概率统计方程实验报告
概率实验报告(全三次).ppt

解:在命令窗口中输入
b=[422.2,417.2,425.6,420.3,425.8,423.1,418 .7,428.2,438.3,434.0,312.3,431.5,413.5,441. 3,423.0 ]; [a,b,c,d]=normfit(x,0.05) 结果(normfit函数把结果返回到a,b,c,d 中) a=418.33 b=929.315 c=402.651 d=498.122 436.415 2311.43
实验二:
统计函数及其应用
参数估计与假设检验
一.实验目的
1.掌握单个正态总体分布的均值和方差 的估计. 2.了解两个正态总体的均值和方差的 区间估计.
二.命令语句
正态总体参数估计的格式: [a,b,c,d]=normfit(x,alpha); alpha默认0.05 指数最大似然参数估计的格式: [m,n]=expfit(x,alpha) a:均值的估计值 m: 的估计值 b:方差的估计值 n: 的置信区间 c:均值的置信区间 d:方差的置信区间
三.命令语句
2.单个正态总体 未知 的假设检验(t检验) [h,sig]=ztest(list, mu, ,TALL ) 注:list:给出数据组的列表或数据组的名称 mu: 给出待检验的均值 : 检验水平,默认值为0.05 TALL=0 表示 H1 : muo TALL=1表示 H1 : muo TALL=-1表示 H1 : muo h=0则接受原假设;h=1则拒绝原假设
输入: x=[159,280,101,212,224,379,179,264,222 ,362,1 68,250,149,260,485,170]; [h,sig]=ttest(x,225,0.05,1); clc 结果:h=0 sig=0.2570 disp('假设检验的结果是:') if h==0 disp('接受原假设H0,即均值小于225') else disp('拒绝原假设H0,即均值大于等于225') end 假设检验的结果是: 接受原假设H0,即均值小于225
概率统计实验报告(三)剖析

线性回归实验报告(三)实验目的:通过本次实验,了解matlab和spss在非参数检验中的应用,学会用matlab和spss做非参数假设检验,主要包括单样本和多样本非参数假设检验。
实验内容:1.单样本假设检验;2.多样本假设检验.实验结果与分析:1.单样本K-S儿童身高操作步骤:⑴分析-非参数检验-旧对话框-1-样本KS;⑵将“周岁儿童身高”变换到检验变量列表,由于样本量太少,点击精确按钮,选择精确检验方法;⑶回到K-S检验对话框,点击选项按钮,设置输出参数,勾选描述性和四分位数;⑷输出检验结果。
从图形特征上看,儿童身高的分布非常接近正态分布,但是仍需要用K-S来检验诊断。
结论:K-S检验统计量Z值为0.936,显著性为0.344,大于显著性水平0.05,所以不能拒绝原假设,认为周岁儿童的身高服从正态分布。
2.单样本游程——电缆操作步骤:⑴分析-非参数检验-旧对话框-游程;⑵将“耐电压值”变换到检验变量列表;⑶回到游程检验对话框,点击选项按钮,设置输出参数,勾选描述性和四分位数;⑷输出检验结果。
结论:中位数渐进显著性为0.491,平均数和众数为1,大于显著性水平0.05,所以不能拒绝原假设,所以该组电缆耐电压值是随机的。
3.多独立样本——儿童身高操作步骤:⑴分析-非参数检验-旧对话框-K个独立样本检验;⑵将“周岁儿童身高”变换到检验变量列表;将“城市标志”变换到分组变量,设置分组变量范围;⑶回到多独立样本检验对话框,点击选项按钮,设置输出参数,勾选描述性和四分位数;⑷输出检验结果。
结论:多个样本的K-W检验,即秩和检验目的是看各总体的位置参数是否一样,渐近显著性值为0.003,小于显著性水平0.05,所以拒绝原假设,因而四个城市儿童身高的分布存在显著性差异。
4.多样本配对——促销方式操作步骤:⑴分析-非参数检验-旧对话框-K个相关样本检验;⑵将“促销形式1”、“促销形式2”、“促销形式3”变换到检验变量列表;⑶回到多个关联样本检验对话框,点击选项按钮,设置输出参数,勾选描述性和四分位数;⑷输出检验结果。
概率统计学实验报告

