对数函数的基本性质基础题

合集下载

对数的概念-练习题【基础】

对数的概念-练习题【基础】

对数的概念及性质(一)一.选择题(共5小题)1.(2015•烟台二模)f(x)=,则f(f(﹣1))等于()A.﹣2 B.2 C.﹣4 D.4【考点】对数的运算性质;函数的值.【专题】函数的性质及应用.【分析】根据分段函数的定义域,先求f(﹣1)的值,进而根据f(﹣1)的值,再求f(f(﹣1)).【解答】解:由分段函数知,f(﹣1)=,所以f(f(﹣1))=f(2)=3+log22=3+1=4.故选D.【点评】本题考查分段函数求值以及对数的基本运算.分段函数要注意各段函数定义域的不同.在代入求值过程中要注意取值范围.2.(2015•山东校级一模)f(x)=则f[f()]=()A.﹣2 B.﹣3 C.9 D.【考点】对数的运算性质.【专题】函数的性质及应用.【分析】利用分段函数的意义求出,即可得出.【解答】解:∵f(x)=,∴==﹣2.∴f[f()]=f(﹣2)==9.故选:C.【点评】本题考查了分段函数的性质,属于基础题.3.(2015•吉林校级四模)已知函数f(x)=﹣x+log2+1,则f()+f(﹣)的值为()A.2 B.﹣2 C.0 D.2log2【考点】对数的运算性质;函数的值.【专题】函数的性质及应用.【分析】由已知得f()+f(﹣)=(﹣++1)+(++1),由此能求出结果.【解答】解:∵函数f(x)=﹣x+log2+1,∴f()+f(﹣)=(﹣++1)+(++1)=2.故选:A.【点评】本题考查函数值的求法,是基础题,解题时要注意对数性质的合理运用.4.(2015•桐城市一模)已知f(x)=,则f()的值是()A.0 B.1 C.D.﹣【考点】对数的运算性质.【专题】函数的性质及应用.【分析】由0<<1,利用分段函数的性质及对数运算法则能求出f()=f()==.【解答】解:∵f(x)=,0<<1,∴f()=f()==.故选:C.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数的性质的合理运用.5.(2015•沙坪坝区校级一模)若2a=3,则log318=()A.3+B.3﹣C.2+D.2﹣【考点】对数的运算性质.【专题】函数的性质及应用.【分析】利用对数性质和换底公式求解.【解答】解:∵2a=3,∴a=log23,∴log318====2+.故选:C.【点评】本题考查对数的化简求值,是基础题,解题时要注意换底公式的合理运用.。

