八年级奥林匹克数学竞赛题
八年级上册数学奥赛试卷

一、选择题(每题5分,共20分)1. 若a、b是实数,且a^2 + b^2 = 1,则a^4 + b^4的取值范围是()A. [0, 1]B. [1, 2]C. [0, 2]D. [1, 4]2. 若x > 0,则x^2 + 1的取值范围是()A. [1, +∞)B. [0, +∞)C. (0, +∞)D. (1, +∞)3. 已知函数f(x) = x^2 - 2x + 1,若f(x)的图像关于直线x = 1对称,则f(3)的值为()A. 0B. 1C. 4D. 94. 若a、b、c是等差数列,且a + b + c = 12,则b的值为()A. 4B. 6C. 8D. 105. 若x^2 - 4x + 3 = 0,则x^3 - 8的值为()A. 0B. 1C. 2D. 3二、填空题(每题5分,共25分)6. 若x^2 - 3x + 2 = 0,则x^2 + 3x的值为______。
7. 已知等差数列的前三项分别为2、5、8,则该数列的公差为______。
8. 若x^2 - 4x + 3 = 0,则x^2 + 4x的值为______。
9. 若a、b、c是等比数列,且a + b + c = 12,则b的值为______。
10. 若x^2 - 3x + 2 = 0,则x^3 - 6x的值为______。
三、解答题(每题10分,共40分)11. 已知函数f(x) = 2x - 1,求证:f(x)的图像关于直线x = 1对称。
12. 已知等差数列的前三项分别为3、7、11,求该数列的第10项。
13. 已知函数f(x) = x^2 - 4x + 4,求f(x)的最小值。
14. 已知等比数列的前三项分别为2、4、8,求该数列的公比。
四、附加题(每题10分,共20分)15. 已知等差数列的前三项分别为a、b、c,且a + b + c = 12,求证:该数列的公差为4。
16. 已知等比数列的前三项分别为a、b、c,且a + b + c = 12,求证:该数列的公比为2。
初中八年级奥林匹克数学竞赛(决赛)模拟试题附答案

初中八年级奥林匹克数学竞赛(决赛)试题附答案班级 姓名(竞赛时间:2010年3月21日上午9:30—11:30)题号 一 二 三 四 五 总分得分评卷人一、选择题(每小题5分,共30分) 1.计算(1252011)(2462010)++++-++++的结果是( )A . 1004B . 1006C . 1008D .10102.如图1是一个无盖正方体盒子的表面展开图,A 、B 、C 为图上三点,则在正方体盒子中,∠ABC 的度数为( )A . 120°B .90°C . 60°D .45°3.九年级的数学老师平均每月上6节辅导课,如果由女教师完成,则每人每月应上15节;如果只由男教师完成,则每人应上辅导课( )节A .9B . 10C . 12D .144.如果有四个不同的正整数m 、n 、p 、q 满足(7-m )(7-n )(7-p)(7-q )=4,那么m+n+p+q 等于( )A .21B . 24C . 26D .25.如图2,在△ABC 中,AC=BC ,∠ACB=90°,AD 平分∠BAC,AD 的延长线交BF 于E ,且E 为垂足,则结论①AD=BF ,②CF=CD,③AC+CD=AB ,④BE=CF,⑤BF=2BE ,其中正确的结论的个数是( )F( 图2 )EDC BAA .4B .3C .2D .1 6.如果实数8181m n m m n m n n m n ++≠=+=++,且,则( )A . 7B . 8C . 9D .10 二、填空题(每小题5分,共30分) 7.若(2011 4149aQ a --,)是第三象限内的点,且a 为整数,则a = 。
8.若实数2222231 3-2x y x y S x y +==,满足,,则S 的取值范围是 . 9.在△ABC 中,三个内角的度数均为整数,且∠A 〈∠B 〈∠C ,5∠C=9∠A ,则∠B 的度数是 .10.已知22302010 672010 x yx y==+=,,则 。
初中数学奥林匹克竞赛模拟试卷(八年级)

初中数学奥林匹克竞赛模拟试卷(八年级)全国初中数学奥林匹克竞赛试卷(八年级)一、选择题1、已知三点A(2,3),B(5,4),C(-4,1)依次连接这三点,则三点在同一直线上。
