西安交通大学概率论实验报告
西安交大概率论上机实验报告

概率论上机实验报告班级:姓名:学号:一、实验目的1)熟悉Matlab中概率统计部分的常见命令与应用。
2)掌握运用Matlab解决概率问题的方法。
二、实验内容和步骤1.常见分布的概率密度及分布函数1)二项分布源码为:1.x=0:1:100;2.y1=binopdf(x,100,1/2); %求概率密度3.y2=binocdf(x,100,1/2); %求分布函数4.subplot(1,2,1)5.plot(x,y1)6.title('二项分布概率密度')7.subplot(1,2,2)8.plot(x,y2)9.title('二项分布分布函数')所得图形为:2)几何分布源码为:1.x=0:1:100;2.y1=geopdf(x,; %求概率密度3.y2=geocdf(x,; %求分布函数4.subplot(1,2,1)5.plot(x,y1)6.title('几何分布概率密度')7.subplot(1,2,2)8.plot(x,y2)9.title('几何分布分布函数')所得图形为:3)泊松分布源码为:1.x=0:1:100;2.y1=poisspdf(x,10); %求概率密度3.y2=poisscdf(x,10); %求分布函数4.subplot(1,2,1)5.plot(x,y1)6.title('泊松分布概率密度')7.subplot(1,2,2)8.plot(x,y2)9.title('泊松分布分布函数')所得图形为:4)均匀分布源码为:1.x=0:1:100;2.y1=unifpdf(x,0,100) %求概率密度3.y2=unifcdf(x,0,100); %求分布函数4.subplot(1,2,1)5.plot(x,y1)6.title('均匀分布概率密度')7.subplot(1,2,2)8.plot(x,y2)9.title('均匀分布分布函数')所得图形为:5)指数分布源码为:1.x=0:1:100;2.y1=exppdf(x,10); %求概率密度3.y2=expcdf(x,10); %求分布函数4.subplot(1,2,1)5.plot(y1)6.title('指数分布概率密度')7.subplot(1,2,2)8.plot(y2)9.title('指数分布分布函数')所得图形为:6)正态分布源码为:1.x=-10::10;2.y1=normpdf(x,0,1); %求概率密度3.y2=normcdf(x,0,1); %求分布函数4.subplot(1,2,1)5.plot(y1)6.title('正态分布分布概率密度')7.subplot(1,2,2)8.plot(y2)9.title('正态分布分布函数')所得图形为:7)卡方分布源码为:1.x=0::100;2.y1=chi2pdf(x,10); %求概率密度3.y2=chi2cdf(x,10); %求分布函数4.subplot(1,2,1)5.plot(y1)6.title('卡方分布分布概率密度')7.subplot(1,2,2)8.plot(y2)9.title('卡方分布分布函数')所得图形为:8)对数正态分布源码为:1.x=0::100;2.y1=lognpdf(x,2,1); %求概率密度3.y2=logncdf(x,2,1); %求分布函数4.subplot(1,2,1)5.plot(y1)6.title('对数正态分布分布概率密度')7.subplot(1,2,2)8.plot(y2)9.title('对数正态分布分布函数')所得图形为:9)F分布源码为:1.x=0::10;2.y1=fpdf(x,10,10); %求概率密度3.y2=fcdf(x,10,10); %求分布函数4.subplot(1,2,1)5.plot(y1)6.title('F分布分布概率密度')7.subplot(1,2,2)8.plot(y2)9.title('F分布分布函数')所得图形为:10)t分布源码为:1.x=-10::10;2.y1=tpdf(x,10); %求概率密度3.y2=tcdf(x,10); %求分布函数4.subplot(1,2,1)5.plot(y1)6.title('T分布分布概率密度')7.subplot(1,2,2)8.plot(y2)9.title('T分布分布函数')所得图形为:2.掷均匀硬币n次,检验正面出现的频率逼近1/21)思路:编写一个程序,验证随着n的增大,正面出现的频率越来越接近1/2。