(完整版)指数函数对数函数专练习题(含答案).docx

(完整版)指数函数对数函数专练习题(含答案).docx

指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.2.指数函数函数性质:函数名称定义图象定义域值域过定点奇偶性单调性函数值的变化情况变化对图象的影响指数函数函数且叫做指数函数图象过定点,即当时,.非奇非偶在上是增函数在上是减函数在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小 .对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.2.对数函数性质:函数名称定义函数对数函数且叫做对数函数图象定义域值域过定点奇偶性图象过定点,即当非奇非偶时,.单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,看图象,逐渐减小 .逐渐增大;在第四象限内,从顺时针方向指数函数习题一、选择题aa ≤ b,则函数 f ( x ) =1?2x 的图象大致为 ()1.定义运算 a ?b =>b a b2.函数 f ( x ) = x 2-bx + c 满足 f (1 + x ) =f (1 - x ) 且 f (0) =3,则 f ( b x ) 与 f ( c x ) 的大小关系是()xxA . f ( b ) ≤ f ( c ) x xB . f ( b ) ≥ f ( c )xxC . f ( b )> f ( c )D .大小关系随 x 的不同而不同3.函数 y = |2 x - 1| 在区间A . ( - 1,+∞ )C . ( - 1,1)( k - 1, k + 1) 内不单调,则 k 的取值范围是 ()B . ( -∞, 1)D . (0,2)4.设函数 f ( x ) =ln [( x -1)(2 -x)] 的定义域是 ,函数 ( ) = lg(x - 2x -1) 的定义域是 ,Ag xaB若 ?,则正数a 的取值范围 ()ABA . a >3B . a ≥ 3C . a > 5D . a ≥ 5.已知函数 f (x = 3- a x -3, x ≤ 7,若数列 { a n 满足 a n = f (n )(n ∈ * ,且 {a n }是递5 ) a x - 6, x >7. } N) 增数列,则实数a 的取值范围是 ()A . [ 9, 3)B . ( 9, 3) 44C . (2,3)D . (1,3)2x16.已知 a >0 且 a ≠ 1,f ( x ) = x - a ,当 x ∈ ( - 1,1) 时,均有 f ( x )< 2,则实数 a 的取值范围 是( )1 1 A . (0 , 2] ∪ [2 ,+∞ ) B . [ 4, 1) ∪ (1,4]11C . [ 2, 1) ∪ (1,2]D . (0 , 4) ∪ [4 ,+∞ )二、填空题xa7.函数 y = a ( a >0,且 a ≠ 1) 在 [1,2] 上的最大值比最小值大 2,则 a 的值是 ________.8.若曲线 | y | = 2 x + 1 与直线 y =b 没有公共点,则b 的取值范围是 ________.| x|的定义域为9. (2011 ·滨州模拟 ) 定义:区间 [x 1,x 2 ]( x 1<x 2) 的长度为 x 2- x 1. 已知函数 y = 2 [a , b] ,值域为 [1,2] ,则区间 [a , b] 的长度的最大值与最小值的差为 ________.三、解答题10.求函数y=2x2 3x 4 的定义域、值域和单调区间.11.(2011 ·银川模拟 ) 若函数y=a2x+ 2a x-1( a>0 且a≠ 1) 在x∈ [- 1,1]上的最大值为14,求a 的值.12.已知函数f (x) = 3x,(a+ 2) = 18, (x) =λ·3ax-4x的定义域为 [0,1] .f g(1)求 a 的值;(2) 若函数g( x) 在区间 [0,1] 上是单调递减函数,求实数λ的取值范围.1. 解析:由? = a a≤ b x2x x≤0,b a>b x>0 .1答案: A2. 解析:∵f (1 +x) =f (1 -x) ,∴f ( x) 的对称轴为直线x=1,由此得 b=2.又 f (0)=3,∴c=3.∴f ( x)在(-∞,1)上递减,在(1,+∞)上递增.x≥2x≥ 1,∴ (3 x) ≥(2 x) .若 x≥0,则3f f若 x<0,则3x<2x<1,∴f (3x)> f (2x).∴f (3x)≥ f (2x).答案: A3.解析:由于函数 y=|2x-1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间 ( k- 1,k+ 1) 内不单调,所以有答案: Ck-1<0<k+1,解得-1<k<1.4.解析:由题意得: A=(1,2)x x>1x x>1在(1,2)上恒成立,即,a- 2且 a>2,由 A? B知 a- 2x x上恒成立,令x x xln a-2xln2>0 ,所以函数a-2 - 1>0 在 (1,2)u( x)=a- 2- 1,则u′( x) =au ( x ) 在 (1,2) 上单调递增,则 u ( x )> u (1) = a - 3,即 a ≥ 3.答案: B*f ( n ) 为增函数,5. 解析: 数列 { a } 满足 a = f ( n )( n ∈ N ) ,则函数nna >18- 6- ) × 7- 3,所以 3- a >0注意 a>(3,解得 2<a <3.aa8-6> 3- a × 7-3答案: C1 2x1 21 x x21的图象,6. 解析: f ( x )<? x -a < ? x - <a ,考查函数 y = a与 y =x - 2222当 a >1 时,必有 a-1≥1,即 1<a ≤ 2,21 1当 0<a <1 时,必有 a ≥ ,即 ≤a <1,2 2 1 综上, 2≤ a <1 或 1<a ≤ 2. 答案: C7. 解析: 当 a >1 时, y x在 [1,2] 上单调递增,故 2a3x= a a - a = ,得 a = . 当 0<a <1 时, y = a2 22a在 [1,2] 上单调递减,故 a -a = 2,得 a = 2. 故 a =2或 2.1131 3答案: 2或28. 解析: 分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.x+1 与直线 y = b 的图象如图所示,由图象可得:如果x+ 1 与直线 y = b曲线 | y | = 2 | y | = 2没有公共点,则 b 应满足的条件是 b ∈ [- 1,1] .答案: [- 1,1]9. 解析: 如图满足条件的区间 [a , b] ,当 a =- 1, b = 0 或 a = 0, b = 1 时区间长度最小,最小值为 1,当 a =- 1,b = 1 时区间长度最大,最大值为2,故其差为 1.答案: 110. 解: 要使函数有意义,则只需- x 2-3x + 4≥ 0,即 x 2+ 3x -4≤ 0,解得- 4≤ x ≤ 1.∴函数的定义域为 { x | -4≤ x ≤ 1} .223225 令 t =- x - 3x + 4,则 t =- x - 3x + 4=- ( x + ) +4,2253∴当-4≤ x ≤ 1 时, t max = 4 ,此时 x =- 2, t min = 0,此时 x =- 4 或 x =1.∴0≤t ≤ 25 . ∴0≤ -x 2- 3x + 4≤ 5 .4 2∴函数 y = ( 1)x 23 x4的值域为 [ 2 , 1] .8223 225由 t =- x - 3x + 4=- ( x + )+4( - 4≤ x ≤ 1) 可知,23当- 4≤ x ≤- 2时, t 是增函数,3当- 2≤ x ≤1 时, t 是减函数.根据复合函数的单调性知:y = ( 1 )x 23 x 4在 [ - 4,- 3 3] 上是减函数,在 [ - ,1] 上是增函数.22 233∴函数的单调增区间是 [ - 2, 1] ,单调减区间是 [ - 4,- 2] . 11. 解: 令x22tt >0y= t+ 2t1= ( t+ 1)2,其对称轴为t =- 1.该二次函数a = ,∴ ,则--在[ - 1,+ ∞ ) 上是增函数.x12①若 a >1,∵x ∈ [ - 1,1] ,∴t = a ∈ [ a , a ] ,故当 t = a ,即 x =1 时, y max =a + 2a - 1=14,解得 a = 3( a =- 5 舍去 ) .②若 0<a <1,∵x ∈ [ - 1,1] ,∴ = x∈1 1=-时,a [ a , ] ,故当 t = ,即 1t a ax12y max = (a + 1) - 2= 14.11∴a =3或- 5( 舍去 ) .1综上可得 a = 3 或 3.12. 解: 法一: (1) 由已知得 a2 aa =log 32.3 += 18? 3 = 2?(2) 此时 g ( x ) = λ·2x - 4 x ,设 0≤ x 1<x 2≤ 1,因为 g ( x ) 在区间 [0,1] 上是单调减函数,所以 g ( x ) - g ( x ) = (2 x - 2x )( λ- 2x - 2x )>0 恒成立,即 λ<2x + 2x 恒成立.1 2 1 2 2 1 2 1由于 2x 2+ 2x 1>2 + 2 = 2,所以实数 λ的取值范围是λ≤ 2.法二: (1) 同法一.(2) 此时 g ( x ) = λ·2x - 4x ,因为 g ( x ) 在区间 [0,1] 上是单调减函数,所以有 g ′( x ) = λln2 ·2x - ln4 ·4x = ln2 [- 2 ·(2x )2+ λ·2x] ≤0 成立.x2 设 2 = u ∈ [1,2] ,上式成立等价于-2u+ λu ≤0 恒成立.因为 u ∈ [1,2] ,只需 λ≤2u 恒成立,所以实数 λ的取值范围是λ≤ 2.对数与对数函数同步练习一、选择题1、已知 3a2 ,那么 log3 8 2log 3 6 用 a 表示是()A 、 a 2B 、 5a2C 、 3a (1 a)2D 、 3a a 22、 2log a (M 2N ) log a Mlog a N ,则M的值为()A 、1NB 、4C 、1D 、 4 或 1413 、 已 知 x 2 y 2 1, x0, y 0 , 且 log a (1 x) m,log a n,则 log a y 等 于1 x()A 、 m nB 、 m nC 、 1m nD 、 1m n224、如果方程 lg 2 x (lg5lg 7)lgx lg5 glg 7 0 的两根是 ,,则 g的值是()A 、 lg5 glg 7B 、 lg35C 、 35D 、13515、已知 log 7[log 3 (log 2 x)] 0,那么 x2等于( )A 、1B 、13 C 、1D 、1322 2336、函数 ylg2 1 的图像关于()1 xA 、 x 轴对称B 、 y 轴对称C 、原点对称D 、直线 yx 对称7、函数 ylog (2 x 1) 3x2 的定义域是()A 、 2,1 U 1,B 、 1,1 U 1,32C 、 2,D 、 1,328、函数 ylog 1 (x 2 6x17) 的值域是()2A 、 RB 、 8,C 、, 3D 、 3,9、若 log m 9 log n 9 0 ,那么 m, n 满足的条件是( )A 、 m n 1B 、 n m 1C 、 0 n m 1D 、 0 m n 110、 log a 2 1,则 a 的取值范围是()3A 、 0, 2U 1,B 、 2,C 、 2,1D 、 0, 2U 2,3333 311、下列函数中,在 0,2 上为增函数的是()A 、 ylog 1 ( x1)B 、 y log 2 x 2 12C 、 ylog 2 1D 、 ylog 1 ( x 2 4x 5)x212、已知 g( x) log a x+1 ( a 0且a 1) 在 10, 上有 g( x)0 ,则 f ( x)a x 1 是( )A 、在 ,0上是增加的 B 、在 ,0 上是减少的C 、在, 1 上是增加的D 、在,0 上是减少的二、填空题13、若 log a 2 m,log a 3 n, a 2 m n 。

