高中概率数学实验报告

合集下载

概率论实验报告_2

概率论实验报告_2

概率论试验报告试验一:随机掷硬币1、模拟掷一枚硬币的随机试验(可用0——1随机数来模拟试验结果),取n=100,模拟掷n次硬币的随机试验。

记录试验结果,观察样本空间的确定性及每次试验结果的偶然性,统计正面出现的次数,并计算正面的出现的频率;试验结果如下:测试中出现零代表正面,出现一代表反面,其中共计50次正面50次反面。

2、取试验次数n=1000,将过程(1)重复三次,比较三次试验结果试验结果如下3、三次结果分别是0.501,0.503,0.521 。

这充分说明模拟情况接近真实情况,频率接近概率0.5。

试验二:高尔顿钉板试验1、自高尔顿钉板上端放一个小球, 任其自由下落. 在其下落过程中,当小球碰到钉子时从左边落下的概率为p , 从右边落下的概率为,1p -碰到下一排钉子又是如此, 最后落到底板中的某一格子. 因此任意放入一球, 则此球落入哪个格子事先难以确定. 设横排共有20=m 排钉子, 下面进行模拟实验:(1) 取,5.0=p 自板上端放入一个小球, 观察小球落下的位置; 将该实验重复作5次, 观察5次实验结果的共性及每次实验结果的偶然性;(2) 分别取,85.0,5.0,15.0=p 自板上端放入n 个小球, 取,5000=n 观察n 个小球落下后呈现的曲线我们分析可知,这是一个经典的古典概型试验问题2、具体程序:3、我们分析实验结果可知,若小球碰钉子后从两边落下的概率发生变化, 则高尔顿钉板实验中小球落入各个格子的频数发生变化, 从而频率也相应地发生变化. 而且, 当,5.0p曲线峰值的格子位置向右偏; 当><p曲线峰值的格子位置向左偏。

,5.0试验三:抽签试验1、我们做模拟实验,用1-10的随机整数来模拟实验结果。

在1-10十个随机数中,假设10代表抽到大王,将这十个数进行全排,10出现在哪个位置,就代表该位置上的人摸到大王。

每次随机排列1-10共10个数,10所在的位置随机变化,分别输出模拟实验10次, 100次,1000次的结果, 将实验结果进行统计分析, 给出分析结果。

概率实验报告_蒙特卡洛积分

概率实验报告_蒙特卡洛积分

本科实验报告实验名称:《概率与统计》随机模拟实验随机模拟实验实验一设随机变量X 的分布律为-i P{X=i}=2,i=1,2,3......试产生该分部的随机数1000个,并作出频率直方图。

一、实验原理采用直接抽样法:定理:设U 是服从[0,1]上的均匀分布的随机变量,则随机变量-1()Y F U =与X 有相同的分布函数-1()Y F U =(为F(x)的逆函数),即-1()Y F U =的分部函数为()F x .二、题目分析易得题中X 的分布函数为1()1- ,1,0,1,2,3, (2i)F x i x i i =≤≤+=若用ceil 表示对小数向正无穷方向取整,则F(x)的反函数为产生服从[0,1]上的均匀分布的随机变量a ,则m=F -1(a)则为题中需要产生的随 机数。

三、MATLAB 实现f=[]; i=1;while i<=1000a=unifrnd(0,1); %产生随机数a ,服从【0,1】上的均匀分布 m=log(1-a)/log(1/2);b=ceil(m); %对m 向正无穷取整 f=[f,b]; i=i+1; enddisplay(f);[n,xout]=hist(f); bar(xout,n/1000,1)产生的随机数(取1000个中的20个)如下:-1ln(1-)()1ln()2a F a ceil ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦频率分布直方图实验二设随机变量X 的密度函数为24,0,()0,0x xe x f x x -⎧>=⎨≤⎩试产生该分布的随机数1000个,并作出频率直方图 一、实验原理取舍抽样方法,当分布函数的逆函数难以求出时,可采用此方法。

取舍抽样算法的流程为:(1) 选取一个参考分布,其选取原则,一是该分布的随机样本容易产生;二是存在常数C ,使得()()f x Cg x ≤。

(2) 产生参考分布()g x 的随机样本0x ; (3) 独立产生[0,1]上的均匀分布随机数0u ;(4) 若000()()u Cg x f x ≤,则保留x 0,作为所需的随机样本;否则舍弃。

高中概率专题研究报告

高中概率专题研究报告

高中概率专题研究报告高中概率专题研究报告概率是数学中的一个重要分支,广泛应用于各个领域。

本文主要探讨高中概率专题,包括概率的基本概念、概率的计算方法以及概率在现实生活中的应用。

概率的基本概念包括随机事件、样本空间、事件的概率。

随机事件是在一定条件下可能出现也可能不出现的事件,例如掷骰子、抽卡等。

样本空间是所有可能结果组成的集合,例如掷一个骰子的样本空间就是{1,2,3,4,5,6}。

事件的概率用一个数值表示,表明事件发生的可能性大小,介于0和1之间。

概率的计算方法主要包括频率法、几何概率法和古典概率法。

频率法是通过大量实验得到频率,将频率作为概率的估计值。

例如,通过多次抛掷一枚硬币,统计正面朝上的次数,正面朝上的频率就是正面出现的概率估计值。

几何概率法是通过几何分析得到概率,例如掷一个骰子,正面朝上的概率为1/6。

古典概率法适用于实验次数不确定的情况下,通过样本空间和事件的可能性分析得到概率。

例如掷一个非均匀骰子,掷出1的概率可能是1/4。

概率在现实生活中有着广泛的应用。

例如,在生活中经常会遇到购买彩票的情况。

购买彩票就是一种随机事件,中奖的概率可以通过几何概率法或者频率法进行估算。

又如,在体育比赛中,预测比赛结果也是一个涉及概率的问题。

通过分析参赛队伍的实力、历史表现等因素,可以估算每支队伍获胜的概率。

概率还可以应用于金融领域,例如投资分析中的风险评估,通过概率模型对不同投资方案的风险进行比较和评价。

总结起来,高中概率专题研究了概率的基本概念、计算方法以及在现实生活中的应用。

掌握概率的基本知识和方法,对于提高数学分析和判断能力、促进科学决策具有重要意义。

希望本文对读者对概率这一重要数学概念有所启发,深入了解概率的理论和应用。

概率论教学实践报告总结(3篇)

概率论教学实践报告总结(3篇)

第1篇一、前言概率论是数学的一个重要分支,它研究随机现象及其规律。

随着我国教育事业的不断发展,概率论在教学中的地位日益重要。

为了提高教学质量,探索有效的教学策略,我们开展了一系列概率论教学实践活动。

现将本次实践活动的总结如下:二、实践目的1. 提高学生对概率论知识的掌握程度,培养学生的逻辑思维能力。

2. 探索适合我国学生特点的概率论教学方法,提高课堂教学效果。

3. 加强师生互动,培养学生的自主学习能力。

4. 丰富教师的教学经验,提高教师的专业素养。

三、实践内容1. 教学方法改革(1)启发式教学:教师在课堂上注重引导学生思考,通过提问、讨论等方式,激发学生的学习兴趣,提高学生的思维能力。

(2)案例教学:结合实际生活中的例子,让学生理解概率论知识在实际中的应用,提高学生的实践能力。

(3)小组合作学习:将学生分成若干小组,共同完成教学任务,培养学生的团队协作能力。

2. 教学手段创新(1)多媒体教学:利用PPT、视频等多媒体手段,使教学内容更加生动形象,提高学生的学习兴趣。

(2)网络教学:通过在线课程、论坛等网络平台,拓宽学生的学习渠道,提高学生的学习效果。

(3)实验教学:开展概率实验,让学生亲身体验概率现象,加深对概率论知识的理解。

3. 教学评价改革(1)过程性评价:关注学生在学习过程中的表现,如课堂发言、作业完成情况等。

(2)结果性评价:关注学生对知识掌握程度,如期中、期末考试等。

(3)多元评价:结合学生自评、互评、教师评价等多种方式,全面评价学生的学习成果。

四、实践效果1. 学生对概率论知识的掌握程度有了明显提高,课堂参与度显著提升。

2. 学生在解决实际问题时,能够运用概率论知识进行分析,提高了解决问题的能力。

3. 学生在团队协作、自主学习等方面取得了较好成绩,综合素质得到提高。

4. 教师的教学经验得到了丰富,教学水平得到提高。

五、存在问题及改进措施1. 存在问题(1)部分学生对概率论知识缺乏兴趣,学习积极性不高。

概率实验报告6

概率实验报告6
当n=500,1000,5000,10000时,可以用相同的方法得到结果。
实验结果与实验总结(体会):
n=100时,结果如图6-5
图6-5
n=500时,结果如图6-6
图6-6
n=1000时,结果如图6-7
图6-7
n=5000时,结果如图6-8
图6-8
n=10000时,结果如图6-9
图6-9
从实验的结果看,样本容量越大实验越真实,这样能减小实验误差,这也是概率实验最常用的方法
进一步讨论或展望:
最大似然估计最早是由德国数学家高斯在1821年针对正态分布提出的,费希尔在1922年再次提出了这种想法并证明了一些它的性质而使得最大似然法得到了广泛的应用,相信有一天会有人把它改进,我们也能更好的利用计算机解决相应问题。
教师评语与成绩:
实验
名称
正态变量的数学期望和方差的极大似然估计
问题的背景:
极大似然是一种重要的估计方法,它有许多优良性质.通过试验我们可以进一歩了解它们.
实验目的:
1.学习和掌握Excel的有关命令.
2.进一歩理解极大似然估计的思想.
3.观察估计量和子样容量n的关系.(n=100,500,1000,5000,10000)
实验原理与数学模型:
实验所用软件及版本:
Microsoft Excel 2003
主要内容(要点):
1.利用Microsoft Excel 2003菜单工具随机产生相应的数,再对所产生的数进行描述统计。
2.观察估计量和子样容量n的关系(n=100,500,1000,5000,10000)。
实验过程:(含解决方法和基本步骤,主要程序清单及异常情况记录等)
1,利用Excel里的工具菜单栏的数据分析随机产生100个平均值为3,标准差为4的正态分布数。如图6-1,6-2.

概率论与数理统计实验报告

概率论与数理统计实验报告

概率论与数理统计实验报告概率论与数理统计实验报告引言:概率论与数理统计是数学的两个重要分支,它们在现代科学研究和实际应用中起着重要的作用。

本次实验旨在通过实际操作,加深对概率论与数理统计的理解,并探索其在实际问题中的应用。

实验一:掷硬币实验实验目的:通过掷硬币实验,验证硬币正反面出现的概率是否为1/2。

实验步骤:1. 准备一枚硬币,标记正反面。

2. 进行100次连续掷硬币实验。

3. 记录每次实验中正面朝上的次数。

实验结果与分析:经过100次掷硬币实验,记录到正面朝上的次数为47次。

根据概率论的知识,理论上硬币正反面出现的概率应为1/2。

然而,实验结果显示正面朝上的次数并未达到理论值。

这表明在实际操作中,概率与理论可能存在一定的差异。

实验二:骰子实验实验目的:通过骰子实验,验证骰子的点数分布是否符合均匀分布。

实验步骤:1. 准备一个六面骰子。

2. 进行100次连续投掷骰子实验。

3. 记录每次实验中骰子的点数。

实验结果与分析:经过100次投掷骰子实验,记录到骰子点数的分布如下:1出现了17次;2出现了14次;3出现了20次;4出现了19次;5出现了16次;6出现了14次。

根据概率论的知识,理论上骰子的点数分布应符合均匀分布,即每个点数出现的概率相等。

然而,实验结果显示骰子点数的分布并未完全符合均匀分布。

这可能是由于实际操作的不确定性导致的结果差异。

实验三:正态分布实验实验目的:通过测量人体身高数据,验证人体身高是否符合正态分布。

实验步骤:1. 随机选择一定数量的被试者。

2. 测量每个被试者的身高。

3. 统计并绘制身高数据的频率分布直方图。

实验结果与分析:通过测量100名被试者的身高数据,统计得到的频率分布直方图呈现出典型的钟形曲线,符合正态分布的特征。

这与概率论中对正态分布的描述相吻合。

结论:通过以上实验,我们对概率论与数理统计的一些基本概念和方法有了更深入的了解。

实验结果也向我们展示了概率与理论之间的差异以及实际操作的不确定性。

概率论试验报告

概率论试验报告

概率论试验报告一、二项分布1.实验内容:(1)取p=0.2,绘出二项分布B(20,p)的概率分布与分布函数图,观察二项分布的概率分布与分布函数图形,理解k p 与()F x 的性质.由第一和第二幅图可以看出,(){}{}{}(),1,0,1,.k k k n x x k k k n x x F x P x P x P x C p p k n ξξξ-<=<====-=∑(2)固定p=0.2,分别取n=10,20,50,在同一坐标系内绘出二项分布B(n,p)的概率分布图。

观察二项分布的概率分布曲线随参数n 的变化。

观察最后一幅图,当n 增大时,二项分布的最大值在向右移动,同时向正态分布逼近。

二、泊松分布1.实验内容:该实验主要是为了研究泊松分布的一些性质,并且通过图形的对比更加形象的说明性质的特点;其中分别取λ=1,2,3,6,在同一坐标系下绘出泊松分布π(λ)的概率分布曲线,观察曲线特点。

你能得到什么结论?2.实验过程:利用mathematics 的图像处理功能,我们在同一坐标系下绘制出λ=1、2、3、6的泊松分布概率分布曲线,并得出以下结论。

源代码:DiscretePlot[Evaluate@Table[PDF[PoissonDistribution[],],{,{1,2,3,6}}],{,0,20},PlotRange →All,Joined →True]随着λ值的逐渐增大,图像向右偏移,且最大概率减小,图形变缓,分布加宽,整个图形更加对称;且由泊松分布概率公式:{}!kP k e k λλξ==也可看出λ增大是,当k=λ时取最大值,则{}!kP k e λλξλ==,随着λ增大,P减小,理论符合实际。

我们可以做拓展,λ=0.1,0.2,0.3,0.6的图像图像向左偏,而且呈现不规则样式。

说明,在λ有较大值时有较好的分布效果。

三、正态分布1.实验内容:分别单独改变平均值μ及方差σ的大小观察对图形的影响。

探索实验报告--概率

探索实验报告--概率

数学实验报告概率班级:数学061学号:0602012010姓名: 杨丽概率A.实验指导书解读基本概念:1.随机现象:事前不可预言的现象,即在相同条件下重复进行试验,每次结果未必相同,或知道事物过去的状况,但未来的发展却不能完全肯定。

事物间的这种关系是属于偶然性的,这种现象叫做随机现象。

例如:以同样的方式抛置硬币却可能出现正面向上也可能出现反面向上;走到某十字路口时,可能正好是红灯,也可能正好是绿灯。

2.随机事件:在概率论中,将试验的结果称为事件。

每次试验中,可能发生也可能不发生,而在大量试验中具有某种规律性的事件称为随机事件。

3.随机事件的概率:概率是用来度量事件发生可能性大小的量.小概率事件很少发生,而大概率事件经常发生.随机事件A在n次实验中的频率是m/n,随着n的增大,该频率总在一个固定数P的附近摆动,随机事件A的概率即为这个固定数P。

4.随机变量及其分布:表示随机现象(在一定条件下,并不总是出现相同结果的现象称为随机现象)各种结果的变量(一切可能的样本点)。

离散型的随机变量的分布:0-1分布、二项分布、超几何分布、泊松(Poisson)分布;连续型随机变量的分布:均匀分布、正态分布N(μ,σ2)、指数分布。

由此,本次实验主要我们主要完成两件事:一.概率与频率的关系实验中,我们首先对随机事件A做理论上的研究,得出随机事件A的频率。

其次是要考虑合适的程序,利用计算机模拟随机事件发生的概率,模拟过程主要是通过改变n的值,得到不同的概率值,进而将这些不同的概率值与频率值比较,从而达到验证“频率稳定于概率”这一结论的目的。

二.探索研究随机变量的分布1.探寻随机变量不同的离散分布之间的联系并证明之;a.超几何分布和二项分布之间的联系;b.二项分布和Possion分布之间的联系。

实验需用不同的实例从数和形两个不同角度来探索超几何分布与二项分布的关系,二项分布与Possion分布的关系,继而用随机变量分布的定义加以证明探索结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中概率数学实验报告
实验目的
通过进行概率实验,加深对概率理论的理解,探究概率实验和理论概率的关系。

实验器材
- 骰子
- 纸牌
- 两个硬币
实验步骤
1. 首先,我们进行了一个简单的抛硬币实验。

通过抛两个硬币,我们观察到硬币的正反面朝上的情况,并记录下来。

共进行了100次抛硬币实验。

2. 接着,我们进行了掷骰子实验。

我们使用一个六面骰子,进行了300次掷骰子实验。

记录下了每次出现的骰子点数。

3. 最后,我们进行了一次纸牌实验。

我们使用了一副标准的扑克牌,包括52张牌,不计大小王。

我们从中抽取了30张牌,记录下了每张牌的花色和点数。

结果分析
抛硬币实验
我们进行了100次抛硬币实验,记录下了每次抛硬币的结果。

通过统计,我们发现正面朝上的次数为56次,反面朝上的次数为44次。

根据统计学原理,我们得出正面和反面朝上的概率分别为0.56和0.44。

实验结果与理论概率相差较小,这说明我们的实验结果与理论概率一致,加深了我们对硬币抛掷的概率理解。

掷骰子实验
我们进行了300次掷骰子实验,记录下了每次点数的结果。

通过统计,我们得出每个点数出现的频次分别如下:
- 点数1出现了48次
- 点数2出现了54次
- 点数3出现了52次
- 点数4出现了50次
- 点数5出现了49次
- 点数6出现了47次
通过进一步计算,我们得到了每个点数出现的频率如下:
- 点数1的频率为0.16
- 点数2的频率为0.18
- 点数3的频率为0.17
- 点数4的频率为0.16
- 点数5的频率为0.16
- 点数6的频率为0.15
与理论概率进行对比发现,实验结果与理论概率也符合得较好,加深了我们对骰子点数的概率理解。

纸牌实验
我们从一副标准扑克牌中抽取了30张牌,记录下了每张牌的花色和点数。

通过统计,我们得出了每个花色和点数出现的频次。

花色频次
- -
黑桃8
红桃 6
方块9
梅花7
点数频次
- -
A 3
2 4
3 2
4 5
5 6
6 3
7 1
8 2
9 1
J 1
Q 2
K 0
根据实验结果,我们可以进一步计算出每个花色和点数出现的频率。

通过与理论概率的对比,我们发现实验结果与理论概率吻合较好,验证了概率实验和理论概率的关系。

实验结论
通过进行概率实验,我们得出的实验结果与理论概率吻合较好,验证了概率实验和理论概率的关系。

实验过程中,我们对硬币的抛掷、骰子的掷出点数以及纸牌的抽取等情况进行了记录和分析,加深了我们对概率理论的理解。

在今后的学习中,我们将继续进行实验,不断加深对概率的认识和应用。

相关文档
最新文档