《概率统计》实验报告实验人员:系(班):矿业工程系机械设计制造及其自动化1404班 学号:20141804408 姓名:李君阳 实验地点:电教楼四层三号机房实验名称:《概率统计》实验时间:2016.5.10,2016.5.17 16:30——18:30.实验目的:1.加强学生的动手能力,让学生掌握对MATLAB 软件的应用。
2.为以后的数学计算节省时间,提高精确度,准确度,合理的利用科学技术。
实验内容:(给出实验程序与运行结果)一、古典概型2、在50个产品中有18个一级品,32个二级品,从中任意抽取30个,求其中恰有20个二级品的概率.解:p=C 3220C 1810c 5030=0.2096>> p=nchoosek(32,20)*nchoosek(18,10)/nchoosek(50,30)p =0.2096二、计算概率1、某人进行射击,设每次射击的命中率为0.02,独立射击200次,试求至少击中两次的概率.2、一铸件的砂眼(缺陷)数服从参数为0.5的泊松分布,求此铸件上至多有1个砂眼的概率和至少有2个砂眼的概率. 解:1.p=1-c 2000∗0.98400-c 2001*0.98199*0.02=0.1458>> p=binopdf(2,200,0.02)p =0.1458 2.P(ζ=0)= 5.00*!05.0-e P(ζ=1)= 5.01*!15.0-e P(ζ1)=0.9098P(ζ)=0.09024、设随机变量()23,2X N ,求()25P X <<;()2P X >解:P(2<X<5)=F(5)-F(2)= )5(1,0σa F -=)235(1,0-F -)232(1,0-F = -=0.08413-(1-0.6915)=0.5328P(|X |>2)=P(X<-2)+P(X>2)=P(X<-2)+1-P(X<2)=0.6977normcdf(5,3,2)-normcdf(2,3,2) ≤2≥吕梁学院《概率统计》实验报告ans =0.5328>> normcdf(-2,3,2)-normcdf(2,3,2)+1ans =0.6977三、作图1、画出N(2,9),N(4,9),N(6,9)的图像进行比较;(图1)画出N(0,1),N(0,4),N(0,9)的图像进行比较.解:y1=normpdf(x,2,3);y2=normpdf(x,4,3);y3=normpdf(x,6,3);plot(x,y1,x,y2,x,y3)>> x=-40:0.01:40;y1=normpdf(x,0,1);y2=normpdf(x,0,2);y3=normpdf(x,0,3);plot(x,y1,x,y2,x,y3)(图2)四、常见统计量的计算1、根据调查,某集团公司的中层管理人员的年薪(单位:万元)数据如下:42 41 39.2 37.6 40.2 40 41 41.4 36.1 43.140.3 39.3 38.4 36.5 38.1 38.5 39.1 40.6 38.3 39.7求其公司中层管理人员年薪的样本均值、样本方差、样本标准差,绘制直方图。
概率统计上机实验报告(电子版)

2.(1)BINOMDIST(2,15,0.05,FALSE)=0.13475BINOMDIST(2,15,0.05,TRUE)=0.9638(2)EXPONDIST(1,0.1,FALSE)=0.09048EXPONDIST(4,0.1,TRUE)=0.32968(3)NORMDIST(2,0,1, TRUE)=0.97725NORMSDIST(2)-- NORMSDIST(--2)=0.9545=NORMINV(0.98,0,1)=2.05NORMSDIST(0.1)-- NORMSDIST(--1)=0.3812=NORMINV(0.05,5,100)=--159.49(4)POISSON(4,2,FALSE)=0.090POISSON(4,2,TRUE)=0.9473(5) BINOMDIST(2,15,0.05,FALSE)=0.13475营业税金与社会商品总额关系(1)打开EXCEL,建立数据文件如下图:税收Y 销售X3.93 142.085.96 177.307.85 204.689.82 242.6812.50 316.2415.55 341.9915.79 332.6916.39 389.2918.45 453.40调用线性回归分析程序:单击工具/数据分析/回归/确定,填写对话框,确定后输出结果,分析结果知回归方程为:Y=-2.258+0.0487X(2)对数据调用相关分析程序:依次单击工具/数据分析/相关系数/确定,填写对话框后,单击确定得到下面表格:所以,Y与X的皮尔逊相关系数为: 0.981069(3)建立假设H0:b=0 ,H1:b=/0,统计检验量F=(SSR/k)/(SSE/n-k-1)有数据分析结果知:F=179.6507P(F(1,7)>179.6507)=3.02E-06<<0.05所以认为回归方程是显著有效的。
(4)在(1)中表的B11中补充数据X=320在A11中输入公式=-2.258+0.0487X320运行课的到X=320的点预测值y=13.326。
大学概率统计实验报告