西安交大概率论上机实验报告-西安交通大学概率论实验报告

概率论与数理统计上机实验报告一、实验内容使用MATLAB 软件进行验证性实验,掌握用MATLAB 实现概率统计中的常见计算。
本次实验包括了对二维随机变量,各种分布函数及其图像以及频率直方图的考察。
1、列出常见分布的概率密度及分布函数的命令,并操作。
2、掷硬币150次,其中正面出现的概率为0.5,这150次中正面出现的次数记为X ,(1) 试计算45=X 的概率和45≤X 的概率;(2) 绘制分布函数图形和概率分布律图形。
3、用Matlab 软件生成服从二项分布的随机数,并验证泊松定理。
4、设22221),(y x e y x f +-=π是一个二维随机变量的联合概率密度函数,画出这一函数的联合概率密度图像。
5、来自某个总体的样本观察值如下,计算样本的样本均值、样本方差、画出频率直方图。
A=[16 25 19 20 25 33 24 23 20 24 25 17 15 21 22 26 15 23 2220 14 16 11 14 28 18 13 27 31 25 24 16 19 23 26 17 14 30 21 18 16 18 19 20 22 19 22 18 26 26 13 21 13 11 19 23 18 24 28 13 11 25 15 17 18 22 16 13 12 13 11 09 15 18 21 15 12 17 13 14 12 16 10 08 23 18 11 16 28 13 21 22 12 08 15 21 18 16 16 19 28 19 12 14 19 28 28 28 13 21 28 19 11 15 18 24 18 16 28 19 15 13 22 14 16 24 20 28 18 18 28 14 13 28 29 24 28 14 18 18 18 08 21 16 24 32 16 28 19 15 18 18 10 12 16 26 18 19 33 08 11 18 27 23 11 22 22 13 28 14 22 18 26 18 16 32 27 25 24 17 17 28 33 16 20 28 32 19 23 18 28 15 24 28 29 16 17 19 18] 6. 利用Matlab 软件模拟高尔顿板钉试验。
西安交通大学概率论上机实验

西安交通⼤学概率论上机实验[公司名称]Matlab 上机实验尾号为7(题号5、8、9、12、16)第五题题⽬通过⾎检对某地区的N 个⼈进⾏某种疾病普查。
有两套⽅案:⽅案⼀是逐⼀检查;⽅案⼆是分组检查。
那么哪⼀种⽅案好?若这种疾病在该地区的发病率为0.1;0.05;0.01,试分析评价结果。
分析⽅案⼀需要检验N 次。
⽅案⼆:假设检验结果阴性为“正常”、阳性为“患者”,把受检者分为k 个⼈⼀组,把这k 个⼈的⾎混合在⼀起进⾏检验,如果检验结果为阴性,这说明k 个⼈的⾎液全为阴性,因⽽这k 个⼈总共只要检验⼀次就够了;如果结果为阳性,要确定k 个⼈的⾎液哪些是阳性就需要逐⼀再检查,因⽽这k 个⼈总共需要检查k+1次。
因此⽅案⼆在实施时有两种可能性,要和⽅案⼀⽐较,就要求出它的平均值(即平均检验次数)。
假设这⼀地区患病率(即检查结果为阳性的概率)为p ,那么检验结果为阴性的概率为,这时k 个⼈⼀组的混合⾎液是阴性的概率为,是阳性的概率为,则每⼀组所需的检验次数是⼀个服从⼆点分布的⼀个随机变量,下⾯的问题是,怎样确定k 的值使得次数最少?由以上计算结果可以得出:当,即时,⽅案⼆就⽐⽅案⼀好,总得检验次数为Y=。
当p=0.1时,⽤matlab 画出上述函数的图像: for i=1:1:101q p =-k q 1k q -ξ()1(1)11k k kE q k q k kq ξ=?++?-=+-1kk kq k +-p 11,k k kq q k f f()1k Nk kq k +-?k(i)=i;y(i)=(1+k(i)-k(i)*0.9^k(i))/k(i); end plot(k,y)可以看出,当k=4的时候最⼩,故此时每组⼈数应该取为4。
y=(1+k-k*0.9^k)/k*10000得到平均为5939次;P=0.05,k=5时,平均为4262次; P=0.01,k=32时,平均为3063次。
综上,采⽤合适的分组数时分组可以显著减少检验次数。
西安交通大学概率论实验报告-蒙特卡洛法

西安交通大学实验报告课程:概率论与数理统计实验日期:2013/12/22报告日期:2013/12/24专业班级:姓名:学号:实验内容:用蒙特卡洛方法估计积分值要求:(1)针对要估计的积分选择适当的概率分布设计蒙特卡洛方法;(2)利用计算机产生所选分布的随机数以估计积分值;(3)进行重复试验,通过计算样本均值以评价估计的无偏性;通过计算均方误差(针对第1类题)或样本方差(针对第2类题)以评价估计结果的精度。
目的:(1)能通过 MATLAB 或其他数学软件了解随机变量的概率密度、分布函数及其期望、方差、协方差等;(2)熟练使用 MATLAB 对样本进行基本统计,从而获取数据的基本信息;(3)能用 MATLAB 熟练进行样本的一元回归分析。
1用蒙特卡洛方法估计积分2sinx xdxπ⎰,2xe dx+∞⎰和22221x yx ye dxdy++≤⎰⎰的值,并将估计值与真值进行比较。
1)2sinx xdxπ⎰用区间为0-π/2的均匀分布产生;代码如下N=10000;x=unifrnd(0,pi/2,N,1); mean(x.*sin(x)*pi/2)计算出10次的数值计算出精确值:syms x ;int(x.*sin(x),0,pi/2)精确值为1;计算出均值:1.00158计算出均方误差:0.0000637580结论:这是一个计算积分的很好的近似,误差很小。
接下来考虑计算第二个积分:2)考虑2xe dx +∞⎰由对称性可以考虑正态分布N(0,1),代码如下:N=10000;x=normrnd(0,1,N,1)0.5*mean((sqrt(2.*pi)).*exp(-x.^2./2))求出均值为0.88598取0.8860计算出均方误差为:0.000018204说明误差允许范围内,可以用其作为积分的近似。
若考虑用参数为1的指数分布E(1)代码为:N=10000;x=exprnd(1,N,1)mean(exp(-x.^2./2+x))精确值为:0.8862计算出平均值为:1.25164计算出均方误差为:0.13356381和正态分布比相去甚远,效果不如正态分布3)22221x yx ye dxdy++≤⎰⎰利用代码计算出积分:N=10000;x=unifrnd(0,1,N,1) //已经转换为极坐标,r在[0,1]取值,取[0,1]均匀分布2*pi*mean(x.*exp(-x.^2))计算出十个值为:计算出平均值为:1.98397计算出均方误差为:0.000059其值与精确值非常接近,可以作为一个很好的近似第二类题:4) dx e x ⎰102用如下代码计算:N=10000;x=unifrnd(0,1,N,1) //[0,1]上的均匀分布mean(exp(x.^2))计算出平均值为:1.4619计算出标准偏差为:0.003304 ,说明波动性较小计算出均方误差为:0.000010其值与精确值非常接近,可以作为一个很好的近似5)22x y x d y +≤⎰⎰ 用如下代码计算:N=10000; x=unifrnd(0,2,N,1) //转换为极坐标后取[0,2]的均匀分布4*pi*mean(x./sqrt(1+x.^2)) 计算出平均值为:7.76363计算出标准偏差为:0.015241,说明波动性较小计算出均方误差为:0.000217其值与精确值非常接近,可以作为一个很好的近似。
概率论教学实践报告总结(3篇)

第1篇一、前言概率论是数学的一个重要分支,它研究随机现象及其规律。
随着我国教育事业的不断发展,概率论在教学中的地位日益重要。
为了提高教学质量,探索有效的教学策略,我们开展了一系列概率论教学实践活动。
现将本次实践活动的总结如下:二、实践目的1. 提高学生对概率论知识的掌握程度,培养学生的逻辑思维能力。
2. 探索适合我国学生特点的概率论教学方法,提高课堂教学效果。
3. 加强师生互动,培养学生的自主学习能力。
4. 丰富教师的教学经验,提高教师的专业素养。
三、实践内容1. 教学方法改革(1)启发式教学:教师在课堂上注重引导学生思考,通过提问、讨论等方式,激发学生的学习兴趣,提高学生的思维能力。
(2)案例教学:结合实际生活中的例子,让学生理解概率论知识在实际中的应用,提高学生的实践能力。
(3)小组合作学习:将学生分成若干小组,共同完成教学任务,培养学生的团队协作能力。
2. 教学手段创新(1)多媒体教学:利用PPT、视频等多媒体手段,使教学内容更加生动形象,提高学生的学习兴趣。
(2)网络教学:通过在线课程、论坛等网络平台,拓宽学生的学习渠道,提高学生的学习效果。
(3)实验教学:开展概率实验,让学生亲身体验概率现象,加深对概率论知识的理解。
3. 教学评价改革(1)过程性评价:关注学生在学习过程中的表现,如课堂发言、作业完成情况等。
(2)结果性评价:关注学生对知识掌握程度,如期中、期末考试等。
(3)多元评价:结合学生自评、互评、教师评价等多种方式,全面评价学生的学习成果。
四、实践效果1. 学生对概率论知识的掌握程度有了明显提高,课堂参与度显著提升。
2. 学生在解决实际问题时,能够运用概率论知识进行分析,提高了解决问题的能力。
3. 学生在团队协作、自主学习等方面取得了较好成绩,综合素质得到提高。
4. 教师的教学经验得到了丰富,教学水平得到提高。
五、存在问题及改进措施1. 存在问题(1)部分学生对概率论知识缺乏兴趣,学习积极性不高。
概率论试验报告

概率论试验报告实验一概率计算实验目的:掌握用MATLAB实现概率中的常见计算1、选择三种常见随机变量的分布,计算它们的期望与方差(参数自己设定)2、已知机床加工得到的某零件尺寸服从期望为20cm,标准差为1.5cm的正态分布。
(1)任意抽取一个零件,求它的尺寸在(19,22)区间的概率;(2)若规定尺寸不小于某一标准值的零件为合格品,要使合格品的概率为0.9,如何确定这个标准值?(3)独立的取25个组成一个样本,求样本均值在(19,22)区间的概率。
3、比较t(10)分布和标准正态分布的图像。
1.均匀分布:设定为服从在(0,1)上的均匀分布。
则代码为:2.参数为1的指数分布:3.标准正态分布:2.(1)。
概率为(2)。
求得的值为:(3)。
由题目可知样本均值服从(20,0.3)的正态分布,所以代码为:3.我们取区间[-3,3],间隔为0.1,画得的图为:上方的曲线为t分布,下面的为正态分布曲线。
实验二样本的统计与计算实验目的:学习利用MATLAB求来自总体的一个样本的样本均值、中位数、样本方差、样本分位数和其它数字特征,并能作出频率直方图和经验分布函数来自某总体的样本观察值如下,计算样本的样本均值、中位数、样本方差、画出频率直方图经验分布函数图。
A=[16 25 19 20 25 33 24 23 20 24 25 17 15 21 22 26 15 23 22 20 14 16 11 14 28 18 13 27 31 25 24 16 19 23 26 17 14 30 21 18 16 18 19 20 22 19 22 18 26 26 13 21 13 11 19 23 18 24 28 13 11 25 15 17 18 22 16 13 12 13 11 09 15 18 21 15 12 17 13 14 12 16 10 08 23 18 11 16 28 13 21 22 12 08 15 21 18 16 16 19 28 19 12 14 19 28 28 28 13 21 28 19 11 15 18 24 18 16 28 19 15 13 22 14 16 24 20 28 18 18 28 14 13 28 29 24 28 14 18 18 18 08 21 16 24 32 16 28 19 15 18 18 10 12 16 26 18 19 33 08 11 18 27 23 11 22 22 13 28 14 22 18 26 18 16 32 27 25 24 17 17 28 33 16 20 28 32 19 23 18 28 15 24 28 29 16 17 19 18]代码为:代码为:[a,b]=hist(A); bar(b,a/sum(a))画得的图为:实验三数理统计中的常用方法实验目的:能熟练用matlab做参数点估计、区间估计和假设检验。
概率论上机实验报告

概率论上机实验报告《概率论上机实验报告》在概率论的学习中,实验是非常重要的一部分。
通过实验,我们可以验证概率论的理论,加深对概率的理解,同时也可以提高我们的实验能力和数据处理能力。
本次实验报告将详细介绍一次概率论的上机实验,包括实验目的、实验方法、实验结果和实验分析。
实验目的:本次实验的目的是通过随机抽样的方法,验证概率论中的一些基本概念和定理,包括概率的计算、事件的独立性、事件的互斥性等。
通过实际操作,加深对这些概念的理解,同时也提高我们的实验技能和数据处理能力。
实验方法:本次实验采用计算机模拟的方法进行。
首先,我们选择了几个经典的概率问题作为实验对象,包括掷骰子、抽球问题等。
然后,通过编写程序,模拟进行大量的随机实验,得到实验数据。
最后,通过对实验数据的统计分析,验证概率论中的一些基本概念和定理。
实验结果:通过实验,我们得到了大量的实验数据。
通过对这些数据的统计分析,我们验证了概率的计算方法,验证了事件的独立性和互斥性等基本概念和定理。
实验结果表明,概率论中的一些基本概念和定理在实际中是成立的,这也进一步加深了我们对概率论的理解。
实验分析:通过本次实验,我们不仅验证了概率论中的一些基本概念和定理,同时也提高了我们的实验能力和数据处理能力。
通过实验,我们深刻理解了概率论的一些基本概念和定理,并且也掌握了一些实验技能和数据处理技能。
这对我们今后的学习和工作都将有很大的帮助。
总结:通过本次实验,我们深刻理解了概率论的一些基本概念和定理,同时也提高了我们的实验能力和数据处理能力。
这对我们今后的学习和工作都将有很大的帮助。
希望通过这次实验,我们能更加深入地理解概率论,并且提高我们的实验技能和数据处理技能。
概率论实验报告

概率论实验报告班级:电气211姓名:***学号:**********第一次实验实验一1、实验目的熟练掌握MATLAB软件关于概率分布作图的基本操作会进行常用的概率密度函数和分布函数的作图绘画出分布律图形2、实验要求掌握MATLAB的画图命令plot掌握常见分布的概率密度图像和分布函数图像的画法3、实验内容1、设X~b(20,0,25)(1)生成X的概率密度;(2)产生18个随机数(3行6列)(3)又已知分布函数F(x)=0.45,求x(4)画出X的分布律和分布函数图形4、实验方案了解到MATLAB在二项分布中有计算概率密度函数binopdf,产生随机数的函数binornd,计算确定分布函数值对应的自变量x的函数binoinv,可以直接生成X的概率密度和产生18个随机数(3行6列),求已知分布函数F(x)=0.45对应的x的值。
最后用binopdf函数、binocdf函数和plot函数画出X的分布律和分布函数图形5、实验过程(1)生成X的概率密度binopdf(0:20,20,0.25)ans =Columns 1 through 120.0032 0.0211 0.0669 0.1339 0.1897 0.2023 0.16860.1124 0.0609 0.0271 0.0099 0.0030Columns 13 through 210.0008 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000(2)产生18个随机数(3行6列)binornd(20,0.25,3,6)ans =6 4 1 2 6 44 3 6 2 6 24 5 6 6 5 6(3)已知分布函数F(x)的值,求xbinoinv(0.45,20,0.25)ans =5(4) 画出X的分布律和分布函数图形x=0:20;y=binopdf(x,20,0.25);subplot(1,2,1);plot(x,y,'*');x=0:0.01:20;y=binocdf(x,20,0.25);subplot(1,2,2);plot(x,y)6、 小结1.上机时对于matlab 的命令应该灵活使用,明白命令中每个参数的意义及输出内容的意义,对于matlab 命令的理解也应该联系概率论的理论基础2.学习matlab 的命令注意学会总结各个命令的用处与差异,不至于对相似的命令混淆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分布: 源代码: x=-4:0.01:4; y=tpdf(x,1); y1=tpdf(x,2); y2=tpdf(x,10); plot(x,y,x,y1,x,y2) axis([-4,4,0,0.4]); legend('自由度为1','自由度为2','自由度为10'); 结果:
F分布: 源代码: x=0:0.01:5; y=fpdf(x,10,50); y1=fpdf(x,10,5); y2=fpdf(x,50,10); plot(x,y,x,y1,x,y2) legend('自由度(10,50)','自由度为(10,5)','自由度为(50,10'); 结果:
概率论上机实验报告
1问题1 1.1问题描述 二项分布的泊松分布与正态分布的逼近 设 X ~ B(n,p) ,其中np=2 1) 对n=101,…,104,讨论用泊松分布逼近二项分布的误差。画处逼近的图形 2) 对n=101,…,104, 计算 , 1)用二项分布计算 2)用泊松分布计算 3)用正态分布计算 比较用泊松分布逼近与正态分布逼近二项分布的优劣。 1.2问题解决 (1)源代码 n=10000; p=2/n; x=1:n; y1=binopdf(x,n,p); y2=poisspdf(x,n*p); plot(x,y1,x,y2) 实验结果: 当N=10
当N=100
当N=1000
当N=10000
每次误差均在百分之零点一以下 (2) N=100
N=1000
N=1000
泊松分布最后更接近于二项分布,较之于正态分布而言。 2题目2 2.1正态分布的数值计算 设~; 1)当时,计算 ,; 2)当时,若,求; 3)分别绘制, 时的概率密度函数图形。 2.2问题解决 (1) 源代码 one1=normcdf(2.9,1.5,0.25)-normcdf(1.8,1.5,0.25) one2=1-normcdf(2.5y=3的时候最合适。 5.结论 通过本次的概率论上机实验,熟悉了MATLAB中对于几种不同概率 分布的函数的口令,并且成功地画出了概率分布函数。同时,也用了 MATLAB和画图的方式,证明了概率论学习中的几个结论。这次实验除 了熟悉几种概率分布函数的口令之外,也解决了一个简单的概率论实际 问题。用MATLAB来做一次模拟,通过产生的随机数和if语句,来确定最 佳的报纸数。可以说,这次实验成功地熟悉了MATLAB对于概率论学习 的基本代码,也很好地将理论的学习和实际的问题做了一个比较好的衔 接,使得理论和实际得到了结合,受益匪浅。在以后的学习中,仍旧需 要对于概率论有着更为深入地学习,对于MATLAB也要有更好的了解和 更熟练的操作。MATLAB是学习数学科目的一种很好的工具,熟练的使 用可以给学习带来不少的帮助。
标准正态分布的曲线如下:
可知t分布自由度越大,则越接近标准正态分布。 4题目4 4.1题目描述 已知每百份报纸全部卖出可获利14元,卖不出去将赔8元,设报纸的需 求量的分布律为 0 1 2 3 4 5
0.05 0.10 0.25 0.35 0.15 0.10 试确定报纸的最佳购进量。(要求使用计算机模拟) 4.2题目解决 源代码: n=10000; x=rand(n,1); for y=1:5 w1=0; for i=1:n if x(i)<0.05 demand=0; elseif x(i)<0.15 demand=1; elseif x(i)<0.40 demand=2; elseif x(i)<0.75 demand=3; elseif x(i)<0.90 demand=4; else demand=5; end if y>demand w=demand*14-(y-demand)*8; else w=y*14; end w1=w1+w; end y w1 end 结果:
(2)x=1.91 实验结果:
(3)源代码: x=-4:0.1:6; y1=normpdf(x,1,0.25); y2=normpdf(x,2,0.25); y3=normpdf(x,3,0.25); plot(x,y1,x,y2,x,y3) 实验结果
3题目3 3.1题目描述 就不同的自由度画出 分布、分布及F分布 的概率密度曲线,每 种情况至少画三条曲 线,并将分布的概率 密度曲线与标准正态 分布的概率密度曲线 进行比较。 3.2题目解决 分布: x=0:0.01:10; y=chi2pdf(x,1); y1=chi2pdf(x,2); y2=chi2pdf(x,10); plot(x,y,x,y1,x,y2) axis([0,10,0,2]); legend('自由度为1','自由度为2','自由度为10'); 结果: