第4章 4.1 光的干涉
第四章:多光束干涉与光学薄膜

注:透射光的干涉条纹极为明锐,是多光束干 涉最显著的特点。
§4-1平行平板的多光束干涉
四、多光束干涉条纹的锐度:
为了表示多光束干涉条纹极为明锐这一特点, 引入条纹的锐度概念。
条纹的锐度用条纹的位相差半宽度来表示,即:
条纹中强度等于峰值强度
I(t) I(i)
1
一半的两点间的位相差距离,
记为Δδ,对于第m级条纹, 1
n2 sin 2 0
2 2nh cos m 2
所以对于同一个干涉级,不同波长光的亮纹
位置将有所不同,两组亮纹的圆心虽然重合,
但它们的半径略有不同,位置互相错开。
考虑到楔形板内表面镀金属膜的影响:如图4
-7所示,对于靠近条纹中心的某一点 0
对应于两个波长的干涉级差为
§4-2法布里-珀罗干涉仪 和陆末-盖尔克板
(2)、随着R增大,透射光暗条纹强度降低,
亮条纹的宽度变窄,锐度和对比度增大。
(3)、R 1时,透射光干涉图样由在几乎全 黑的背景上的一组很细的亮条纹所组成。反射 光干涉图样和透射光干涉图样互补,由在均匀 明亮背景上的很细的暗条纹组成,这些暗条纹 不如透射光图样中暗背景上的亮条纹看起来清 楚,故在实际中都采用透射光的干涉条纹。
对应于两个波长的干涉级差为
m
m1
m2
2h
1
2h
2
2h1 2
12
而m e / e,
Δe 两个波长的同级条纹的相对位移。e:同
一波长的条纹间距。
2
1
e 2he
12
e 2he
2
2
则:
1
2
§4-2法布里-珀罗干涉仪 和陆末-盖尔克板
是λ1和λ2的平均波长,其值可预先测出。 h是标准具间隔
物理光学第四章梁铨廷

➢上一章在讨论平板的干涉时,仅仅讨论了最先出射 的两光束的干涉问题,这是在特定条件下采取的一种 近似处理方法。 ➢事实上,光束在平板内经过多次的反射和透射,严 格地说,干涉是一种多光束干涉。 ➢多光束干涉与两光束干涉相比,干涉条纹更加精细, 利用多光束干涉原理制造的干涉仪是最精密的光学测 量仪器,多光束干涉原理在现代激光技术和光学薄膜 技术中也有着重要的应用。
Et2 r 2a1 exp( j )
Er1 Er2 Er3 E0
i
Et3 r 4a1 exp( 2 j )
B
n i'
d
AC
Etk r 2(k1)a1 exp[ j(k 1) ]
D
在无穷远定域面上的合振幅:
Et1 Et 2 Et 3
Et Etk
由于反射系数:
k 1
Et
1
r2
a1 exp(
j
)
4.1.2 多光束干涉图样的特点
1. 反射光、透射光的干涉条纹互补; 2. 干涉条纹的明暗和光强值由位相差决定。
对于反射光
当
2m 1 时为亮纹,其光强为
I M r
F 1 F
I
i
当 2m 时为暗纹,其光强为 Imr 0;
对于透射光
当 2m 时为亮纹,其光强为 I M t I i
当
2m 1时为暗纹,其光强为
由于F-P干涉仪产生的条纹非常细锐、明亮,所以它的分 辩能力很强。
2、激光器的谐振腔,用于选模(选频)。
4.1 平行平板的多光束干涉
若平行平板的反射率很低,则Er1、 Er2的强度接近, Er3、 Er4…的光强 与前两束相差较大。
因此考虑反射光的干涉时,只考虑 前两束光的干涉可以得到很好的近 似。 若平行平板的反射率较高,则除 Er1外,其余反射光的强度相差不 大,因此必须考虑多光束干涉。
第4章 光学干涉测量技术

武汉大学 电子信息学院
25
§4.1 干涉测量基础
(二)干涉条纹的处理方法 1、数字波面的获取 干涉仪检测光学元件面形,对获得的干涉图进行数字化转换,并 由计算机替代人眼进行判读,即为数字干涉法。在对模拟干涉图像进 行数字化转换后,需要提取干涉图上的条纹信息,即确定干涉条纹的 中心点坐标及干涉级次。一般处理过程需要如下几个步骤: (1)背景滤除:对原始图像进行预处理; (2)二值化:使干涉图变为二值化图像; (3)细化:保留条纹中心曲线,从而提取出条纹上点的坐标; (4)修像:去除细化图像中的干扰信息,修改间断点; (5)标记:对干涉条纹进行跟踪、标记不同条纹的干涉级次; (6)采样:用等间距采样现贯穿干涉图像区间,均匀设置采样点。 采样结束后即完成了对数字化干涉图像的图像处理过程,获得了 离散的、采样点基本均布的波面数据集合(x,y,p)。在经过后续的波 面拟合计算等可以得到波面数字分布。
光学测试技术
第四章 光学干涉测量技术
2013年5月26日
干涉技术和干涉仪在光学测量中占有重要地位。近年来,随 着数字图像处理技术的不断发展,使干涉测量这种以光波长作为 测量尺度和测量基准的技术得到更为广泛的应用。 在光学材料特性参数测试方面,用干涉法测量材料折射率精度 可达10-6;对材料光学均匀性的测量精度则可达10-7; 用干涉法可测量光学元件特征参数,用球面干涉仪测量球面曲 率半径精度达1μm,测量球面面形精度为1/100λ;用干涉法测量 平面面形精度为1/1000λ;用干涉法测量角度时测量精度可达 0.05″以上; 在光学薄膜厚度测试方面,用干涉法测厚的精度可达0.1nm; 在光学系统成像质量检验方面,利用干涉法可测定光学系统的 波像差,精度可达1/20λ,并可利用干涉图的数字化及后续处理 解算出成像系统的点扩散函数、中心点亮度、光学传递函数以 及各种单色像差。
第四章光的相干性概论

在前面的各个部分,凡是涉及到光的叠加,我们通常采用相干叠加或非相干 叠加的方法进行处理。例如在杨氏干涉装置中,两列光波如果是相干的,则叠加
之后干涉项 2A1A2 cos ∆ϕ ≠ 0 ,如果是非相干的,则干涉项 2 A1A2 cos ∆ϕ = 0 。
或者说,在数学处理上,对于相干光,叠加时复振幅相加,U (r) = U1(r) + U2 (r) ;
L0 = ∆Z = λ2 / ∆λ (1.6.8)正是上述的 δMax ,于是对上述现象可以作如下解释。
L =λ2/∆λ 0 Z
带宽为∆λ 的准单色波所形成的波包
由于光源是非单色波 λ ~ λ + ∆λ ,则就是非定态光波,在空间是一个有效长 度为 L0 = λ 2 / ∆λ 的波包。对于屏上的中心点O,到双缝S1、S2的光程相等,因而
= 2 I 0 dx (1 + cos
2π λ
δ ) = 2 I 0 dx [1 + cos
2π λ
( β x + δ 2 )]
∫ 干涉场的强度为 I
= 2I0
b
2 −b
2
dx[1
+
cos
2π λ
(β x + δ2 )]
=
2I0 (b
+
λ πβ
sin
π bβ λ
cos
2π λ
δ2)
I Max
=
2I0b
=| U1(S1,
r)
|2
+
| U2 (S1)
|2
+U1
(S1
)U
∗ 2
(
S1
)
+
第四章光的干涉

§6 激光谐振腔的选模原理
据相干加强条件 2nh=m m=1,2,3…; ∵ =c/ ∴满足相干加强的频率为 m= mc / 2nh(纵模)
相邻两纵模间隔 q= m+1- m= c / 2nh
相邻两纵模间隔 q= m+1- m= c / 2nh
例: He-Ne激光器中,原子发出的0=4.7×1014HZ ( 0 =632.8nm) 谱线的宽度=1.5×109HZ。 如果He-Ne激光器的腔长h=10cm,n≈1。问有多 少个纵模输出?如果h=30cm呢?
解: 相邻的两纵模间隔 q= m+1- m= c/2nh
1) 若激光器的腔长h=10cm 激光器输出的纵模个数
N= / q=1
2) 若激光器的腔长 h=30cm
N= / q= 3
§7 光学薄膜
镀膜技术
用真空蒸发、沉淀或甩胶的方法,在璃或 光滑的金属表面涂、镀一层很薄的透明电介质 或金属膜层。
空气
三.应用
1. 可测光的波长,透明薄膜的厚度, 折射率等。
2.可测光波的相干长度 max =L0= 2/ 。
§5 法布里—珀罗干涉仪 一.法布里—珀罗干涉仪的结构
扩展源
准直透镜
分束板,内侧镀膜 会聚透镜
G1,G2间,间距h可调—法布里-珀罗干涉仪
G1,G2间,间距h固定—法布里-珀罗标准具
多光束相干光在L2焦平面上形成等倾圆环条纹
h=mmax/2。 若膜厚发生变化dh,干涉级次发生变化dm
等倾条纹
M1
M1⊥M2 M1‖M max ↓ → mmax ↓
b. 若 h↑ → max ↑→ mmax ↑ 若dm=N,则dh=N/2,测量精度数量级
2.等厚条纹
《物理光学》第4章-多光束干涉与光学薄膜解析

缝数为25000条的光栅的分辨本领约为0.1埃。 底边长5厘米的重火石玻璃棱镜的分辨本领1埃。
小结:法布里—珀罗干涉仪
I t I i
1
A
2
1 R
1 1 F sin 2
2
2
1
e
2he
2
S.R
2
2h
A
0.97mS
m
干涉图样的特点:
S
1
R R
4 h cos 2
1 0.8
I(0.9 ) 0.6 I(0.5 ) I(0.2 ) 0.4
不使两组条纹的相对位移Δe大于条纹的间距e,否则会发生
不同级条纹的重叠现象。把Δe恰好等于e时相应的波长差称
为标准具常数或标准具的光谱范围,是它所能测量的最大波
长差。
S.R
2
2h
例:标准具间隔h=5毫米,光波平均波长 5000 埃的情
况,
S。R =0.25埃。
能够分辨的最小波长差(Δλ)m (分辨极限):
1.310 6
1.310 6
例题1 F-P干涉仪中镀金属膜的两玻璃板内表面的反射系数
r=0.8944,求:1)干涉仪条纹的精细度系数F;2)条纹半宽度;3) 条纹精细度。
解:1)精细度系数
F
4
1
2
I(t)/I(i) 1
r 2 0.8944 2 0.8
F
4
1 2
4 0.8
1 0.82
80
4.2.1 法布里-珀罗干涉仪
产生的条纹要精细得多
相继两光束的位相差:
4 h cos 2
φ:金属内表面反射时的相变
设金属膜的吸收率为A,应有:
I t I i
《光的干涉》 讲义

《光的干涉》讲义在我们生活的这个奇妙世界里,光无处不在。
从照亮我们前行道路的路灯,到让我们欣赏到美丽色彩的彩虹,光以其独特的方式展现着它的魅力。
而在光学的众多现象中,光的干涉是一个非常重要且有趣的现象。
那么,什么是光的干涉呢?简单来说,光的干涉是指两束或多束光在相遇时相互叠加,导致某些区域的光强度增强,而某些区域的光强度减弱的现象。
这种现象就好像两列水波相遇时会发生的情况一样。
要理解光的干涉,首先我们得了解一下光的本质。
在很长一段时间里,人们对于光的本质存在着不同的看法。
一种观点认为光是一种粒子,而另一种观点则认为光是一种波。
经过大量的实验和研究,现在我们知道光具有波粒二象性,在某些情况下表现出粒子的特性,而在另一些情况下则表现出波的特性。
而光的干涉现象,正是光的波动性的有力证明。
光的干涉现象可以通过一些经典的实验来观察。
其中最著名的实验之一就是杨氏双缝干涉实验。
在这个实验中,一束光通过一个有两条狭缝的挡板,然后在后面的屏幕上形成了一系列明暗相间的条纹。
这些条纹的出现,正是因为从两条狭缝出来的光发生了干涉。
我们来具体分析一下这个实验。
假设从两条狭缝出来的光的波长相同、频率相同、相位相同,那么当它们在屏幕上相遇时,如果两束光的波峰与波峰相遇,或者波谷与波谷相遇,就会发生相长干涉,使得光的强度增强,从而在屏幕上形成亮条纹;而如果一束光的波峰与另一束光的波谷相遇,就会发生相消干涉,使得光的强度减弱,从而在屏幕上形成暗条纹。
光的干涉在实际生活中有着广泛的应用。
比如说,在光学精密测量中,利用干涉原理可以精确地测量长度、厚度等物理量。
例如,迈克尔逊干涉仪就是一种基于光的干涉原理的精密测量仪器,它可以用来测量微小的长度变化。
在薄膜干涉方面,我们也能经常观察到光的干涉现象。
比如,当我们对着肥皂泡或者油膜表面观察时,常常能看到五彩斑斓的颜色。
这是因为薄膜的上下表面反射的光发生了干涉,不同波长的光在不同的厚度处发生相长干涉或相消干涉,从而使得我们看到了不同的颜色。
《光的干涉》 讲义

《光的干涉》讲义在我们的日常生活中,光无处不在,它照亮了我们的世界,让我们能够看到周围的一切。
然而,光的奥秘远不止我们所看到的那么简单。
其中,光的干涉现象就是一个令人着迷的领域。
什么是光的干涉呢?简单来说,就是两列或多列光波在空间相遇时相互叠加,在某些区域始终加强,在另一些区域则始终减弱,从而形成稳定的强弱分布的现象。
要理解光的干涉,我们首先得了解一下光的本质。
在很长一段时间里,人们对于光的本质存在着争论。
直到近代,科学家们逐渐认识到光具有波粒二象性。
在光的干涉现象中,我们主要考虑光的波动性。
光的干涉有两种常见的类型,分别是双缝干涉和薄膜干涉。
先来说说双缝干涉。
托马斯·杨在 1801 年进行了著名的双缝干涉实验。
实验装置很简单,就是在一块遮光板上开两条相距很近的狭缝,然后让一束单色光通过这两条狭缝,在后面的屏幕上就会出现明暗相间的条纹。
为什么会出现这样的条纹呢?这是因为从两条狭缝出来的光就像是两个波源,它们发出的光波在空间相遇并叠加。
当两列光波的波峰与波峰相遇,或者波谷与波谷相遇时,就会相互加强,形成亮条纹;而当波峰与波谷相遇时,就会相互抵消,形成暗条纹。
通过双缝干涉实验,我们可以得出一些重要的结论。
比如,相邻两个亮条纹或暗条纹之间的距离与光的波长、双缝之间的距离以及双缝到屏幕的距离都有关系。
这为我们测量光的波长提供了一种有效的方法。
接下来再谈谈薄膜干涉。
生活中我们常见的肥皂泡、水面上的油膜在阳光的照射下会呈现出五彩斑斓的颜色,这就是薄膜干涉的现象。
薄膜干涉的原理是由于薄膜的上下表面反射的光波相互叠加而产生的。
当一束光照射到薄膜上时,一部分光会在薄膜的上表面反射,另一部分光会穿过薄膜,在下表面反射后再穿出薄膜。
这两束反射光的光程差会随着薄膜的厚度和入射光的角度而变化。
当光程差恰好为波长的整数倍时,就会出现加强,形成亮条纹;当光程差为半波长的奇数倍时,就会出现减弱,形成暗条纹。
薄膜干涉在实际中有很多应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1 光的干涉
学习目标知识脉络
1.认识光的干涉现象及光发生干涉的条
件.(重点)
2.理解光的干涉条纹的形成原因及干涉
现象的本质,认识干涉条纹的特征.(重
点)
3.了解光的干涉条纹的特点,理解用双
缝干涉测光波波长的原理.(难点)
4.了解薄膜干涉产生的原因,知道薄膜
干涉的应用.(难点)
杨氏双缝干涉实验
[先填空]
1.史实
托马斯·杨在历史上第一次解决了相干光源问题,成功做出了光的干涉实验.光的干涉现象微粒说无法解释,而波动说可做出完善解释,使人们认识到光具有波动性.
2.产生条件
频率相同、相差恒定、振动方向在同一直线上.
3.在双缝干涉实验中得到的干涉图样有如下特点
(1)单色光产生的干涉条纹都是间距相同的明暗相间的条纹,且中央为亮条纹.当两缝到屏上某点的路程差等于半波长的奇数倍时,该处出现暗条纹.
(2)若用白光做实验,中央条纹是白色,中央条纹两侧,各单色光所形成条纹疏密不同而出现彩色条纹重叠的现象.
4.如果两个光源发出的光能够产生干涉,这样的两个光源叫做相干光源.
[再判断]
1.任意两个光源发出的光叠加后都会发生稳定干涉现象.(×)
2.两列光的波峰与波峰叠加为亮条纹,波谷与波谷叠加为暗条纹.(×)
3.光的干涉现象证明光具有波动性.(√)
[后思考]
1.做双缝干涉实验时必须具备什么条件才能观察到干涉条纹?
【提示】必须是相干光源,且双缝间的间距必须很小.
2.一般情况下光源发出的光很难观察到干涉现象,这是什么原因?
【提示】光源不同部位发出的光不一定具有相同的频率和恒定的相差,不具备相干光源的条件.
[核心点击]
1.双缝干涉的示意图(如图4-1-1所示)
图4-1-1
(1)单缝屏的作用:获得一个有唯一频率和振动情况的线光源.