大学概率统计实验报告引言在概率统计学中,实验是一种重要的数据收集方法。
通过实验,我们可以收集到一系列随机变量的观测值,然后利用统计方法对这些观测值进行分析和推断。
本实验旨在通过一个简单的骰子实验来介绍概率统计的基本理论和方法。
实验目标本实验的目标是通过投掷骰子的实验,验证骰子的随机性,并研究骰子的概率分布。
实验步骤1.准备一个六面骰子和一张记录表格。
2.将骰子投掷20次,并记录每次投掷的结果。
将结果按照出现的次数填入表格中。
3.统计记录表格中每个数字出现的频数,并计算频率。
4.绘制柱状图展示各个数字的频率分布情况。
实验结果与分析根据实验记录表格,我们统计得到了每个数字出现的频数如下:数字 1 2 3 4 5 6频数 4 3 6 2 4 1根据频数,我们可以计算出每个数字的频率。
频率是指某个数字出现的次数与总次数的比值。
通过计算,我们得到了每个数字的频率如下:数字 1 2 3 4 5 6频率0.2 0.15 0.3 0.1 0.2 0.05通过绘制柱状图,我们可以更直观地观察到各个数字的频率分布情况。
柱状图如下所示:0.3 | █| █| █| █0.25 | █| █| █| █0.2 | █ █ █| █ █ █ █| █ █ █ █| █ █ █ █0.15 | █ █ █ █| █ █ █ █| █ █ █ █| █ █ █ █0.1 | █ █ █ █| █ █ █ █| █ █ █ █| █ █ █ █0.05 | █ █ █ █| █ █ █ █| █ █ █ █| █ █ █ █----------------1 2 3 4 5 6根据实验结果,我们可以观察到以下现象和结论: - 各个数字的频率接近于理论概率,表明骰子的结果具有一定的随机性。
- 数字3的频率最高,约为0.3,而数字6的频率最低,约为0.05。
这说明骰子的结果并不完全均匀,存在一定的偏差。
结论与讨论通过本次实验,我们了解了概率统计的基本理论和方法,并通过投掷骰子的实验验证了骰子的随机性。
实验5:概率统计实验

撰写人姓名:邓阳春撰写时间:2009-11-08 审查人姓名:侯兆欣实验全过程记录实验名称概率统计实验时间2学时地点数学实验室姓名邓阳春学号0705020305 安全07-3班同实验者侯兆欣学号0705020125 安全07-1班一、实验目的1、掌握利用MATLAB处理简单的概率问题;2、掌握利用MATLAB处理简单的数理统计问题。
二、实验内容:1、熟练掌握几种常用的离散型、连续型随机变量的函数命令;2、熟练掌握常用的描述样本数据特征的函数命令(如最值、均值、中位数(中值)、方差、标准差、几何平均值、调和平均值、协方差、相关系数等);3、掌握常用的MATLAB统计作图方法(如直方图、饼图等);4、能用MATLAB以上相关命令解决简单的数据处理问题;5、熟练掌握常用的参数估计和假设检验的相关的函数命令;6、能用参数估计和假设检验等相关命令解决简单的实际问题。
三、实验用仪器设备及材料软件需求:操作系统:Windows XP或更新的版本;实用数学软件:MATLAB 7.0或更新的版本。
硬件需求:Pentium IV 450以上的CPU处理器、512MB以上的内存、5000MB的自由硬盘空间、CD-ROM驱动器、打印机、打印纸等。
四、实验原理:概率论与数理统计等相关理论五、实验步骤:1、对下列问题,请分别用专用函数和通用函数实现。
⑴X服从[3, 10]上均匀分布,计算P{X≤4},P{X>8};已知P{X>a}=0.4,求a。
p1=unifcdf(4,3,10)p2=1-unifcdf(8,3,10)p11=cdf('unif',4,3,10)p22=1-cdf('unif',8,3,10)unifinv(0.6,3,10)icdf('unif',0.6,3,10)p1 =0.1429p2 =0.2857p11 =0.1429p22 =0.2857ans =7.2000ans =7.2000⑵X服从正态分布N(2, 9),计算P{|X|≤1},P{|X|>5};已知P{X<b}=0.9,求b。
概率统计实验报告结论

概率统计实验报告结论引言概率统计是数学中非常重要的一个分支,它利用统计方法对一定的随机现象进行描述、分析和预测。
本次实验中我们通过模拟实验的方式,利用概率统计的方法对一些实际问题进行了研究和分析。
实验一:骰子实验我们进行了一系列的骰子实验,通过投掷骰子并记录点数的方式来研究骰子的概率分布。
实验结果表明,投掷骰子时,每个面出现的概率是均等的,即每个面的概率是1/6。
这符合理论预期,也验证了概率统计中的等概率原理。
实验二:扑克牌实验通过抽取一副扑克牌中的若干张牌,并记录其点数和花色,我们研究了扑克牌中各个点数和花色的概率分布情况。
实验结果表明,52张扑克牌中各个点数和花色的概率分布近似均等,并且点数和花色之间是相互独立的。
这进一步验证了概率统计中的等概率原理和独立事件的性质。
实验三:掷硬币实验通过进行大量的抛硬币实验,我们研究了硬币正反面出现的概率分布情况。
实验结果表明,掷硬币时正面和反面出现的概率非常接近,都是1/2。
这也符合理论预期,并且进一步验证了概率统计中的等概率原理。
实验四:随机数生成器实验通过计算机程序生成随机数,并对其进行统计分析,我们研究了随机数生成器的质量问题。
实验结果表明,一个好的随机数生成器应该具备均匀分布、独立性和不可预测性等特征。
我们的实验结果显示,所使用的随机数生成器满足这些条件,从而可以被广泛应用于概率统计领域。
实验五:二项分布实验通过进行大量的二项分布实验,我们研究了二项分布的特性。
实验结果表明,二项分布在一定条件下可以近似成正态分布,这是概率统计中的重要定理之一。
实验结果还显示,二项分布的均值和方差与试验的次数和成功的概率有关,进一步验证了概率统计中与二项分布相关的理论。
总结通过本次概率统计实验,我们对骰子、扑克牌、硬币、随机数和二项分布等与概率统计相关的问题进行了研究和分析。
实验结果与理论预期基本一致,验证了概率统计中的一些重要原理和定理。
这些实验结果对我们的概率统计学习和应用有着重要的意义,同时也为我们在探索更深层次的概率统计问题提供了一定的启示和思路。
概率统计实验报告