新高考数学复习考点知识提升专题训练30---对数函数的性质及应用

新高考数学复习考点知识提升专题训练30---对数函数的性质及应用

新高考数学复习考点知识提升专题训练(三十) 对数函数的性质及应用(一)基础落实1.(多选)若log a 2<log b 2<0,则下列结论正确的是( ) A .0<b <1 B .0<a <1 C .a >b D .b >a >1解析:选ABC 因为log a 2<0,log b 2<0, 所以0<a <1,0<b <1, 又log a 2<log b 2,所以a >b . 2.若集合A ={}x |3x 2+x -2≤0,则A ∩B =( )A.⎣⎡⎦⎤-1,23B.⎣⎡⎦⎤23,1 C.⎝⎛⎦⎤12,1D.⎝⎛⎦⎤12,23解析:选D A ={}x |3x 2+x -2≤0=⎩⎨⎧⎭⎬⎫x ⎪⎪-1≤x ≤23, B ={x |log 2(2x -1)≤0}={x |0<2x -1≤1}=⎩⎨⎧⎭⎬⎫x ⎪⎪12<x ≤1, ∴A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪12<x ≤23. 3.已知函数y =log a (2-ax )在(-1,1)上是x 的减函数,则a 的取值范围是( ) A .(0,2) B .(1,2) C .(1,2] D .[2,+∞)解析:选C4.已知a =log 23,b =log 2e ,c =ln 2,则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .b >a >c D .a >b >c解析:选D 因为函数y =log 2x ,y =ln x 在定义域上单调递增,又3>e >2,所以log 23>log 2e >log 22=1,所以a >b >1,ln e >ln 2,所以c <1,所以a >b >c .5.(多选)对于函数f (x )=lg ⎝⎛⎭⎫1|x -2|+1,下列说法正确的有( )A .f (x +2)是偶函数B .f (x +2)是奇函数C .f (x )在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数D .f (x )没有最小值解析:选AD 对A 、B ,因为f (x )=lg ⎝ ⎛⎭⎪⎫1|x -2|+1,所以f (x +2)=lg ⎝⎛⎭⎫1|x |+1,又f (-x +2)=lg ⎝ ⎛⎭⎪⎫1|-x |+1=lg ⎝⎛⎭⎫1|x |+1, 故f (x +2)为偶函数,故A 正确,B 错误. 对C ,因为f (x )=当x ∈(2,+∞)时,因为y =1x -2在x ∈(2,+∞)为减函数,故y =1x -2+1为减函数,所以y =lg ⎝ ⎛⎭⎪⎫1x -2+1在区间(2,+∞)为减函数.故C 错误. 对D ,因为当x ∈(2,+∞)时,y =lg ⎝ ⎛⎭⎪⎫1x -2+1为减函数.故当x →+∞时,y →0.故f (x )没有最小值.故D 正确. 6.已知a =e-0.3,b =log 20.6,c =log 3π,则a ,b ,c 从大到小的顺序是________.解析:因为0<e -0.3<e 0=1,log 20.6<log 21=0,log 3π>log 33=1,所以c >a >b . 答案:c >a >b7.设0<a <1,函数f (x )=log a (2a x -2),则使得f (x )<0的x 的取值范围为________.解析:由于y =log a x (0<a <1)在(0,+∞)上为减函数,则2a x -2>1,即a x >32.由于0<a <1,可得x <log a 32.答案:⎝⎛⎭⎫-∞,log a 32 8.函数f (x )=ln(x +2)+ln(4-x )的单调递减区间是________.解析:由得-2<x <4,因此函数f (x )的定义域为(-2,4).f (x )=ln(x +2)+ln(4-x )=ln(-x 2+2x +8) =ln[-(x -1)2+9], 设u =-(x -1)2+9, 又y =ln u 是增函数,u =-(x -1)2+9在(1,4)上是减函数, 因此f (x )的单调递减区间是(1,4). 答案:(1,4)9.比较下列各组值的大小:(1)log 230.5,log 230.6;(2)log 1.51.6,log 1.51.4; (3)log 0.57,log 0.67;(4)log 31.25,log 20.8.解:(1)因为函数y =log 23x 是(0,+∞)上的减函数,且0.5<0.6,所以log 230.5>log 230.6.(2)因为函数y =log 1.5x 是(0,+∞)上的增函数,且1.6>1.4, 所以log 1.51.6>log 1.51.4.(3)因为0>log 70.6>log 70.5,所以1log 70.6<1log 70.5, 即log 0.67<log 0.57.(4)因为log 31.25>log 31=0,log 20.8<log 21=0,所以log 31.25>log 20.8. 10.已知函数f (x )=log a (ax 2-x ). (1)若a =12,求f (x )的单调区间;(2)若f (x )在区间[2,4]上是增函数,求实数a 的取值范围. 解:(1)当a =12时,f (x )=log 12⎝⎛⎭⎫12x 2-x , 由12x 2-x >0,得x 2-2x >0,解得x <0或x >2, 所以函数的定义域为(-∞,0)∪(2,+∞),利用复合函数单调性可得函数的增区间为(-∞,0), 减区间为(2,+∞).(2)令g (x )=ax 2-x ,则函数g (x )的图象为开口向上,对称轴为x =12a的抛物线,①当0<a <1时,要使函数f (x )在区间[2,4]上是增函数,则g (x )=ax 2-x 在[2,4]上单调递减,且g (x )min =ax 2-x >0,②当a >1时,要使函数f (x )在区间[2,4]上是增函数,则g (x )=ax 2-x 在[2,4]上单调递增,且g (x )min =ax 2-x >0,综上可得,a >1.所以实数a 的取值范围为(1,+∞).(二)综合应用1.设函数则满足不等式f (x )+f ⎝⎛⎭⎫x -14>2的x 的取值范围是( ) A.⎝⎛⎭⎪⎫-23+2578,+∞B.⎝⎛⎦⎤78,1C.⎝⎛⎦⎤1,54D.⎝⎛⎭⎫78,+∞ 解析:选D 由已知f (x )是R 上的增函数, 当x >1时,f (x )>2,当x -14>1,即x >54,不等式显然成立,当x ≤1时,f (x )+f ⎝⎛⎭⎫x -14=4x -2+4⎝⎛⎭⎫x -14-2>2,x >78,所以78<x ≤1, 当1<x ≤54时,f (x )=log 2(x +3)>2,f ⎝⎛⎭⎫x -14=4⎝⎛⎭⎫x -14-2=4x -3>0,不等式f (x )+f ⎝⎛⎭⎫x -14>2成立,综上,满足不等式的x 的取值范围为⎝⎛⎭⎫78,+∞. 2.(多选)已知函数f (x )=log a (x +1),g (x )=log a (1-x )(a >0,且a ≠1),则( ) A .函数f (x )+g (x )的定义域为(-1,1) B .函数f (x )+g (x )的图象关于y 轴对称 C .函数f (x )+g (x )在定义域上有最小值0 D .函数f (x )-g (x )在区间(0,1)上是减函数解析:选AB ∵f (x )=log a (x +1),g (x )=log a (1-x )(a >0,且a ≠1), ∴f (x )+g (x )=log a (x +1)+log a (1-x ),由x +1>0且1-x >0得-1<x <1,故A 对;由f (-x )+g (-x )=log a (-x +1)+log a (1+x )=f (x )+g (x )得函数f (x )+g (x )是偶函数, 其图象关于y 轴对称,B 对;∵-1<x <1,∴f (x )+g (x )=log a (1-x 2),∵y =1-x 2在[0,1)上单调递减,由复合函数的单调性可知,当0<a <1时,函数f (x )+g (x )在[0,1)上单调递增,有最小值f (0)+g (0)=log a (1-0)=0;当a >1时,函数f (x )+g (x )在[0,1)上单调递减,无最小值,故C 错;∵f (x )-g (x )=log a (x +1)-log a (1-x ),当0<a <1时,f (x )=log a (x +1)在(0,1)上单调递减,g (x )=log a (1-x )在(0,1)上单调递增,函数f (x )-g (x )在(0,1)上单调递减;当a >1时,f (x )=log a (x +1)在(0,1)上单调递增, g (x )=log a (1-x )在(0,1)上单调递减,函数f (x )-g (x )在(0,1)上单调递增,D 错.故选A 、B.3.已知函数f (x )=|lg x |.若0<a <b ,且f (a )=f (b ),则a +2b 的取值范围是________.解析:因为f (a )=f (b ),所以|lg a |=|lg b |,又b >a >0,所以lg a <0,即a <1,lg b >0,即b >1,所以0<a <1<b ,|lg a |=-lg a ,|lg b |=lg b ,即lg a +lg b =lg(ab )=0,所以b =1a ,则a +2b =a +2a.令g (x )=x +2x ,由对勾函数的性质知函数g (x )在(0,1)上单调递减,所以g (a )>1+21=3,即a +2b的取值范围是(3,+∞).答案:(3,+∞)4.已知f (x )=log 12(x 2-ax -a ).(1)当a =-1时,求f (x )的单调区间及值域;(2)若f (x )在⎝⎛⎭⎫-∞,-12上为单调增函数,求实数a 的取值范围. 解:(1)当a =-1时,f (x )=log 12(x 2+x +1). ∵x 2+x +1=⎝⎛⎭⎫x +122+34≥34, ∴log 12 (x 2+x +1)≤log 1234=2-log 23,∴f (x )的值域为(-∞,2-log 23]. ∵y =x 2+x +1在⎝⎛⎦⎤-∞,-12上递减, 在⎝⎛⎭⎫-12,+∞上递增,y =log 12x 在(0,+∞)上递减,∴f (x )的单调递增区间为⎝⎛⎦⎤-∞,-12, 单调递减区间为⎝⎛⎭⎫-12,+∞.(2)令u (x )=x 2-ax -a =⎝⎛⎭⎫x -a 22-a24-a , ∵f (x )在⎝⎛⎭⎫-∞,-12上为单调增函数, 又y =log 12u (x )为单调减函数,∴u (x )在⎝⎛⎭⎫-∞,-12上为单调减函数,且u (x )>0在⎝⎛⎭⎫-∞,-12上恒成立.解得-1≤a ≤12.故实数a 的取值范围是⎣⎡⎦⎤-1,12. 5.已知函数f (x 2-1)=log mx 22-x 2(m >0,且m ≠1). (1)判断f (x )的奇偶性;(2)解关于x 的不等式f (x )≥log m (3x +1). 解:(1)x +11-x >0⇒(x +1)(1-x )>0⇒-1<x <1.f (x 2-1)=log mx 22-x 2(m >0,且m ≠1), 设x 2-1=t ,则f (t )=log mt +11-t(-1<t <1), 所以f (x )=log m x +11-x (-1<x <1),f (-x )=log m -x +11+x =log m ⎝ ⎛⎭⎪⎫x +11-x -1=-f (x ),故函数f (x )为奇函数. (2)3x +1>0⇒x >-13.不等式f (x )≥log m (3x +1),即f (x )=log m x +11-x≥log m (3x +1)⎝⎛⎭⎫-13<x <1.当m >1时:x +11-x ≥3x +1且-13<x <1,解得x ∈⎝⎛⎦⎤-13,0∪⎣⎡⎭⎫13,1. 当0<m <1时:x +11-x ≤3x +1且-13<x <1,解得x ∈⎣⎡⎦⎤0,13. 综上所述:当m >1时,解集为⎝⎛⎦⎤-13,0∪⎣⎡⎭⎫13,1; 当0<m <1时,解集为⎣⎡⎦⎤0,13.(三)创新发展(多选)某学校为了加强学生数学核心素养的培养,锻炼学生自主探究学习的能力,他们以函数f (x )=lg1-x1+x为基本素材,研究该函数的相关性质,取得部分研究成果如下:其中研究成果正确的是( ) A .同学甲发现:函数的定义域为(-1,1),且f (x )是偶函数 B .同学乙发现:对于任意的x ∈(-1,1),都有f ⎝⎛⎭⎫2xx 2+1=2f (x )C .同学丙发现:对于任意的a ,b ∈(-1,1),都有f (a )+f (b )=f ⎝⎛⎭⎪⎫a +b 1+abD .同学丁发现:对于函数定义域内任意两个不同的实数x 1,x 2,总满足解析:选BC 对A ,f (x )=lg 1-x 1+x 定义域为1-x1+x >0⇒(1-x )(1+x )>0,解得x ∈(-1,1).又f (-x )=lg 1+x 1-x =-lg 1-x 1+x =-f (x ),故f (x )=lg 1-x1+x为奇函数.故A 错误.对 B ,f ⎝ ⎛⎭⎪⎫2x x 2+1=lg 1-2x x 2+11+2x x 2+1=lg x 2-2x +1x 2+2x +1==2lg 1-x 1+x=2f (x ),又x ∈(-1,1).故B 正确. 对C ,f (a )+f (b )=lg 1-a 1+a +lg 1-b1+b =f ⎝ ⎛⎭⎪⎫a +b 1+ab =lg 1-a +b1+ab 1+a +b 1+ab==故f (a )+f (b )=f ⎝⎛⎭⎪⎫a +b 1+ab 成立.故C 正确. 对D ,f (0)=lg 1-01+0=0,f ⎝⎛⎭⎫12=lg 1-121+12=lg 13<0,。

