的计算概率密度值和分布函数值的命令函数norm.s.dist
实验内容:
1.画二项分布与泊松分布的近似关系图
其中二项分布中的参数25,n = 0.52,p = 泊松分布中的参数*13n p λ== 2.画正态分布的概率密度函数图和分布函数图 (1)在同一个坐标系中画出均值为3,3,5-,标准差为2的正态分布概率密度图形;
(2)在同一个坐标系中画出均值为6,标准差为1,2,3的正态分布概率密度图形.
实验步骤(实验代码):实验结果及分析、感想等:(将操作中打开的必要窗口界面抓图放到
2:
R:
**************************************** 谢翠华阅,2019年10月30日,成绩:90 ****************************************。
温州大学瓯江学院概率论与数理统计实验报告 (2)

温州大学瓯江学院概率论与数理统计实验报告实验名称:实验一频率稳定性实验目的:1.加深理解频率的概念2.理解频率和概率的关系3.了解Excel软件在模拟仿真中的应用实验要求:1.掌握Excel自带的随机数发生器产生随机数—伯努利随机数(0-1分布随机数)和(0,1)区间上均匀分布的随机数2.掌握Excel产生伯努利随机数命令randbtween(0,1)和(0,1)区间上均匀分布的随机数命令rand()3.理解随机数发生器和随机数命令产生随机数的区别,后者按F9会出现动态的随机数4. 理解借用随机数发生器产生已知离散型随机变量的分布律的随机数5. 理解条件计数函数命令countif实验内容:1.利用Excel自带的随机数发生器产生10000个伯努利随机数(即0-1分布随机数)来模拟10000次投币试验的结果,统计其中随机数1(表示出现正面)和0(表示出现反面)出现的次数,并对试验结果进行分析.2. 向桌面上任意投掷一颗骰子,由于骰子的构造是均匀的,可知出现,这六个数(朝上的点数)中任一个数的可能性是相同的.试产生离散均匀1,2,6分布随机数对其进行模拟,并对试验结果进行分析.3. 利用随机数发生器产生10000个均匀分布U(01),随机数,分别记录其中小于0.5(表示出现正面)和不小于0.5(表示出现反面)的随机数的个数,并对试验结果进行分析.实验步骤(实验代码):实验结果及分析、感想等:(将操作中打开的必要窗口界面抓图放到2:评定成绩:R语言实现在R语言中,可以通过rbinom函数产生伯努利随机数,通过table函数来统计频数,具体的代码及运行结果如下:> a=table(rbinom(1000,1,0.5))> a0 1506 494> a/10000 10.506 0.494R语言实现下面用R语言sample函数进行随机抽样,具体代码及运行结果如下:> x=1:6> a=table(sample(x,1000,1/6))> a/10001 2 3 4 5 60.152 0.184 0.177 0.178 0.154 0.155。
概率论实验报告

概率论与数理统计实验报告实验名称: 区间估计姓名 学号 班级 实验日期一、实验名称:区间估计二、实验目的:1. 会用MATLAB 对一个正态总体的参数进行区间估计;2. 会对两个正态总体的均值差和方差比进行区间估计。
三、实验要求:1. 用MATLAB 查正态分布表、χ2分布表、t 分布表和F 分布表。
2. 利用MATLAB 进行区间估计。
四、实验内容:1. 计算α=0.1, 0.05, 0.025时,标准正态分布的上侧α分位数。
2. 计算α=0.1, 0.05, 0.025,n =5, 10, 15时,χ2(n )的上侧α分位数(注:α与n相应配对,即只需计算2220.10.050.025(5),(10),(15)χχχ的值,下同)。
3. 计算α=0.1, 0.05, 0.025,n =5, 10, 15时, t (n )的上侧α分位数。
4. 计算α=0.1, 0.05, 0.025时, F (8,15)的上侧α分位数; 验证:0.050.95(8,15)1(15,8)F F =;计算概率{}312P X ≤≤。
5. 验证例题6.28、例题6.29、例题6.30、习题6.27、习题6.30。
五、实验任务及结果:任务一:计算α=0.1, 0.05, 0.025时,标准正态分布的上侧α分位数。
源程序:%1-1x = norminv([0.05 0.95],0,1)%1-2y = norminv([0.025 0.975],0,1)%1-3z = norminv([0.0125 0.9875],0,1)结果:x =-1.6449 1.6449y =-1.9600 1.9600z =-2.2414 2.2414结论:α=0.1时的置信区间为[-1.6449,1.6449],上侧α分位数为1.6449.α=0.05时的置信区间为[-1.9600,1.9600],上侧α分位数为1.9600.α=0.025时的置信区间为[-2.2414,2.2414],上侧α分位数为2.2414.任务二:计算α=0.1, 0.05, 0.025,n=5, 10, 15时,χ2(n)的上侧α分位数(注:α与n 相应配对,即只需计算2220.10.050.025(5),(10),(15)χχχ的值,下同)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验题目:假设检验与回归分析
实验时间:
姓名:
学号:
系:
专业:
班级:
实验目的:使学生会利用MATLAB和Mathematica对统计数据进行假设检验,和建立回归分析模型。
实验内容:1.假设检验2.回归分析
使用命令格式:
必做实验:
一、 已知时的 检验。
1.有西红柿价格数据向量,共40个数据,分别为2001年1~3月的价格。假设武汉各菜场西红柿价格的标准差为每斤0.14元,用 检验来判断原假设:1~3月份每斤西红柿的平均价格为1.15元
个正态总体均值差的检验( 检验)。
3.在平炉上进行一项试验以确定改变操作方法的建议是否会增加钢的得率,试验是在同一只平炉上进行的,每炼一炉钢时除操作方法外,其他条件都尽可能做到相同。先用标准方法炼一炉,然后用建议的新方法炼一炉,以后交替进行,各炼10炉,其得钢率分别为
四、线性回归分析
4.为研究某一化学反应过程中温度 对产品质量指标 的影响,测得数据如下:
100 110 120 130 140 150 160 170 180 190
45 51 54 61 66 70 74 78 85 89
假设 和 之间呈线性相关关系,即
求(1) 关于 的线性回归方程;
(2) 的无偏估计;
1.13 1.17 1.14 1.20 1.09 1.16 1.09 1.18 1.18 1.25
二、 未知时的 检验。
2.某种电子元件的寿命 (以小时计)服从正态分布,, , 均未知,现测得16只元件的寿命如下:
159 280 101 212 224 379 179 264
222 362 168 250 149 260 485 170
(1)标准方法78.1 72.4 76.2 74.3 77.4 78.4 76.0 75.5 76.7 77.3
(2)新方法79.1 81.0 77.3 79.1 80.0 79.1 79.1 77.3 80.2 82.1
设这两个样本相互独立,且分别来自正态总体 和 , 均未知,问新方法能否提高得钢率(取 )?
价格:1.19 1.18 1.17 1.15 1.15 1.15 1.16 1.22 1.12 1.18
1.21 1.21 1.15 1.20 1.22 1.22 1.16 1.20 1.18 1.13
1.09 1.20 1.12 1.23 1.19 1.21 1.12 1.09 1.17 1.17
(3)检验 对 的线性回归是否显著(显著性水平 )
(4)求 的置信度为95%置信区间;
(5)求当 时产品质量指标 的95%置信区间。
自我创新实验:
教师评分: