概率统计实验报告
概率论与数理统计投币实验报告

实验所用软件及版本: Excel 2003
实验过程:
1. 在第一行和第一列分别填充1、2、…、9,利用对单元格的相对引用构造九九乘法表;
2. 在[-3,3]区间内以0.1为间距填充数据,分别计算各点x处的函数x2,19sinx和ex的值,并作图;
实验一、Excel基本操作和投币试验模拟
实验序号:1日期:2013年3月27日
班级
数学学院2011级B班
学号
104200339
姓名
朱佩珍
实验名称
Excel基本操作和投币试验模拟
问题的背景:
掌握Excel中的一些基本命令的使用是后面的实验和今后实际工作所必须的;
频率的稳定性在实际生活中随处可见,如投币试验中正面出现的频率、英文文献中各个字母的使用频率都具有稳定性;又如一个地区人口中男女所占的比例、一个城市居民每天的用水量、用电量等都相对稳定,这些现象均是频率稳定性的体现。
教师评语与成绩:
实验目的和内容:
1.在Excel中利用对单元格的相对引用构造九九乘法表;
2.利用数据自动填充、数据变换和作图工具作出幂函数、三角函数和指数函数的图形;
3.在Excel中利用随机数发生器产生10000个伯努利随机数(即0-1随机数来模拟10000次投币试验,用1和0分别表示每次试验出现正面和反面,统计事件A={出现正面}正面出现的频率。观察体会事件频率的稳定性。
4产生(0,1)上的均匀分布可采用类似“3”的方法。
实验结果与实验总结(体会):
九九乘法表
1
2
数学实验

数学实验: 概率统计F实验一,实验目的: 运用数学软件解决概率统计问题二,实验工具: WPS软件, SPSSS软件三,实验要求:1、写出相应软件命令及具体操作截图。
2、给出结果的截图并给出相应统计结论。
3、以实验报告的形式上交,实验报告的格式自己设计。
1、已知某地某品种10头成年母水牛的体高(cm)为:137,133,130,128,127,119,136,132,128,130。
求出均值、标准差、极差、中位数、变异系数及95%置信区间。
(30分)2、某食品企业厂生产瓶装矿泉水,其自动装罐机在正常工作状态时每罐净容量(单位为ml)具正态分布,且均值为500。
某日随机抽查了10瓶水,得结果如下:505,512,497,493,508,515,502,495,490,510,问罐装机该日工作是否正常?(30分)3、分别测定了10只大耳白家兔、11只青紫蓝家兔在停食18小时后正常血糖值如下表,已知其服从正态分布,问该两个品种家兔的正常血糖值是否有显著差异?(单位:kg)(40分)大耳白57 120 101 137 119 117 104 73 53 68青紫蓝89 36 82 50 39 32 57 82 96 31 88 四,实验内容:1、已知某地某品种10头成年母水牛的体高(cm)为:137,133,130,128,127,119,136,132,128,130。
求出均值、标准差、极差、中位数、变异系数及95%置信区间。
使用软件: WPS软件(1)数据输入:(2)计算均值: =AVERAGE(A2,A3,A4,A5,A6,A7,A8,A9,A10,A11)放入C2(3)计算标准差:=STDEV(A2,A3,A4,A5,A6,A7,A8,A9,A10,A11)放入D2(4)计算极差:=MAX(A2:A11)-MIN(A2:A11)放入E2(5)计算中位数:=MEDIAN(A2,A3,A4,A5,A6,A7,A8,A9,A10,A11) F2(6)计算变异系数:=D2/C2 G2(7)自由度: 9 H2(8)自信度:0.95 J2(9)计算t分布双侧分位数:=TINV(0.05,9) I2(10)抽样平均误差:=D2/SQRT(10) K2(11)允许误差:=I2*K2 L2(12)自信下限:=C2-L2 H5(13)自信上限:=C2+L2 I5实验结果:2、某食品企业厂生产瓶装矿泉水,其自动装罐机在正常工作状态时每罐净容量(单位为ml)具正态分布,且均值为500。
概率论与数理统计实验2抛硬币实验的随机模拟实验报告

《
实验名称
实验2:抛硬币实验的随机模拟
编号
姓名
班级
学号
同组人姓名
同组人学号
4.部分实验截图
四、实验中的问题、建议及体会(实验总结)
概率论与数理统计的研究对象都是随机事件,所以产生的数必须是随机数数,而且需要通过大量的实验数据才能统计出实验结果,所以随机数应尽量大一些,实实验数组也该多一些才能得到相对正确的答案。
实验成绩:
指导教师签字
批改日期
long double c,g,ave ;
for(i=0;i<a;i++)
{
m=rand();
n=m%2;
b+=n ;
}
f=a-b;
c=(double)a;
g=(double)b;
ave=g/c;
printf("\n 试验的总次数为 %ld \n 其中正面向上的次数为 %ld \n 反面向上的次数为 %ld \n 正面出现的频率为 %20.15f \n ",a,b,f,ave);
任课教师
指导教师
实验地点
课外
实验时间
一、实验目的
(1)了解均匀分布随机数的产生
(2)理解掌握随机模拟的方法.