(2)双缝屏的作用:平行光照到单缝S上后,又照到双缝S1、S2上,这样一束光被分成两束频率相同和振动情况完全一致的相干光.
2.产生干涉的条件
(1)两列光的频率相同.
(2)两列光的振动方向相同且相位差恒定.发生干涉的两列波称为相干波,发生干涉的两个光源称为相干光源.相干光源可用同一束光分成两列的方法来获得.
图4-1-2
(3)由于不同光源发出的光频率一般不同,即使是同一光源,它的不同部位发出的光也不一定有相同的频率和恒定的相位差.
(4)光屏上某处出现亮、暗条纹的条件:光的干涉跟波的干涉一样,也有加强区和减弱区,加强区照射到光屏上出现亮条纹,减弱区照射到光屏上出现暗条纹.如果光屏上某点到两个光源的路程差是波长的整数倍,那么该点就是加强点;如果光屏上某点到两个光源的路程差是半波长的奇数倍,那么该点就是减弱点.因此,光屏上出现亮条纹的条件是:路程差Δr=|r2-r1|=kλ(k=0,1,2,…);光
屏上出现暗条纹的条件是:路程差Δr=|r2-r1|=(2k+1)λ
2(k=0,1,2,…).
3.双缝干涉条纹的特点
(1)单色光的干涉图样
若用单色光作光源,则干涉条纹是明暗相间的条纹,且条纹间距相等.中央为亮条纹,两相邻亮纹(或暗纹)间距离与光的波长有关,波长越大,条纹间距越大.
图4-1-3
(2)白光的干涉图样
若用白光作光源,则干涉条纹是彩色条纹,且中央条纹是白色的.这是因为:
①从双缝射出的两列光波中,各种色光都能形成明暗相间的条纹.各种色光都在中央条纹处形成亮条纹,从而复合成白色条纹.
②两侧条纹间距与各色光的波长成正比,即红光的亮条纹间距宽度最大,紫光的亮条纹间距宽度最小,即除中央条纹以外的其他条纹不能完全重合,这样便形成了彩色干涉条纹.
1.在双缝干涉实验中,以白光为光源,在屏幕上观察到了彩色干涉条纹,若在双缝中的一缝前放一红色滤光片(只能透过红光),另一缝前放一绿色滤光片(只能透过绿光),已知红光与绿光频率、波长均不相等,这时在屏上可看到什么现象?
【解析】两列光波发生干涉的条件之一是频率相等,利用双缝将一束光分成能够发生叠加的两束光,在光屏上形成干涉条纹,但分别用绿色滤光片和红色滤光片挡住两条缝后,红光和绿光频率不等,不能发生干涉,因此屏上不会出现干涉条纹,但屏上仍有亮光.
【答案】见解析
2.在双缝干涉实验中,双缝到光屏上P 点的距离之差为0.6 μm ,若分别用频率f 1=5.0×1014Hz 和f 2=7.5×1014Hz 的单色光垂直照射双缝,则P 点出现明、暗条纹的情况是:
单色光f 1照射时出现______条纹,单色光f 2照射时出现______条纹.
【解析】 本题考查双缝干涉实验中屏上出现明、暗条纹的条件.根据波的叠加知识,可知与两个狭缝的光程差是波长的整数倍处出现亮条纹,与两个狭缝
的光程差是半波长的奇数倍处出现暗条纹.据λ=c f 可得λ1=c f 1
=3×1085.0×1014 m =0.6×10-6 m =0.6 μm ,λ2=c f 2=3.0×1087.5×1014 m =0.4×10-6 m =0.4 μm ,即d =λ1,d
=32λ2.
【答案】 亮 暗
双缝干涉中亮条纹或暗条纹的判断方法
1.判断屏上某点为亮条纹还是暗条纹,要看该点到两个光源(双缝)的光程差与波长的比值.
2.出现亮条纹的条件是光程差等于波长的整数倍.
3.出现暗条纹的条件是光程等于半波长的奇数倍,而不是整数倍.
1.实验现象
在酒精灯旁竖直放置的肥皂膜上,会出现明暗相间的条纹.
2.薄膜干涉的成因
竖直放置的肥皂液膜由于受重力的作用,下面厚,上面薄,因此,在膜上不
同位置,来自前后两个面的反射光所走的路程差不同,在某些位置,这两列波叠加后相互加强,于是出现了亮条纹,因此,薄膜上出现了亮暗相间的烛焰的像.
[再判断]
1.用红光照射薄膜时,会出现彩色条纹.(×)
2.用白光照射薄膜时,会出现彩色条纹.(√)
3.只能用肥皂膜,其他薄膜不会出现薄膜干涉现象.(×)
[后思考]
如图4-1-4所示是几种常见的薄膜干涉图样,这些干涉图样是怎样形成的呢?
图4-1-4
【提示】是由薄膜上、下表面反射光束相遇而产生的干涉.
[核心点击]
1.薄膜干涉现象
(1)成因
如图4-1-5所示,竖直放置的肥皂薄膜由于受到重力的作用,下面厚、上面薄,因此在薄膜上不同的地方,从膜的前、后表面反射的两列光波叠加.在某些位置,这两列波叠加后互相加强,则出现亮条纹;在另一些地方,叠加后互相削弱,则出现暗条纹.故在单色光照射下,就出现了明暗相间的干涉条纹;若在白光照射下,则出现彩色干涉条纹.
图4-1-5
(2)现象
①每一条纹呈水平状态排列.
②由于各种色光干涉后相邻两亮纹中心的距离不同,所以若用白光做这个实验,会观察到彩色干涉条纹.
2.薄膜干涉的应用
(1)增透膜
照相机、望远镜的镜头表面常镀一层透光的膜,膜的上表面与玻璃表面反射的光发生干涉,由于只有一定波长(一定颜色)的光干涉时才会相互加强,所以镀膜镜头看起来是有颜色的.镀膜厚度不同,镜头的颜色也不一样.一般增透膜的厚
度是光在薄膜介质中传播的波长的1
4,即d=
λ
4,若厚度为绿光在薄膜中波长的
1
4,
则镜头看起来呈淡紫色.
(2)用干涉法检查平面
如图4-1-6所示,被检查平面B与标准样板A之间形成了一个楔形的空气薄膜,用单色光照射时,入射光从空气膜的上、下表面反射出两列光波,形成干涉条纹.被检查平面若是平的,空气膜厚度相同的各点就位于一条直线上,干涉条纹平行;若被检查表面某些地方不平,那里的空气膜产生的干涉条纹将发生弯曲.
图4-1-6
3.如图4-1-7所示,一束白光从左侧射入肥皂薄膜,下列说法正确的是()
图4-1-7
A.人从右侧向左看,可以看到彩色条纹
B.人从左侧向右看,可以看到彩色条纹
C.彩色条纹水平排列
D.彩色条纹竖直排列
E.肥皂膜的彩色条纹是前后两表面反射的光干涉形成的
【解析】一束白光射到薄膜上,经前后两个界面反射回来的光相遇,产生干涉现象,我们由左向右看可以看到彩色条纹,故选项A错误,选项B正确;由于薄膜同一水平线上的厚度相同,所以彩色条纹是水平排列的,故选项C正确,选项D错误.肥皂膜的彩色条纹是前后两表面反射的光干涉形成的,E正确.
【答案】BCE
4.劈尖干涉是一种薄膜干涉,其装置如图4-1-8甲所示,将一块平板玻璃放置在另一平板玻璃之上,在一端夹入两张纸片,从而在两玻璃表面之间形成一个劈形空气薄膜.当光垂直入射后,从上往下看到的干涉条纹如图乙所示,干涉条纹有如下特点:(1)任意一条亮条纹或暗条纹所在位置下面的薄膜厚度相等;(2)任意相邻亮条纹或暗条纹所对应的薄膜厚度差恒定.现若在图甲装置中抽去一张纸片,则当光垂直入射到新劈形空气薄膜后,从上往下观察到的干涉条纹会发生怎样变化?
甲乙
图4-1-8
【解析】 光线在空气膜的上、下表面发生反射,并发生干涉,从而形成干涉条纹.设空气膜顶角为θ,d 1、d 2处为两相邻亮条纹,如图所示,则此两处的光程分别为δ1=2d 1,δ2=2d 2.
因为光程差δ2-δ1=λ,所以d 2-d 1=12λ.
设此两相邻亮纹中心的距离为Δl ,则由几何关系得d 2-d 1Δl
=tan θ,即Δl =λ
2tan θ,当抽去一张纸片θ减小,Δl 增大,条纹变疏.
【答案】 干涉条纹会变疏.
薄膜干涉条纹的两大特点
1.竖直液膜由于重力的作用,其厚度是均匀增加的,所以在同一水平线上,膜的厚度相同,干涉条纹的亮度也相同.
2.入射光的波长越长,竖直膜上的干涉条纹间距越大,这是因为如果厚度要增加半个波长,需要下移的距离比波长短时要大.。