解析:AB的解析式为y= 3x+3,当x= -4时,y=1,即点C在直线AB上,∴选D。
2、边长为整数,周长为20的三角形个数是8个。
解析:设三角形的三边为a、b、c且a≥b≥c,a+b+c=20,a≥7,又b+c>a,2a<20a<10,又7≤a≤9,可列出(a、b、c)有:(9,9,2)(9,8,3)(9,7,4)(9,6,5)(8,8,4)(8,7,5)(8,6,6)(7,7,6)共八组,选C。
3、N=++,则N的个位数字是9.解析:的个位数字为3,的个位数字为9,的个位数字为7,∴N的各位数字为9,选C。
4、P为正方形ABCD内一点,若解析:过P作BP’⊥BP,且使BP’=BP,连P’A。
易得△P’AB≌△PBC,则P’A=PC,设PA=k,则PB=2k,PC=P’A=3k,连PP’,则Rt△PBP’中,∠P’PB=45°且PP’=22k,在△P’AP中有:P’A2=P’P2+PA2,∴∠P’PA=90°,∴∠APB=135°选B。
5、在函数y= -x(a为常数)的图象上有三点:(-1,y1)(-4,y2)(2,y3),则函数值y1,y2,y3的大小关系是y3<y1<y2.解析:-(a2+1)<0,∴在每个象限,y随x的增大而增大,因此y1<y2.又∵(-1,y1)在第二象限,而(2,y3)在第四象限,∴y3<y1,选C。
6、已知a+b+c≠0,且c=a=b。
解析:由c=a=b,可得a=b=c,代入a+b+c≠0中,得3a≠0,∴a≠0,选D。
初二奥数竞赛试题及答案

初二奥数竞赛试题及答案试题一:代数问题题目:若\( a \)、\( b \)、\( c \)为正整数,且满足\( a^2 + b^2 + c^2 = 1 \),求\( a \)、\( b \)、\( c \)的值。
答案:由于\( a \)、\( b \)、\( c \)为正整数,且\( a^2 + b^2 + c^2 = 1 \),我们可以推断出\( a \)、\( b \)、\( c \)的值只能是1或0。
因为\( 1^2 = 1 \),而\( 2^2 = 4 \),所以\( a \)、\( b \)、\( c \)不能大于1。
经过尝试,我们可以发现只有当\( a = b = c = 0 \)或\( a = 1, b = 0, c = 0 \)(或其它两种排列)时,等式成立。
试题二:几何问题题目:在一个直角三角形ABC中,∠C是直角,AC = 6,BC = 8,求斜边AB的长度。
答案:根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。
所以,我们有:\[ AB^2 = AC^2 + BC^2 \]\[ AB^2 = 6^2 + 8^2 \]\[ AB^2 = 36 + 64 \]\[ AB^2 = 100 \]\[ AB = \sqrt{100} \]\[ AB = 10 \]试题三:组合问题题目:有5种不同的颜色的球,每种颜色有3个球,现在要从中选出3个球,求不同的选法总数。
答案:这是一个组合问题,我们可以使用组合公式来解决。
组合公式为:\[ C(n, k) = \frac{n!}{k!(n-k)!} \]其中\( n \)是总数,\( k \)是要选择的数目。
在这个问题中,\( n = 15 \)(因为有5种颜色,每种3个球),\( k = 3 \)。
所以:\[ C(15, 3) = \frac{15!}{3!(15-3)!} \]\[ C(15, 3) = \frac{15 \times 14 \times 13}{3 \times 2 \times 1} \]\[ C(15, 3) = 455 \]试题四:逻辑问题题目:有5个盒子,每个盒子里都装有不同数量的糖果,从1到5。
全国奥林匹克数学初二竞赛题

全国奥林匹克数学初二竞赛题
全国奥林匹克数学初二竞赛题
一、数学逻辑
1、已知函数f(x)的定义域为[a,b],若f(a)=8,f(b)=15,求f(c)的值。
2、若函数f(x)的定义域为[a,b],其图像对称轴的方程若为y=kx-k,求a,b的值。
3、已知椭圆的两个焦点F1,F2在x轴上,以及它们到圆心的距离为a,求椭圆方程。