(3)体会频率的稳定性.
二、实验内容及要求
1.实验背景
对于一枚均匀的硬币,每次投掷出现正面与反面的机会是均等的。于是我们可以用数字1代表出现的是正面,数字0代表出现的是反面。而可以利用计算机等可能的产生0和1这两个随机数。于是,计算机每次产生一个随机数0或1,代表一次投硬币实验。这样,就可以用计算机快速模拟大量投硬币实验的结果。
概率论实验报告_2

概率论试验报告试验一:随机掷硬币1、模拟掷一枚硬币的随机试验(可用0——1随机数来模拟试验结果),取n=100,模拟掷n次硬币的随机试验。
记录试验结果,观察样本空间的确定性及每次试验结果的偶然性,统计正面出现的次数,并计算正面的出现的频率;试验结果如下:测试中出现零代表正面,出现一代表反面,其中共计50次正面50次反面。
2、取试验次数n=1000,将过程(1)重复三次,比较三次试验结果试验结果如下3、三次结果分别是0.501,0.503,0.521 。
这充分说明模拟情况接近真实情况,频率接近概率0.5。
试验二:高尔顿钉板试验1、自高尔顿钉板上端放一个小球, 任其自由下落. 在其下落过程中,当小球碰到钉子时从左边落下的概率为p , 从右边落下的概率为,1p -碰到下一排钉子又是如此, 最后落到底板中的某一格子. 因此任意放入一球, 则此球落入哪个格子事先难以确定. 设横排共有20=m 排钉子, 下面进行模拟实验:(1) 取,5.0=p 自板上端放入一个小球, 观察小球落下的位置; 将该实验重复作5次, 观察5次实验结果的共性及每次实验结果的偶然性;(2) 分别取,85.0,5.0,15.0=p 自板上端放入n 个小球, 取,5000=n 观察n 个小球落下后呈现的曲线我们分析可知,这是一个经典的古典概型试验问题2、具体程序:3、我们分析实验结果可知,若小球碰钉子后从两边落下的概率发生变化, 则高尔顿钉板实验中小球落入各个格子的频数发生变化, 从而频率也相应地发生变化. 而且, 当,5.0p曲线峰值的格子位置向右偏; 当><p曲线峰值的格子位置向左偏。
,5.0试验三:抽签试验1、我们做模拟实验,用1-10的随机整数来模拟实验结果。
在1-10十个随机数中,假设10代表抽到大王,将这十个数进行全排,10出现在哪个位置,就代表该位置上的人摸到大王。
每次随机排列1-10共10个数,10所在的位置随机变化,分别输出模拟实验10次, 100次,1000次的结果, 将实验结果进行统计分析, 给出分析结果。
概率统计学实验报告

《概率统计》实验报告实验人员:系(班):矿业工程系机械设计制造及其自动化1404班 学号:20141804408 姓名:李君阳 实验地点:电教楼四层三号机房实验名称:《概率统计》实验时间:2016.5.10,2016.5.17 16:30——18:30.实验目的:1.加强学生的动手能力,让学生掌握对MATLAB 软件的应用。
2.为以后的数学计算节省时间,提高精确度,准确度,合理的利用科学技术。
实验内容:(给出实验程序与运行结果)一、古典概型2、在50个产品中有18个一级品,32个二级品,从中任意抽取30个,求其中恰有20个二级品的概率.解:p=C 3220C 1810c 5030=0.2096>> p=nchoosek(32,20)*nchoosek(18,10)/nchoosek(50,30)p =0.2096二、计算概率1、某人进行射击,设每次射击的命中率为0.02,独立射击200次,试求至少击中两次的概率.2、一铸件的砂眼(缺陷)数服从参数为0.5的泊松分布,求此铸件上至多有1个砂眼的概率和至少有2个砂眼的概率. 解:1.p=1-c 2000∗0.98400-c 2001*0.98199*0.02=0.1458>> p=binopdf(2,200,0.02)p =0.1458 2.P(ζ=0)= 5.00*!05.0-e P(ζ=1)= 5.01*!15.0-e P(ζ1)=0.9098P(ζ)=0.09024、设随机变量()23,2X N ,求()25P X <<;()2P X >解:P(2<X<5)=F(5)-F(2)= )5(1,0σa F -=)235(1,0-F -)232(1,0-F = -=0.08413-(1-0.6915)=0.5328P(|X |>2)=P(X<-2)+P(X>2)=P(X<-2)+1-P(X<2)=0.6977normcdf(5,3,2)-normcdf(2,3,2) ≤2≥吕梁学院《概率统计》实验报告ans =0.5328>> normcdf(-2,3,2)-normcdf(2,3,2)+1ans =0.6977三、作图1、画出N(2,9),N(4,9),N(6,9)的图像进行比较;(图1)画出N(0,1),N(0,4),N(0,9)的图像进行比较.