概率统计实验报告班级学号姓名2016年 01月 06日问题概述和分析(1)实验内容说明:在常见随机变量中选择3种计算它们的期望和方差。
(2)本门课程与实验的相关内容:通过用matlab 软件对常见随机变量进行期望与方差计算,熟悉变量,深化理解。
实验目的:练习使用matlab软件进行概率论问题分析,熟练使用密度函数,分布函数等命令。
实验设计总体思路(1)引论利用matlab工具实现对基本随机变量的期望与方差计算。
(2)实验主题部分设计思路:设计三个随机变量,计算方差及期望。
2、实验设计总体思路2.1、引论2.2、实验主题部分2.2.1、实验设计思路1、理论分析2、实现方法用概率分布函数(cdf)求各种分布中的不同事件的概率;用逆概率分布函数(Inv )求各种分布的 分位点。
2.2.2、实验结果及分析实验结果见下,可见用matlab可有效地解决一些与常见分布的密度函数分布函数有关的问题。
2.2.3、程序及其说明a.均匀分布的期望和方差>>a = 1:6; b = 2.*a;>>[M,V] = unifstat(a,b)M =1.5000 3.0000 4.5000 6.0000 7.5000 9.0000V =0.0833 0.3333 0.7500 1.33332.08333.0000b.正态分布的期望和方差>> [M,V]=normstat(a,b)M =1 2 3 4 5 6V =4 16 36 64 100 144c.二项分布的均值和方差>>n = logspace(1,5,5)10 100 1000 10000 100000>>[M,V] = binostat(n,1./n)M =1 1 1 1 1V =0.9000 0.9900 0.9990 0.99991.0000>>[m,v] = binostat(n,1/2)m =5 50 500 5000 500002.3、对教材正文的深入理解和创新性说明2.3.1、对教材正文的深入理解通过使用matlab,我发现教材中的许多问题也可以用matlab来更方便更快的解决2.3.2、对论文中探索性内容或创新点说明2.4、体会运用matlab不仅能比较快速准确地计算各种概率,而且也可用于作图,并运用于统计等方面,总之掌握它对我们以后一些方面的研究有帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率统计》实验报告
专业 班级 姓名 学号 实验地点 实验时间
一、实验目的
1.学会用matlab 计算常见分布的概率。
2.熟悉matlab 中用于描述性统计的基本操作与命令
3.学会matlab 进行参数估计与假设检验的基本命令与操作
二、实验内容:(给出实验程序与运行结果)
实验一:
1、 设随机变量()23,2X N ,求()25P X <<;()2P X >
2、 一批产品的不合格率为0.02,现从中任取40件进行检查,若发现两件或两件以上不合格品就拒收这批产品,求拒收的概率。
实验二:根据调查,某集团公司的中层管理人员的年薪(单位:万元)数据如下:
40.6 39.6 37.8 36.2 38.8 38.6 39.6 40.0 34.7 41.7
38.9 37.9 37.0 35.1 36.7 37.1 37.7 39.2 36.9 38.3
求其公司中层管理人员年薪的样本均值、样本方差、样本修正方差,画出经验分布函数图、直方图。
实验三:
1、 假设轮胎的寿命服从正态分布,现随机抽取12只轮胎试用,测得它们的寿命(单位:万千米)如下:4.68 4.85 4.32 4.85 4.61 5.02 5.20 4.60 4.58 4.72 4.38 4.70 求平均寿命的最大似然估计值,以及置信度为0.95的置信区间。
2、 已知维尼纤度在正常条件下服从正态分布,方差为2
0.048,从某天产品中抽取5根纤维,测得纤度为1.32 1.55 1.36 1.40 1.44 问这一天纤度的总体方差是否正常? 三、 实验总结与体会
实验分析:。