二、不等式
4、设a,b,c分别为正实数,求使a,b,c满足不等式x^2+2ax+2bx+c=0
的有界解集。
5、若x^2+2ax+2bx+c>0,其中a,b,c均为正实数,求对应的x的取值范围。
6、已知x,y,a,b均为正实数,求使x^2+2ax+2bx+y^2+2ay+2by=c的有
界解集。
三、函数
7、已知f(x)的定义域为[2,30],求f(x)的最大值以及f(x)的最小值。
8、已知直线上有m,n两点,求m到n的最短距离以及对应的方程(以
y=mx+b的形式表示)。
9、已知椭圆上有m,n两点,求m到n的最短距离以及对应的方程(以ax^2+by^2+cx+dy+k=0的形式表示)。
四、应用题
10、已知某商品的销售总额为50万,还知该商品的单位成本为100元,求该商品的最大利润。
11、若有两段距离分别为a,b共需要t小时,若要同时全程行驶,求所
需的最大时间。
12、已知f(x)的定义域为[1,50],求f(x)的单调递增区间及它们的
端点值。
第八届奥林匹克全国数学大赛初二的题

第八届奥林匹克全国数学大赛初二的题题目一:第八届奥林匹克全国数学大赛初二组一、选择题(共20题,每题4分,共80分)1. 在一个等差数列中,首项为3,公差为5,第5项为23,则这个等差数列的前n项和Sn为__________。
2. 已知一组数的平均值是18,如果将其中一个数3改成2,则新的平均值为____。
3. 若一个正整数除以8余2,除以10余6,求这个数除以40的余数是多少?4. 若直线y=3x+2与圆的方程为$x^2+y^2-2x-4y-11=0$,求这个圆与y轴的交点坐标。
5. 若正方形的边长为a,则其对角线的长度为______。
6. 若两条直线的斜率之和为5,斜率之积为-6,则这两条直线的方程分别是______。
7. 若甲乙两个数的和是100,乙丙两个数的和是80,乙数比丙数多10,求甲数是多少?8. 若一个正整数除以5余3,除以6余4,求这个数除以30的余数是多少?9. 设A、B、C三个整数满足A<B<C,如果A、B、C是一个等差数列,则这个等差数列的公差为______。
10. 若集合A={1, 2, 3},集合B={2, 3, 4},则集合A与集合B的并集为______。
二、填空题(共5题,每题6分,共30分)1. 在一个等差数列中,首项为2,公差为4,若前n项的和为56,则这个等差数列的第n项为______。
2. 设矩形的长是宽的3倍,周长为72,这个矩形的长和宽的分别是______。
3. 若$ax^2+bx+c$的图像与x轴两交点均为负数,则a、b、c的关系式为______。
4. 若直线y=2x-7与直线y=kx-2平行,则k的值为______。
5. 设一个正整数的个、十位数字和为12,将该数字的个、十位数字对调后,新数字比原数字增大36,该正整数为______。
三、解答题(共5题,每题10分,共50分)1. 设$\log_5{x}=a,\log_3{x}=b$,求$\log_{75}{x}$的值。
初中奥林匹克数学竞赛试题

初中奥林匹克数学竞赛试题一、选择题(每题3分,共30分)1. 若实数a,b满足 a + 2 +(b - 4)² = 0,则a + b的值为()。
A. - 2B. 2C. 6D. - 6答案:B。
解析:因为绝对值是非负的,一个数的平方也是非负的,要使 a + 2 +(b - 4)² = 0,那么a+2 = 0且b - 4 = 0,解得a=-2,b = 4,所以a + b=2。
2. 把多项式x² - 4x+4分解因式,结果正确的是()。
A. (x - 2)²B. (x+2)²C. (x - 4)²D. (x+4)²答案:A。
解析:x²- 4x + 4符合完全平方公式a²- 2ab+b²=(a - b)²的形式,这里a=x,b = 2,所以分解因式结果为(x - 2)²。
3. 已知一元二次方程x² - 3x - 2 = 0的两个实数根为x1,x2,则(x1 - 1)(x2 - 1)的值是()。
A. - 4B. - 2C. 0D. 2答案:C。
解析:根据韦达定理,对于一元二次方程ax²+bx + c = 0(a≠0),x1+x2=-b/a,x1x2=c/a。
在方程x² - 3x - 2 = 0中,a = 1,b=-3,c = - 2,所以x1+x2 = 3,x1x2=-2。
(x1 - 1)(x2 - 1)=x1x2-(x1+x2)+1=-2 - 3+1 = 0。
4. 一个三角形的三个内角之比为1:2:3,则这个三角形是()。
A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形答案:B。
解析:设三个内角分别为x,2x,3x,因为三角形内角和为180°,所以x+2x+3x = 180°,解得x = 30°,那么三个角分别为30°,60°,90°,所以是直角三角形。
八年级奥林匹克数学题

八年级奥林匹克数学题
八年级的奥林匹克数学题可能涉及到各种不同的数学领域,包括几何、代数、概率和统计等。
以下是一些可能的题目示例:
1. 设$x$,$y$为实数,已知$x^{2} + y^{2} = 1$,求$x + y$的最大值和
最小值。
2. 设$a$,$b$,$c$为三角形三边长,且$a + b + c = 21$,求证:$a^{2} + b^{2} + c^{2} \geq 99$。
3. 设$x_{1}$,$x_{2}$,$\ldots$,$x_{n}$为正实数,且满足
$\frac{1}{x_{1}} + \frac{1}{x_{2}} + \ldots + \frac{1}{x_{n}} = 1$。
求证:对于任意的正实数$a$,有$\frac{a}{x_{1}} + \frac{a}{x_{2}} + \ldots +
\frac{a}{x_{n}} \leq a + 1$。
4. 设正实数$a_{1}$,$a_{2}$,$\ldots$,$a_{n}$满足$\frac{a_{1}}{a_{2}} + \frac{a_{2}}{a_{3}} + \ldots + \frac{a_{n - 1}}{a_{n}} = 1$。
求证:对于任意的正实数$m$,有$\sqrt{m^{2} - 2mn} \leq m - n$。
这些题目都需要运用奥林匹克的思维方式来解决,需要运用综合和分析的能力、逻辑思维和创造性思维。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级奥林匹克数学竞赛题
八年级的奥林匹克数学竞赛题相对于一般数学题而言,更侧重考查学生对知识的综合运用能力和解题思维能力,题目相对偏难一些。
接下来是店铺为大家带来的八年级奥林匹克的数学竞赛题,供大家参考。
八年级奥林匹克数学竞赛题目
一填空题
1、观察下列各式1× 3=3而3=22-1,3×5=15而15=42-1,5×7=35而35=62-1,……,11×13=143而143=122-1;你猜想到的规律用只含一个字母n的式子表示出来是 __ 。
2、a=2005x+2004,b=2005x+2005,c=2005x+2006,代数式a2+b2+c2-ab-bc-ca= 。
3、一个多边形的对角线的条数等于边数的5倍,则这个多边形是_____边形.
4、现有铁矿石73吨,计划用载重量分别为7吨和5吨的两种卡车一次运走,已知载重量7吨的卡车每台车的运费为65元,载重量5吨的卡车每台车运费为50元,则最省的运费是元。
5、100个数据分成5组,其中第一、二小组的频率之和等于0.11,第四、五小组的频率之和等于0.27,则第三小组的频数等于_______________。
6、甲、乙、丙三人进行智力抢答活动,规定:第一个问题由乙提出,由甲、丙抢答.以后在抢答过程中若甲答对1题,就可提6个问题,乙答对1题就可提5个问题,丙答对1题就可提4个问题,供另两人抢答.抢答结束后,总共有16个问题没有任何人答对,则甲、乙、丙答对的题数分别是________。
7、在四边形ABCD中,如果要使对角线AC⊥BD,可添加条件(只需填写一个你认为适当的条件即可)。
8、有3堆硬币,每枚硬币的面值相同.小李从第1堆取出和第2堆一样多的硬币放入第2堆;又从第2堆中取出和第3堆一样多的硬币放人第3堆;最后从第3堆中取出和现存的第1堆一样多的硬币放人第1
堆,这样每堆有16枚硬币,则原来第1堆有硬币___枚,第2堆有硬币____枚,第3堆有硬币_____枚.
9、盒子里有10个球,每个球上写有1~10中的1个数字,不同的球上数字不同,其中两个球上的数的和可能是3,4,…,19.现从盒中随意取两个球,这两个球上的数的和,最有可能出现的是_______。
10、传说古埃及人曾用“拉绳”的方法画直角,现有一根长24cm的绳子,请你利用它拉出一个周长为24cm的直角三角形,那么你拉出的直角三角形的三边的长度分别为_______________________,其中的道理是:_______________ 。
二选择题(每题5分,共50分)
11、在△ABC中,AC⊥BC,∠B=30º,CN、CM 三等分∠ACB,AN:NM:MB的值是( )(A)1:1:3 (B)1:1:2 (C)1:2:2 (D)1:2:3
12、若关于x的方程|2x-1|+a=0无解,|3x-5|+b=0只有一个解,|4x-3|+c=0有两个解,则a,b,c的大小关系是()(A)a>b>c (B)b>c>a
(C)b>a>c(D)a>c>b
13、在凸四边形ABCD中,AB=BC=BD,∠ABC=700,则∠ADC 等于 ( )
(A)1450 (B)1500 (C)1550 (D)1600
14、x2+mx-10=(x+a)(x+b)a,b是整数则m值 ( )
(A)3或9 (B)±3 (C)±9 (D)±3或±9
15、已知△ABC两边长a,b且a
A)3a
16、△ABC三边长分别为a,b,c,a2+b2+c2=ab+bc+ca,则这个三角形一定是 ( )
(A)不等边三角形 (B)等边三角形 (C)等腰三角形(D)任意三角形
17、设有一凸多边形,除去一个内角外,其他内角和是2570°,则该内角的度数是( )(A)40°(B)90° (C)120 (D)130 °
18、已知三条线段的长分别是22、16、18,以其中两条为对角线,其余一条为一边,可画平行四边形的个数是 ( )(A)0 (B)1 (C)2 (D)3
19、某文化商场同时卖出两台电子琴,每台均卖960元,以成本
计算其中一台盈利20%,另一台亏本20%,则本次出售中商场 ( )
(A)不赔不赚 (B)赚160元 (C)赚80元 (D)赔80元
20、三角形内有八个点,每三个点能组成一个三角形,最多能组成不重叠的三角形的个数为 ( )(A)15 (B)16(C)17 (D)18
三、解答题
21、某仓库有50件同一规格的某种集装箱,准备委托运输公司送到码头.运输公司有每次可装运一件、二件、三件这种集装箱的三种型号的货车,这三种型号的货车每次收费分别为120元、160元、180元.现要求安排20辆货车刚好一次装运完这些集装箱.问这三种型号的货车各需多少辆,有多少种安排方式?哪种安排方式所付的运费最少?最小运费是多少?
22、一个多边形的内角和是外角和的五分之一,这个多边形存在吗?若存在,是几边形?若不存在,请说明理由。
23、随着IT技术的普及,越来越多的学校开设了微机课.某初中计划拿出72万元购买电脑,由于团体购买,结果每台电脑的价格比计划降低了500元,因此实际支出了64万元.学校共买了多少台电脑?若每台电脑每天最多可使用4节课,这些电脑每天最多可供多少学生上微机课?(该校上微机课时规定为单人单机)
24、一个等腰三角形的周长是12,且三边长都是整数,则三角形的腰长是多少?
25、某工艺品厂的手工编织车间有工人20名,每人每天可编织5个座垫或4个挂毯.在这20名工人中,如果派x人编织座垫,其余的编织挂毯.已知每个座垫可获利16元,每个挂毯可获利24元.
(1)写出该车间每天生产这两种工艺品所获得的利润y(元)与x(人)之间的函数关系式;
(2)若使车间每天所获利润不小于1800元,最多安排多少人编织座垫?
26、一个长方体盒子的长为16,宽为12,高为9。
在这个长方体下底部的顶点A有一只蚂蚁,它想吃到它上底面的对角顶点B的食物,需爬行的最短路程是多少?。