解:y1=normpdf(x,2,3);y2=normpdf(x,4,3);y3=normpdf(x,6,3);plot(x,y1,x,y2,x,y3)>> x=-40:0.01:40;y1=normpdf(x,0,1);y2=normpdf(x,0,2);y3=normpdf(x,0,3);plot(x,y1,x,y2,x,y3)(图2)四、常见统计量的计算1、根据调查,某集团公司的中层管理人员的年薪(单位:万元)数据如下:42 41 39.2 37.6 40.2 40 41 41.4 36.1 43.140.3 39.3 38.4 36.5 38.1 38.5 39.1 40.6 38.3 39.7求其公司中层管理人员年薪的样本均值、样本方差、样本标准差,绘制直方图。
概率论抛硬币和抛筛子实验报告

(2)计算出现i(i=1,2,3,4,5,6)点的频率;
(3)分析频率的变化规律。
实验原理
在等可能的随机实验中,某个基本事件的频率就是它出现的 次数除以实验总次数,即P=x/N。
实验过程(公式推导,模型建立,Matlab源程序)
1、投硬币试验
编程如下:
0.1717
0.1582
0.2088
0.1380
147
0.1497
0.1361
0.2177
0.1905
0.1088
0.1973
123
0.2114
0.2033
0.1789
0.1951
0.1138
0.0976
1245
0.1719
0.1663
0.1679
0.1695
0.1823
0.1422
23456
模拟次数为289次的统计图
问题的数学描述
在统计学中,一个随机事件A发生的可能性大小的度量成为A
发生的概率,记为P(A).
实验一中重复做N实验,出现的可能的结果只有两种结果, 正面和反面,所以记录出现正面的次数x1,因此出现正面的概率P 1(A)=x1/N;记录出现反面的次数为x2,则出现反面的概率
P2(A)=x2/N.
实验二中重复做N实验,出现的可能的结果只有六种结果,出
function Tybsy(N)
X=bi nornd(1,0.5,1,N)
n1=0;
n2=0;
for i=1:N
if X(i)==0
n1=n1+1;
else
n2=n2+1;
end
概率实验报告_蒙特卡洛积分

本科实验报告实验名称:《概率与统计》随机模拟实验随机模拟实验实验一设随机变量X 的分布律为-i P{X=i}=2,i=1,2,3......试产生该分部的随机数1000个,并作出频率直方图。
一、实验原理采用直接抽样法:定理:设U 是服从[0,1]上的均匀分布的随机变量,则随机变量-1()Y F U =与X 有相同的分布函数-1()Y F U =(为F(x)的逆函数),即-1()Y F U =的分部函数为()F x .二、题目分析易得题中X 的分布函数为1()1- ,1,0,1,2,3, (2i)F x i x i i =≤≤+=若用ceil 表示对小数向正无穷方向取整,则F(x)的反函数为产生服从[0,1]上的均匀分布的随机变量a ,则m=F -1(a)则为题中需要产生的随 机数。
三、MATLAB 实现f=[]; i=1;while i<=1000a=unifrnd(0,1); %产生随机数a ,服从【0,1】上的均匀分布 m=log(1-a)/log(1/2);b=ceil(m); %对m 向正无穷取整 f=[f,b]; i=i+1; enddisplay(f);[n,xout]=hist(f); bar(xout,n/1000,1)产生的随机数(取1000个中的20个)如下:-1ln(1-)()1ln()2a F a ceil ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦频率分布直方图实验二设随机变量X 的密度函数为24,0,()0,0x xe x f x x -⎧>=⎨≤⎩试产生该分布的随机数1000个,并作出频率直方图 一、实验原理取舍抽样方法,当分布函数的逆函数难以求出时,可采用此方法。
