概率与数理统计matlab实验报告1
matlab在概率统计中的应用

实验八matlab在概率统计中的应用一、实验目的1、掌握利用MATLAB处理简单的概率问题;2、掌握利用MATLAB处理简单的数理统计问题。
二、实验内容1、对下列问题,请分别用专用函数和通用函数实现。
(1)X服从[3, 10]上均匀分布,计算P{X≤4},P{X>8};已知P{X>a}=0.4,求a。
(2) X服从正态分布N(2, 9),计算P{|X|≤1},P{|X|>5};已知P{X<b}=0.9,求b。
(3) X服从自由度为9的t分布,计算P{-2<X≤1};已知P{X<c}=P{X>c},求c。
2、绘制下列图形,并比较参数变化对图形的影响。
(1)()2μσ,为(-1,1),(0,0.4),(0,6),(1,1)时正态分布的概率密度函数图形;(2)参数n为1,2,3,4,5时2χ分布的概率密度函数图形。
3、设样本数据为110.1,25.2,39.8,65.4,50.0,98.1,48.3,32.2,60.4,40.3,求该样本的均值、方差、标准差、中位数、几何均值、最大值、最小值、极差并绘出数据的直方图及圆饼图。
4、下表一列出某高校自动化专业研究生招生规模及生源情况请用常用的MATLAB统计作图函数,分析表一中的数据,能否得出近四年招生规模缩小, 总体生源质量下降的结论?5、某高校自动化学院现有教师80人。
其中,教授24人,副教授32人;博士生导师18人,硕士生导师40人;教师队伍中具有博士学位的39人。
请用三维圆饼图描述教师的组成,并在图中显示相应的人数及所占比例。
6、有两组(每组100个元素)正态随机数据,其均值为10,均方差为2,求95%的置信区间和参数估计值。
7、分别使用金球和铂球测定引力常数。
(1)用金球测定观察值为:6.683 6.681 6.676 6.678 6.679 6.672;(2)用铂球测定观察值为:6.661 6.661 6.667 6.667 6.664。
概率论与数理统计上机实验报告

概率论与数理统计上机实验报告实验一【实验目的】熟练掌握 MATLAB 软件的关于概率分布作图的基本操作会进行常用的概率密度函数和分布函数的作图绘画出分布律图形【实验要求】掌握 MATLAB 的画图命令 plot掌握常见分布的概率密度图像和分布函数图像的画法【实验容】2 、设X : U (−1,1)(1 )求概率密度在 0 ,0.2 ,0.4 ,0.6 ,0.8,1 ,1.2 的函数值;(2 )产生 18 个随机数(3 行 6 列)(3 )又已知分布函数F ( x) = 0.45 ,求x(4 )画出X 的分布密度和分布函数图形。
【实验方案】熟练运用基本的MATLAB指令【设计程序和结果】1.计算函数值Fx=unifcdf(0, -1,1)Fx=unifcdf(0.2, -1,1)Fx=unifcdf(0.4, -1,1)Fx=unifcdf(0.6, -1,1)Fx=unifcdf(0.8, -1,1)Fx=unifcdf(1.0, -1,1)Fx=unifcdf(1.2, -1,1)结果Fx =0.5000Fx =0.6000Fx =0.7000Fx =0.8000Fx =0.9000Fx =1Fx =12.产生随机数程序:X=unifrnd(-1,1,3,6)结果:X =0.6294 0.8268 -0.4430 0.9298 0.9143 -0.7162 0.8116 0.2647 0.0938 -0.6848 -0.0292 -0.1565 -0.7460 -0.8049 0.9150 0.9412 0.6006 0.83153.求x程序:x=unifinv(0.45, -1,1)结果:x =-0.10004.画图程序:x=-1:0.1:1;px=unifpdf(x, -1,1);fx=unifcdf(x, -1,1);plot(x,px,'+b');hold on;plot(x,fx,'*r');legend('均匀分布函数','均匀分布密度');结果:【小结】运用基本的MATLAB指令可以方便的解决概率论中的相关问题,使数学问题得到简化。
概率-matlab上机实验

数学实验-概率学院:理学院班级:xxxx姓名:xxxx学号:xxxx指导教师:xxxxx实验名称:概率试验目的:1)通过对mathematica软件的练习与运用,进一步熟悉和掌握mathematica软件的用法与功能。
2)通过试验过程与结果将随机实验可视化,直观理解概率论中的一些基本概念,并初步体验随机模拟方法。
实验步骤:1)打开数学应用软件——Mathematica ,单击new打开Mathematica 编辑窗口;2)根据各种问题编写程序文件;3)运行程序文件并调试;4)观察运行结果(数值或图形);5)根据观察到的结果写出实验报告,并析谈学习心和体会。
实验内容:1)概率的统计定义2)古典概型3)几种重要分布1)二项分布2)泊松分布4)概率问题的应用(一)概率的统计定义我们以抛掷骰子为例,按古典概率的定义,我们要假设各面出现的机会是等可能的,这就要假设:(1)骰子的质料绝对均匀;(2)骰子是绝对的正方体:(3)掷骰子时离地面有充分的高度。
但在实际问题中是不可能达到这些要求的,假设我们要计算在一次抛掷中出现一点这样一个事件 的概率为多少,这时,已无法仅通过一种理论的考虑来确定,但我们可以通过试验的方法来得到事件 概率:设反复地将骰子抛掷大量的次数,例如n 次,若在n 次抛掷中一点共发生了 次,则称是 这个事件在这n 次试验中的频率,概率的统计定义就是将 作为事件 的概率P( )的估计。
这个概念的直观背景是:当一个事件发生的可能性大(小)时,如果在同样条件下反复重复这个实验时,则该事件发生的频繁程度就大(小)。
同时,我们在数学上可以证明:对几何任何一组试验,当n 趋向无穷时,频率 趋向同一个数。
<练习一>模拟掷一颗均匀的骰子,可用产生1-6的随机整数来模拟实验结果1) 作n=200组实验,统计出现各点的次数,计算相应频率并与概率值1/6比较;2) 模拟n=1000,2000,3000组掷骰子试验,观察出现3点的频率随试验次数n 变化的情形,从中体会频率和概率的关系。
matlab实验报告1

matlab实验报告1MATLAB实验报告1摘要:本实验使用MATLAB软件进行了一系列的实验,主要包括数据处理、图像处理和信号处理。
通过实验,我们掌握了MATLAB软件在科学计算和工程领域的应用,深入了解了MATLAB在数据处理、图像处理和信号处理方面的强大功能。
一、数据处理实验在数据处理实验中,我们使用MATLAB对一组实验数据进行了分析和处理。
首先,我们导入了实验数据并进行了数据清洗和预处理,然后利用MATLAB的统计分析工具对数据进行了描述性统计分析,包括均值、方差、标准差等指标的计算。
接着,我们利用MATLAB的绘图工具绘制了数据的直方图和散点图,直观地展现了数据的分布规律和相关性。
二、图像处理实验在图像处理实验中,我们使用MATLAB对一幅图像进行了处理和分析。
首先,我们读取了图像并进行了灰度化处理,然后利用MATLAB的图像滤波工具对图像进行了平滑和锐化处理,最后利用MATLAB的图像分割工具对图像进行了分割和特征提取。
通过实验,我们深入了解了MATLAB在图像处理领域的应用,掌握了图像处理的基本原理和方法。
三、信号处理实验在信号处理实验中,我们使用MATLAB对一组信号进行了处理和分析。
首先,我们生成了一组模拟信号并进行了频域分析,利用MATLAB的信号滤波工具对信号进行了滤波处理,然后利用MATLAB的频谱分析工具对信号的频谱特性进行了分析。
通过实验,我们深入了解了MATLAB在信号处理领域的应用,掌握了信号处理的基本原理和方法。
综上所述,本实验通过对MATLAB软件的应用实验,使我们对MATLAB在数据处理、图像处理和信号处理方面的功能有了更深入的了解,为我们今后在科学计算和工程领域的应用奠定了良好的基础。
MATLAB软件的强大功能和广泛应用前景,将为我们的学习和科研工作提供有力的支持和帮助。
概率论与数理统计MATLAB上机实验报告

《概率论与数理统计》MATLAB上机实验实验报告一、实验目的1、熟悉matlab的操作。
了解用matlab解决概率相关问题的方法。
2、增强动手能力,通过完成实验内容增强自己动手能力。
二、实验内容1、列出常见分布的概率密度及分布函数的命令,并操作。
概率密度函数分布函数(累积分布函数) 正态分布normpdf(x,mu,sigma) cd f(‘Normal’,x, mu,sigma);均匀分布(连续)unifpdf(x,a,b) cdf(‘Uniform’,x,a,b);均匀分布(离散)unidpdf(x,n) cdf(‘Discrete Uniform’,x,n);指数分布exppdf(x,a) cdf(‘Exponential’,x,a);几何分布geopdf(x,p) cdf(‘Geometric’,x,p);二项分布binopdf(x,n,p) cdf(‘Binomial’,x,n,p);泊松分布poisspdf(x,n) cdf(‘Poisson’,x,n);2、掷硬币150次,其中正面出现的概率为0.5,这150次中正面出现的次数记为X(1) 试计算X=45的概率和X≤45 的概率;(2) 绘制分布函数图形和概率分布律图形。
答:(1)P(x=45)=pd =3.0945e-07P(x<=45)=cd =5.2943e-07(2)3、用Matlab软件生成服从二项分布的随机数,并验证泊松定理。
用matlab依次生成(n=300,p=0.5),(n=3000,p=0.05),(n=30000,p=0.005)的二项分布随机数,以及参数λ=150的泊松分布,并作出图线如下。
由此可以见得,随着n的增大,二项分布与泊松分布的概率密度函数几乎重合。
因此当n足够大时,可以认为泊松分布与二项分布一致。
4、 设22221),(y x e y x f +−=π是一个二维随机变量的联合概率密度函数,画出这一函数的联合概率密度图像。
概率学中MATLAB的基本使用

• 9 4 16 • 为了便于比较, 下面列出矩阵的幂运算.
• 例 1-13 与数组幂运算比较, 进行矩阵的幂运算. • a = [1 3 4; 2 6 5; 3 2 4]; • c = a^2 • c= • 19 29 35 • 29 52 58 • 19 29 38 • 例 1-14 进行数组与数组的幂运算. • 在命令窗口中输入: • a = [1 3 4; 2, 6, 5; 3 2, 4]; • b = [2 3 1; 4 1 2; 4 5 3]; • c = a.^b • 回车后显示: • c= • 1 27 4 • 16 6 25 • 81 32 64 • 上面两数组的幂运算为数组中各对元素间的运算.
• b = [10 20 30] ';
• x = b\a
%对于方程 Ax = b, A 不存在逆矩阵.
• 回车后显示:
• x=
• 1.6286
• 1.2571
• 1.1071
• 1.0500
• 上例的方程 Ax =b 为不定情况. 它有三个方程、四个未知量, 理论上有无穷多解. 这里的解是使解中范数最小的一个.
% 将区间[1,3]以 0.5 为步长等分, 赋给变量
a2.
回车后显示:
a2 =
1.0000 1.5000 2.0000 2.5000 3.0000
当步长为 1时, 还可以省略步长.
(3) 列向量的输入
(a) 直接输入: 数据放在方括号“[ ]”内,其间加分号“;”分行.
例 1-4 在命令窗口中输入:
•365
•677
•777
• d=
• 0.5000 1.0000 4.0000
• 0.5000 6.0000 2.5000
概率与数理统计matlab实验报告1