取舍抽样算法的流程为:(1) 选取一个参考分布,其选取原则,一是该分布的随机样本容易产生;二是存在常数C ,使得()()f x Cg x ≤。
(2) 产生参考分布()g x 的随机样本0x ; (3) 独立产生[0,1]上的均匀分布随机数0u ;(4) 若000()()u Cg x f x ≤,则保留x 0,作为所需的随机样本;否则舍弃。
数学实验综合实验报告

数学实验综合实验报告《数学实验综合实验报告》摘要:本实验旨在通过数学实验的方式,探索和验证数学理论,并通过实验数据的分析和处理,得出结论和结论。
本实验涉及到数学的多个领域,包括代数、几何、概率统计等。
通过实验,我们得出了一些有趣的结论和发现,验证了数学理论的正确性,并对数学知识有了更深入的理解。
一、实验目的1. 验证代数公式的正确性2. 探索几何图形的性质3. 分析概率统计的实验数据4. 探讨数学理论的应用二、实验方法1. 代数公式验证实验:通过代数运算和数值计算,验证代数公式的正确性。
2. 几何图形性质探索实验:通过几何构造和图形分析,探索几何图形的性质。
3. 概率统计数据分析实验:通过实验数据的收集和处理,分析概率统计的规律和特性。
4. 数学理论应用实验:通过实际问题的分析和解决,探讨数学理论在实际中的应用。
三、实验结果与分析1. 代数公式验证实验结果表明,代数公式在特定条件下成立,验证了代数理论的正确性。
2. 几何图形性质探索实验发现,某些几何图形具有特定的性质和规律,进一步加深了对几何学的理解。
3. 概率统计数据分析实验得出了一些概率统计的规律和结论,对概率统计理论有了更深入的认识。
4. 数学理论应用实验通过具体问题的分析和解决,验证了数学理论在实际中的应用性。
四、结论通过本次数学实验,我们验证了代数、几何、概率统计等数学理论的正确性,得出了一些有意义的结论和发现。
实验结果进一步加深了对数学知识的理解和应用,对数学理论的研究和发展具有一定的参考价值。
五、展望本次实验虽然取得了一些有意义的结果,但也存在一些不足之处,如实验方法的局限性、实验数据的局限性等。
未来可以进一步完善实验设计和方法,开展更深入的数学实验研究,为数学理论的发展和应用提供更多的支持和帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P( 2 X 2 )=P( P( 3 X 3 )=P( 输入: P1=2*normcdf(1)-1 P1=2*normcdf(2)-1 P1=2*normcdf(3)-1
2 X U 2
实 验 结 果
实 验 总 结
评分小项 1.实验报告格式排版
分值 2分 6分 6分 4分 2分
得分
总分:
实 验 成 绩 评 定
2.实验设计思路(科学性、可行性、创新性) 3.实验代码编写(规范性、正确性、复杂性) 4.实验结果分析(正确性、合理性) 5.实验心得总结
解:设 n 个人中至少有两个人生日相同的概率 P
n C365 n! P 1 365n
当 n=365,k=40 时,输入 p=1-nchoosek(365,40)*factorial(40)/365^40 当 nn=365,k=50 时,输入 p=1-nchoosek(365,50)*factorial(50)/365^50 当 nn=365,k=60 时,输入 p=1-nchoosek(365,60)*factorial(60)/365^60
一、古典概型 1、求 n 个人中至少有两个人生日相同的概率。(n=30、40、 50、60) 二、计算概率
实 验 内 容
1、某人进行射击,设每次射击的命中率为 0.02,独立射击 200 次,试求至少击中两次的概率。
2 , 3 2、 设随机变量 X ~ N (, 2 ) , 求它的取值在 ,
)= (2) (2) = (2) 1
3 X U 3 )= (3) (3) = (3) 1
实 验 操 作 步 骤
一、1、n=365,k=40 >>p=1-nchoosek(365,40)*factorial(40)/365^40 p= 0.8912 n=365,k=50 >> p=1-nchoosek(365,50)*factorial(50)/365^50 p= 0.9704 n=365,k=60 >> p=1-nchoosek(365,60)*factorial(60)/365^60 p= 0.9941 二、1、方法一: >> p=1-binocdf(0,200,0.02)-binocdf(1,200,0.02) p= 0.8930 方法二: >> p=1-poisscdf(1,4) p= 0.9084 2、>> P1=2*normcdf(1)-1 P1 = 0.6827 >> P2=2*normcdf(2)-1 P2 = 0.9545 >> P3=2*normcdf(3)-1 P3 = 0.9973
1
当 x=1, =4 时,输入 p=1-poisscdf(1,4)
2 2、设随机变量 X ~ N ( , ) ,求它的取值在 , 2 , 3 范
围内的概率。 P( X )=P(
X U )= (1) (1) = (1) 1
范围内的概率。 三、作图
画出 F(4,4000),F(4,10),F(4,4),F(4,1)的图像进行比较。
1、画出 N(2,9),N(4,9),N(6,9)的图像进行比较。 画出 N(0,1),N(0,4),N(0,9)的图像进行比较 2、画出 F(2,5)F(2,8)F(2,12)的图像进行比较。 画出 F(3,5)F(5,5)F(8,5)的图像进行比较。 四、常见统计量的计算(2 选 1) 1、比赛中甲、乙两位射击运动员分别进行了 10 次射击,成 绩分别如下: 甲 9.5 9.9 9.9 9.9 9.8 9.7 9.5 9.3 9.6 9.6 乙 9.4 9.3 9.0 9.5 9.1 9.8 9.7 9.5 9.3 9.4 问哪个运动员平均水平高,哪个运动员水平更稳定。 五、参数估计 1、例假设轮胎的寿命服从正态分布 .为估计某种轮胎的
当 x=0 和 x=1,n=200,p=0.02,时,输入 p=1-binocdf(0,200,0.02)-binocdf(1,200,0.02) 方法二:设至少击中两次的概率 P,则有
0.02 * 200 4
4n 4 p 1 p ( x 1) 1 e n 0 n!
概率统计课程实验报告
系 别: 姓名
实验类型
专业: 学号
□演示型 □验证型 □设计型
班级
□综合型
1.熟悉 Matlab 数学软件; 2.掌握使用函数与命令; 3.能熟练用 Matlab 的命令求解常见的组合排列数; 实 验 目 的 4.能熟练用 Matlab 的命令求解常见的分布函数和概率密度函数在某点 处的值; 5.能熟练用 Matlab 的命令作图; 6.能熟练用 Matlab 的命令求解常见统计量; 7.能熟练用 Matlab 的命令进行参数估计;
平均寿命,现随机地抽 40 只轮胎试用,测得它们的寿命 (单 位:万公里)如下:
4.68 4.85 4.32 5.20 4.60 4.58
试求平Байду номын сангаас寿命的 0.95 置信区间。
4.85 4.61 5.02 4.72 4.38 4.70
2、某厂生产的零件重量服从正态分布 N( , ),现从该厂生产 的零件中抽取 9 个,侧得其质量(单位:g)为 45.3 45.4 45.1 45.7 45.3 45.5
45.4 45.3 45.6
试求总体标准差 的 0.95 置信区间。
一、古典概型 1、求 n 个人中至少有两个人生日相同的概率。(n=30、40、50、60) 分析:(1)、先求出 n 个人中至少有两个人生日相同的概率 P,
P 1
n C365 n! 365n ;
(2)、用 Matlab 的命令求解,正确确定表达式中 n,k 所表示的 函数值。 实 验 操 作 步 骤
方法二:泊松分布:
0.02 * 200 4
4n 4 e n ! n 0
1
p 1 p ( x 1) 1
(2)、用 Matlab 的命令求解,正确确定表达式中函数值的意义 与实际值。
解:方法一:设至少击中两次的概率 P,则有
0 1 P 1 P( X 0) P( X 1) 1 C200 0.0200.98200 C200 0.0210.98199
二、计算概率 1、某人进行射击,设每次射击的命中率为 0.02,独立射击 200 次,试 求至少击中两次的概率。 分析:(1)、先求至少击中两次的概率 P; 方法一:n 重伯努利实验:
0 1 P 1 P( X 0) P( X 1) 1 C200 0.0200.98200 C200 0.0210.98199