p =
0.2909
(2).
>> p=[nchoosek(3,1)*nchoosek(9,3)*nchoosek(6,3)]/[nchoosek(12,4)*nchoosek(8,4)]
p =
0.1455
二.1.
>> p=1-0.98^200-nchoosek(200,1)*0.02*0.98^199
p =
0.9106
2.
>> p=normcdf(22,20,1.5)-normcdf(19,20,1.5)
p =
0.6563
三.1.
>> x=-10:0.01:10;
y1=normpdf(x,2,9);y2=normpdf(x,4,9);y3=normpdf(x,6,9);
plot(x,y1,x,y2,x,y3)
实
验
操
作
步
骤
(2)
.>> y=-10:0.01:10;
>> x1=normpdf(y,0,1);x2=normpdf(y,0,4);x3=normpdf(y,0,9);
>> plot(x1,y,x2,y,x3,y)
实
验
结
果
熟练掌握matlab的使用方法。
13-14-2电子信息工程实验报告1
姓名魏丰Βιβλιοθήκη 学号20120506305
班级
1203
实
概率论与数理统计实习报告

课程实习报告课程名称:概率论与数理统计实习题目:概率论与数理统计姓名:系:专业:年级:学号:指导教师:职称:年月日课程实习报告结果评定目录1.实习的目的和任务............................................. - 1 -2.实习要求..................................................... - 1 -3.实习地点..................................................... - 1 -4.主要仪器设备................................................. - 1 -5.实习内容..................................................... - 1 -5.1 MATLAB基础与统计工具箱初步............................. - 1 -5.2 概率分布及应用实例..................................... - 5 -5.3 统计描述及应用实例..................................... - 7 -5.4 区间估计及应用实例..................................... - 9 -5.5 假设检验及应用实例.................................... - 11 -5.6 方差分析及应用实例.................................... - 15 -5.7 回归分析及应用实例.................................... - 17 -5.8 数理统计综合应用实例.................................. - 22 -6.结束语...................................................... - 29 - 参考文献 ...................................................... - 29 -概率论与数理统计1.实习的目的和任务目的:通过课程实习达到让我们能够应用软件解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实
验
操
作
步
骤
(2)
.>> y=-10:0.01:10;
>> x1=normpdf(y,0,1);x2=f(y,0,4);x3=normpdf(y,0,9);
>> plot(x1,y,x2,y,x3,y)
实
验
结
果
熟练掌握matlab的使用方法。
13-14-2电子信息工程实验报告1
姓名
魏丰
学号
20120506305
班级
1203
实
验
目
的
使用matlab做概率运算,掌握对matlab的运用
实
验
内
容
一.1、12名新生中有3名优秀生,将他们随机地平均分配到3个班中去,试求:(1)每班各分配到一名优秀生的概率;(2)3名优秀生分配到同一个班的概率。
二.1、某人进行射击,设每次射击的命中率为0.02,独立射击200次,试求至少击中两次的概率。
p =
0.1455
二.1.
>> p=1-0.98^200-nchoosek(200,1)*0.02*0.98^199
p =
0.9106
2.
>> p=normcdf(22,20,1.5)-normcdf(19,20,1.5)
p =
0.6563
三.1.
>> x=-10:0.01:10;
y1=normpdf(x,2,9);y2=normpdf(x,4,9);y3=normpdf(x,6,9);
2、已知机床加工得到的某零件尺寸服从期望20cm,标准差1.5cm的正态分布,任意抽取一个零件,求它的尺寸在[19,22]区间内的概率。
三.1、画出N(2,9),N(4,9),N(6,9)的图像进行比较并得出结论。
画出N(0,1),N(0,4),N(0,9)的图像进行比较并得出结论
实
验
操
作
步
骤
一.(1),。
>> p=[nchoosek(3,1)*nchoosek(2,1)*nchoosek(9,3)*nchoosek(6,3)]/[nchoosek(12,4)*nchoosek(8,4)]
p =
0.2909
(2).
>> p=[nchoosek(3,1)*nchoosek(9,3)*nchoosek(6,3)]/[nchoosek(12,4)*nchoosek(8,4)]