对数函数及其性质经典练习题之基础训练

对数函数及其性质经典练习题之基础训练

对数函数及其性质1.函数<x)=lg(χ-l)+∙√H的定义域为( )A.(1,4]B.(1,4)C.[1,4]D.[1,4)2.函数y=亩log2∣x∣的大致图象是()3.若log∙2<1.则实数。

的取值范围是()A.(1,2)B.(0,1)U(2,+∞)C.(0,DU(1.2)D.(0,1)4.设α=log32,b=Iog6-,C=IogS6,贝∣J( )2A.a<c<bB.h<c<a C∙a<b<c D.b<a<c5.已知0>0且αWl,则函数y=0t与y=log rt(一χ)的图象可能是()6.函数y=log2x在[1,2]上的值域是()A.RB.[0,+∞)C.(一8,1]D.[0,1]7.函数卜=[10号(;1—1)的定义域是.8.若函数yω=logd(0<4<l)在区间[α,2α]上的最大值是最小值的3倍,则a的值为14A.O<α<b<1B.O<b<a<1C.a>b>∖D.b>a>∖15己知函数Ar)=21ogU的值域为则函数Ar)的定义域是()2A.咨,√2]B.[-1,1]C.[1,2]D.(-8,^]U[√2,+∞)5.若函数∕tr)="+log”(x+l)在[0,1]上的最大值和最小值之和为m则。

的值为()A.;B.∣C.2D.46.函数y=log√x+2)+3(α>0且α≠l)的图象过定点.7.函数丁=1。

8乂-%2+以+12)的单调递减区间是.38.将函数y=Iog?X的图象向左平移3个单位,得到图象C一再将C1向上平移2个单位得到图象C2,则C2的解析式为.9.若函数y=l0g2(左,+4人工+3)的定义域为比则4的取值范围是._ 1-X10.已知函^5f(x)=Iog a -------- (a>0且a≠1)1+X⑴求“W的定义域;i)判断f(χ的奇偶性并证明⑶当a>l时,求传(x)>0的X的取值范围。

对数函数图象及其性质知识点及例题解析

对数函数图象及其性质知识点及例题解析

对数函数的图象及性质例题解析题型一 判断对数函数【例1】函数f (x )=(a 2-a +1)log (a +1)x 是对数函数,则实数a =__________.解析:由a 2-a +1=1,解得a =0,1. 又a +1>0,且a +1≠1,∴a =1. 【例1-1】下列函数中是对数函数的为__________.(1)y =log a >0,且a ≠1);(2)y =log 2x +2;(3)y =8log 2(x +1); (4)y =log x 6(x >0,且x ≠1);(5)y =log 6x .解析:题型二【例2】如图所示的曲线是对数函数y =log a x 的图象.已知a ,43,35,110中取值,则相应曲线C 1,C 2,C 3,C 4的a 值依次为( )A ,43,35,110 B 43,110,35C .43,35,110D .43110,35解析:由底数对对数函数图象的影响这一性质可知,C 4的底数<C 3的底数<C 2的底数<C 1的底数.故相应于曲线C 1,C 2,C 3,C 4,43,35,110.答案:A 点技巧 作直线y =1,它与各曲线的交点的横坐标就是各对数的底数,由此判断各底数的大小.题型三 对数型函数的定义域的求解(1)对数函数的定义域为(0,+∞).(2)在求对数型函数的定义域时,要考虑到真数大于0,底数大于0,且不等于1. 若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义.(3)求函数的定义域应满足以下原则: ①分式中分母不等于零;②偶次根式中被开方数大于或等于零; ③指数为零的幂的底数不等于零; ④对数的底数大于零且不等于1;⑤对数的真数大于零,如果在一个函数中数条并存,求交集.【例3】求下列函数的定义域.(1)y =log 5(1-x ); (2)y =log (2x -1)(5x -4);(3)y =.分析:利用对数函数y =log a x (a >0,且a ≠1)的定义求解.解:(1)要使函数有意义,则1-x >0,解得x <1,故函数y =log 5(1-x )的定义域是{x |x <1}.(2) 要使函数有意义,则54>0,21>0,211,x x x -⎧⎪-⎨⎪-≠⎩解得x >45且x ≠1,故函数y =log (2x -1)(5x -4)的定义域是4,15⎛⎫⎪⎝⎭(1,+∞). (3)要使函数有意义,则0.5430,log (43)0,x x ->⎧⎨-≥⎩解得34<x ≤1,故函数y =的定义域是3<14x x ⎧⎫≤⎨⎬⎩⎭.题型四 对数型函数的值域的求解方法一、充分利用函数的单调性和图象是求函数值域的常用方法.方法二、对于形如y =log a f (x )(a >0,且a ≠1)的复合函数,其值域的求解步骤如下:①分解成y =log a u ,u =f (x )这两个函数; ②求f (x )的定义域; ③求u 的取值范围;④利用y =log a u 的单调性求解.方法三、对于函数y =f (log a x )(a >0,且a ≠1),可利用换元法,设log a x =t ,则函数f (t )(t ∈R)的值域就是函数f (log a x )(a >0,且a ≠1)的值域.注意:(1)若对数函数的底数是含字母的代数式(或单独一个字母),要考查其单调性,就必须对底数进行分类讨论.(2)求对数函数的值域时,一定要注意定义域对它的影响.当对数函数中含有参数时,有时需讨论参数的取值范围.【例4】求下列函数的值域:(1)y =log 2(x 2+4);(2)y =212log (32)x x +-.解:(1)∵x 2+4≥4,∴log 2(x 2+4)≥log 24=2.∴函数y =log 2(x 2+4)的值域为[2,+∞).(2)设u =3+2x -x 2,则u =-(x -1)2+4≤4.∵u >0,∴0<u ≤4. 又y =12log u 在(0,+∞)上为减函数,∴12log u ≥-2.∴函数y =212log (32)x x +-的值域为[-2,+∞).【例4-1】已知f (x )=2+log 3x ,x ∈[1,3],求y =[f (x )]2+f (x 2)的最大值及相应的x 的值.分析:先确定y =[f (x )]2+f (x 2)的定义域,然后转化成关于log 3x 的一个一元二次函数,利用一元二次函数求最值.解:∵f (x )=2+log 3x ,x ∈[1,3],∴y =[f (x )]2+f (x 2)=(log 3x )2+6log 3x +6且定义域为[1,3].令t =log 3x (x [1,3]).∵t =log 3x 在区间[1,3]上是增函数,∴0≤t ≤1.从而要求y =[f (x )]2+f (x 2)在区间[1,3]上的最大值,只需求y =t 2+6t +6在区间[0,1]上的最大值即可.∵y =t 2+6t +6在[-3,+∞)上是增函数,∴当t =1,即x =3时,y max =1+6+6=13.综上可知,当x =3时,y =[f (x )]2+f (x 2)的最大值为13.题型五 对数函数的图象变换及定点问题(1)与对数函数有关的函数图象过定点问题对数函数y =log a x (a >0,且a ≠1)过定点(1,0),即对任意的a >0,且a ≠1都有log a 1=0.这是解决与对数函数有关的函数图象问题的关键.对于函数y =b +k log a f (x )(k ,b 均为常数,且k ≠0),令f (x )=1,解方程得x =m ,则该函数恒过定点(m ,b ).方程f (x )=0的解的个数等于该函数图象恒过定点的个数.(2)对数函数的图象变换的问题①函数y =log a x (a >0,且a ≠1)――----------------→向左(b >0)或向右(b <0)平移|b |个单位长度函数y =log a (x +b )(a >0,且a ≠1)②函数y =log a x (a >0,且a ≠1)――---------------→向上(b >0)或向下(b <0)平移|b |个单位长度函数y =log a x +b (a >0,且a ≠1) ③函数y =log a x (a >0,且a ≠1)―----------------―→当x >0时,两函数图象相同当x <0时,将x >0时的图象关于y 轴对称函数y =log a |x |(a >0,且a ≠1)④函数y =log a x (a >0,且a ≠1)――----------------------------------------→保留x 轴上方的图象同时将x 轴下方的图象作关于x 轴的对称变换函数y =|log a x |(a >0,且a ≠1)【例5】若函数y =log a (x +b )+c (a >0,且a ≠1)的图象恒过定点(3,2),则实数b ,c 的值分别为__________.解析:∵函数的图象恒过定点(3,2),∴将(3,2)代入y =log a (x +b )+c (a >0,且a ≠1),得2=log a (3+b )+c . 又∵当a >0,且a ≠1时,log a 1=0恒成立, ∴c =2.∴log a (3+b )=0. ∴b =-2.答案:-2,2【例5-1】作出函数y =|log 2(x +1)|+2的图象. 解:(第一步)作函数y =log 2x 的图象,如图①;(第二步)将函数y =log 2x 的图象沿x 轴向左平移1个单位长度,得函数y =log 2(x +1)的图象,如图②;(第三步)将函数y =log 2(x +1)在x 轴下方的图象作关于x 轴的对称变换,得函数y =|log 2(x +1)|的图象,如图③;(第四步)将函数y =|log 2(x +1)|的图象,沿y 轴方向向上平移2个单位长度,便得到所求函数的图象,如图④.题型六利用对数函数的单调性比较大小两个对数式的大小比较有以下几种情况:(1)底数相同,真数不同.(2)底数不同,真数相同.(3)底数不同,真数也不同.(4)对于多个对数式的大小比较注意:对于含有参数的两个对数值的大小比较,要注意对底数是否大于1进行分类讨论.【例6】比较下列各组中两个值的大小.(1)log31.9,log32;(2)log23,log0.32;(3)log aπ,log a3.141.分析:(1)构造函数y=log3x,利用其单调性比较;(2)分别比较与0的大小;(3)分类讨论底数的取值范围.解:(1)因为函数y=log3x在(0,+∞)上是增函数,所以f(1.9)<f(2).所以log31.9<log32.(2)因为log23>log21=0,log0.32<log0.31=0,所以log23>log0.32.(3)当a>1时,函数y=log a x在定义域上是增函数,则有log aπ>log a3.141;当0<a<1时,函数y=log a x在定义域上是减函数,则有log aπ<log a3.141.综上所得,当a>1时,log aπ>log a3.141;当0<a<1时,log aπ<log a3.141.【例6-1】若a2>b>a>1,试比较loga ab,logbba,log b a,log a b的大小.分析:利用对数函数的单调性或图象进行判断.解:∵b>a>1,∴0<ab <1.∴logaab<0,log a b>log a a=1,log b1<log b a<log b b,即0<log b a <1.由于1<b a <b ,∴0<log b b a <1.由log b a -log b ba=2log b a b ,∵a 2>b >1,∴2a b >1.∴2log b a b >0,即log b a >log b b a.∴log a b >log b a >log b b a >log a ab.题型七 利用对数函数的单调性解不等式常见的对数不等式有三种类型:①形如log a f (x )>log a g (x )的不等式,借助函数y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论.②形如log a f (x )>b 的不等式,应将b 化为以a 为对数的对数式的形式,再借助函数y =log a x 的单调性求解.③形如log a f (x )>log b g (x )的不等式,基本方法是将不等式两边化为同底的两个对数值,利用对数函数的单调性来脱去对数符号,同时应保证真数大于零,取交集作为不等式的解集.④形如f (log a x )>0的不等式,可用换元法(令t =log a x ),先解f (t )>0,得到t 的取值范围.然后再解x 的范围.【例7】解下列不等式:(1)1177log log (4)x x >-; (2)log x (2x +1)>log x (3-x ).解:(1)由已知,得>0,4>0,<4,x x x x ⎧⎪-⎨⎪-⎩解得0<x <2.故原不等式的解集是{x |0<x <2}.(2)当x >1时,有21>3,21>0,3>0,x x x x +-⎧⎪+⎨⎪-⎩解得1<x <3;当0<x <1时,有21<3,21>0,3>0,x x x x +-⎧⎪+⎨⎪-⎩解得0<x <23.所以原不等式的解集是20<<1<<33x x x ⎧⎫⎨⎬⎩⎭或. 【例7-1】若22log 3a ⎛⎫ ⎪⎝⎭<1,求a 的取值范围.解:∵22log 3a ⎛⎫ ⎪⎝⎭<1,∴-1<2log 3a <1,即12log log log 3a a a a a <<.(1)∵当a >1时,y =log a x 为增函数,∴123a a <<.∴a >32,结合a >1,可知a >32. (2)∵当0<a <1时,y =log a x 为减函数,∴12>>3a a .∴a <23,结合0<a <1,知0<a <23.∴a 的取值范围是230<<>32a a a ⎧⎫⎨⎬⎩⎭,或.题型八 对数型函数单调性的讨论(1)解决与对数函数有关的函数的单调性问题的关键:一是看底数是否大于1,当底数未明确给出时,则应对底数a 是否大于1进行讨论; 二是运用复合法来判断其单调性;三是注意其定义域.(2)关于形如y =log a f (x )一类函数的单调性,有以下结论:函数y =log a f (x )的单调性与u =f (x )(f (x )>0)的单调性,当a >1时相同,当0<a <1时相反.【例8】求函数y =log 2(3-2x )的单调区间.分析:首先确定函数的定义域,函数y =log 2(3-2x )是由对数函数y =log 2u 和一次函数u =3-2x 复合而成,求其单调区间或值域时,应从函数u =3-2x 的单调性、值域入手,并结合函数y =log 2u 的单调性考虑.解:由3-2x >0,解得函数y =log 2(3-2x )的定义域是⎝⎛⎭⎪⎫-∞,32.设u =3-2x ,x ∈⎝⎛⎭⎪⎫-∞,32,∵u =3-2x 在⎝⎛⎭⎪⎫-∞,32上是减函数,且y =log 2u 在(0,+∞)上单调递增,∴函数y =log 2(3-2x )在⎝⎛⎭⎪⎫-∞,32上是减函数.∴函数y =log 2(3-2x )的单调减区间是⎝⎛⎭⎪⎫-∞,32.【例8-1】求函数y =log a (a -a x )的单调区间.解:(1)若a >1,则函数y =log a t 递增,且函数t =a -a x 递减. 又∵a -a x >0,即a x <a ,∴x <1.∴函数y =log a (a -a x )在(-∞,1)上递减.(2)若0<a <1,则函数y =log a t 递减,且函数t =a -a x 递增. 又∵a -a x >0,即a x <a ,∴x >1.∴函数y =log a (a -a x )在(1,+∞)上递减.综上所述,函数y =log a (a -a x )在其定义域上递减. 析规律 判断函数y =log a f (x )的单调性的方法函数y =log a f (x )可看成是y =log a u 与u =f (x )两个简单函数复合而成的,由复合函数单调性“同增异减”的规律即可判断.需特别注意的是,在求复合函数的单调性时,首先要考虑函数的定义域,即“定义域优先”.【例8-2】已知f (x )=12log (x 2-ax -a )在1,2⎛⎫-∞- ⎪⎝⎭上是增函数,求a 的取值范围.解:1,2⎛⎫-∞- ⎪⎝⎭是函数f (x )的递增区间,说明1,2⎛⎫-∞- ⎪⎝⎭是函数u =x 2-ax -a 的递减区间,由于是对数函数,还需保证真数大于0. 令u (x )=x 2-ax -a ,∵f (x )=12log ()u x 在1,2⎛⎫-∞-⎪⎝⎭上是增函数, ∴u (x )在1,2⎛⎫-∞-⎪⎝⎭上是减函数,且u (x )>0在1,2⎛⎫-∞- ⎪⎝⎭上恒成立. ∴1,2210,2a u ⎧≥-⎪⎪⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩即1,10.42a a a ≥-⎧⎪⎨+-≥⎪⎩∴-1≤a ≤12.∴满足条件的a 的取值范围是112a a ⎧⎫-≤≤⎨⎬⎩⎭.题型九 对数型函数的奇偶性问题判断与对数函数有关的函数奇偶性的步骤是:(1)求函数的定义域,当定义域关于原点不对称时,则此函数既不是奇函数也不是偶函数,当定义域关于原点对称时,判断f (-x )与f (x )或-f (x )是否相等;(2)当f (-x )=f (x )时,此函数是偶函数;当f (-x )=-f (x )时,此函数是奇函数;(3)当f (-x )=f (x )且f (-x )=-f (x )时,此函数既是奇函数又是偶函数;(4)当f (-x )≠f (x )且f (-x )≠-f (x )时,此函数既不是奇函数也不是偶函数.【例9】判断函数f (x )=log )a x (x ∈R ,a >0,且a ≠1)的奇偶性. 解:∵f (-x )+f (x )==log )a x -+log )a x )=log a (x 2+1-x 2)=log a 1=0,∴f (-x )=-f (x ).∴f (x )为奇函数.【例9-1】已知函数f (x )=1log 1a xx+-(a >0,且a ≠1).(1)求函数f (x )的定义域; (2)判断函数f (x )的奇偶性;(3)求使f (x )>0的x 的取值范围.分析:对于第(2)问,依据函数奇偶性的定义证明即可.对于第(3)问,利用函数的单调性去掉对数符号,解出不等式.解:(1)由11xx+->0,得-1<x<1,故函数f(x)的定义域为(-1,1).(2)∵f(-x)=1log1axx-+=1log1axx+--=-f(x),又由(1)知函数f(x)的定义域关于原点对称,∴函数f(x)是奇函数.(3)当a>1时,由1log1axx+->0=log a1,得11xx+->1,解得0<x<1;当0<a<1时,由1log1axx+->0=log a1,得0<11xx+-<1,解得-1<x<0.故当a>1时,x的取值范围是{x|0<x<1};当0<a<1时,x的取值范围是{x|-1<x<0}.题型十反函数【例10】若函数y=f(x)是函数y=a x(a>0,且a≠1)的反函数,且f(2)=1,则f(x)=( )A.log2x B.12xC.12log x D.2x-2解析:因为函数y=a x(a>0,且a≠1)的反函数是f(x)=log a x,又f(2)=1,即log a2=1,所以a=2.故f(x)=log2x.【例10-1】函数f(x)=3x(0<x≤2)的反函数的定义域为( )A.(0,+∞) B.(1,9] C.(0,1) D.[9,+∞)解析:∵ 0<x≤2,∴1<3x≤9,即函数f(x)的值域为(1,9].故函数f(x)的反函数的定义域为(1,9].【例10-2】若函数y=f(x)的反函数图象过点(1,5),则函数y=f(x)的图象必过点( )A.(5,1) B.(1,5) C.(1,1) D.(5,5)解析:由于原函数与反函数的图象关于直线y=x对称,而点(1,5)关于直线y=x的对称点为(5,1),所以函数y=f(x)的图象必经过点(5,1).【例10-3】已知f(e x)=x,则f(5)=( )A.e5B.5e C.ln 5 D.log5e解析:(方法一)令t=e x,则x=ln t,所以f(t)=ln t,即f(x)=ln x .所以f (5)=ln 5.(方法二)令e x =5,则x =ln 5,所以f (5)=ln 5.【例10-5】已知对数函数f (x )的图象经过点1,29⎛⎫⎪⎝⎭,试求f (3)的值. 分析:设出函数f (x )的解析式,利用待定系数法即可求出.解:设f (x )=log a x (a >0,且a ≠1),∵对数函数f (x )的图象经过点1,29⎛⎫ ⎪⎝⎭,∴11log 299a f ⎛⎫== ⎪⎝⎭.∴a 2=19.∴a =11222111933⎡⎤⎛⎫⎛⎫==⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦.∴f (x )=13log x .∴f (3)=111331log 3log 3-⎛⎫= ⎪⎝⎭=-1.【例10-6】已知对数函数f (x )的反函数的图象过点(2,9),且f (b )=12,试求b 的值.解:设f (x )=log a x (a >0,且a ≠1),则它的反函数为y =a x (a>0,且a ≠1),由条件知a 2=9=32,从而a =3.于是f (x )=log 3x ,则f (b )=log 3b =12,解得b=123=。

对数函数常见题型例析(5种)

对数函数常见题型例析(5种)

对数函数常见题型例析对数函数是重要的基本初等函数之一,在近几年的高考中渐渐走红,频频出现在高考试卷与模拟试卷中,主要考查对数函数的图象和性质,本文就对数函数的常见题型归纳如下,供大家参考. 1.求定义域 例1函数3)5lg()(--=x x x f 的定义域为_____.解:要使)(x f 有意义,则⎩⎨⎧≠->-0305x x ,解得5<x ,且3≠x ,∴)(x f 的定义域为5|{<x x ,且}3≠x .点评:求对数定义域切记真数大于零,底数大于零且不等于1,常用方法是列不等式组, 注意求出的定义域要写成集合或区间的形式. 2.比较大小例2设,,a b c 均为正数,且,log221a a=,log)21(21b b = c c2log)21(=,则( )A a b c <<B c b a <<C c a b <<D b a c << 解:由a a21log2=可知0>a 12>∴a ,210,1log21<<∴>a a ;由b b21log)21(=可知1)21(0,0<<∴>b b ,即1log021<<b ,121<<b ;由c c2log )21(=可知21,1log0,02<<∴<<∴>c c c ,从而c b a <<,故选A.点评:本题的关键就是抓住“真数大于零”这一隐含条件,利用指、对函数的性质得出结论. 3.解对数方程例3解方程:0)2(log )12(log 244=--+x x ;解:由已知得)2(log )12(log 244-=+x x ,则2122-=+x x ,即0322=--x x ,解得3=x 或1-=x ,当1-=x 时,对数真数小于零,舍去,故方程的根是3=x . 点评:解对数方程要注意验根,即保证对数的真数大于零. 4.最值问题例4设1a >,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之差为12,则a =( )B 2C 22D 4解:设1a >,函数()log a f x x =在区间[,2]a a 上递增,最大值和最小值 分别为a a aalog,2log,依题意知212loglog2log==-aaaa a ,4=∴a ,故选D.点评:最值问题是高考考查对函数性质的热点题型,解决的关键是根据对数函数单调性求解. 5.求参数范围 例5已知132log<a,则a 的取值范围是( )A ),1()32,0(+∞ B ),32(+∞ C )1,32( D ),32()32,0(+∞解:当10<<a 时,,log132log a aa=<32<∴a ,即320<<a ;当1>a 时,,log132loga aa=<32>∴a ,即1>a .综上所述,a 的取值范围是320<<a 或1>a ,故选A.点评:这类问题一般是根据对数函数的单调性,分10<<a 和1>a 两种情况讨论.。

指数函数与对数函数的性质练习题

指数函数与对数函数的性质练习题

指数函数与对数函数的性质练习题1. 指数函数与对数函数是数学中常见且重要的函数类型之一。

它们在数学、科学和经济等领域中有着广泛的应用。

在本文中,我们将通过练习题来探讨指数函数与对数函数的性质。

2. 练习题一:指数函数的基本性质(1)已知指数函数 f(x) = a^x,其中 a > 0 且a ≠ 1。

若 f(2) = 16,求a 的值。

解析:根据题意可得 f(2) = a^2 = 16。

因此,a = √16 = 4。

(2)已知指数函数 f(x) = a^x,其中 a > 0 且a ≠ 1。

若 f(a) = 64,求x 的值。

解析:根据题意可得 f(a) = a^a = 64。

因此,a = √64 = 8。

3. 练习题二:指数函数的特殊性质(1)已知指数函数 f(x) = 2^x,求 f(0) 和f(−1) 的值。

解析:将 x = 0 和 x = -1 分别代入指数函数 f(x) = 2^x,可得 f(0) = 2^0 = 1,f(-1) = 2^(-1) = 1/2。

(2)已知指数函数 f(x) = 3^x,求 f(1/2) 和 f(-2) 的值。

解析:将 x = 1/2 和 x = -2 分别代入指数函数 f(x) = 3^x,可得 f(1/2) = 3^(1/2) = √3,f(-2) = 3^(-2) = 1/9。

4. 练习题三:对数函数的基本性质(1)已知对数函数 g(x) = log_a(x),其中 a > 0 且a ≠ 1。

若 g(1) = 0,求 a 的值。

解析:根据题意可得 g(1) = log_a(1) = 0。

因此,1 = a^0 = 1,所以 a = 1。

(2)已知对数函数 g(x) = log_2(x),求 g(2) 和 g(4) 的值。

解析:将 x = 2 和 x = 4 分别代入对数函数 g(x) = log_2(x),可得 g(2) = log_2(2) = 1,g(4) = log_2(4) = 2。

指数函数与对数函数的性质练习题

指数函数与对数函数的性质练习题

指数函数与对数函数的性质练习题指数函数与对数函数是数学中常见且重要的函数类型之一。

它们具有一些特殊的性质和规律,需要我们通过练习题来深入理解和掌握。

本文将通过一系列的练习题来帮助读者加深对指数函数和对数函数的性质的认识。

练习题1:简答题1. 指数函数和对数函数的基本定义是什么?2. 指数函数和对数函数之间有何关系?练习题2:选择题1. 下列函数中,属于指数函数的是:A. y = x^2B. y = 2^xC. y = 1/xD. y = sin(x)2. 下列函数中,属于对数函数的是:A. y = sqrt(x)B. y = x^3C. y = log(x)D. y = e^x练习题3:计算题1. 计算指数函数 y = 2^x 在 x = 3 时的取值。

2. 计算对数函数 y = log2(x) 在 x = 8 时的取值。

练习题4:填空题1. 若指数函数 y = a^x 满足 a > 0 且a ≠ 1,那么指数函数的定义域为_______。

2. 若对数函数 y = loga(x) 满足 a > 0 且a ≠ 1,那么对数函数的定义域为 _______。

练习题5:应用题1. 一笔投资初始本金为 5000 元,年利率为 5%,按照复利计算,计算 10 年后本金的总额是多少?2. 某物质的衰减符合指数函数规律,经过 6 个小时,其剩余量为初始量的 25%,求该物质的衰减速度。

练习题6:解答题1. 指数函数 y = a^x 的图像上是否有对称轴?为什么?2. 对数函数 y = loga(x) 的图像上是否有对称轴?为什么?通过以上一系列的练习题,我们可以加深对指数函数和对数函数的性质的理解。

指数函数和对数函数在数学中应用广泛,不仅在代数、微积分等数学分支中有重要作用,也在自然科学等其他领域得到广泛应用。

希望读者通过练习题的学习,能够更好地掌握指数函数和对数函数的关键性质和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对数函数的基本性质基础题
1.函数)13lg(13)(2
++-=x x
x x f 的定义域为( ) A .(31-,1] B .(31-,1) C .[31,1] D .(3
1,1) 【答案】B .
【解析】
要使函数有意义,则必须满足10310
x x ->⎧⎨+>⎩,解得31-<x <1. 故选B . 2.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 的值为( )
A
B
C .14
D .12 【答案】A .
【解析】
令y =f (x ).∵0<a <1,所以f (x )单调递减,
∴y min =f (2a )=log a (2a )=1+log a 2,y max =f (a )=log a a =1.
又∵y max =3y min ,∴1=3(1+log a 2),
∴21og 23a =-,∴232a -=. ∴2
312a =
,∴32
12a ⎛⎫== ⎪⎝⎭. 3.函数21log (2)
y x =-的定义域是 ( ) A .(-∞,2) B .(2,+∞)
C .(2,3)∪(3,+∞)
D .(2,4)∪(4,+∞)
【答案】C .
【解析】
要使函数有意义应满足2
20log (2)0x x ->⎧⎨-≠⎩,,即221x x >⎧⎨-≠⎩,,解得x >2且x ≠3.故选C . 4.函数f (x )=lg|x |为( )
A .奇函数,在区间(0,+∞)上是减函数
B .奇函数,在区间(0,+∞)上是增函数
C .偶函数,在区间(-∞,0)上是增函数
D .偶函数,在区间(-∞,0)上是减函数
【答案】D .
【解析】
已知函数定义域为(-∞,0)∪(0,+∞),关于坐标原点对称,且f (-x )=lg|-x |=lg|x |=f (x ),所以它是偶函数.又当x >0时,f (x )=lg x 在区间(0,+∞)上是增函数.又f (x )为偶函数,所以f (x )=lg|x |在区间(-∞,0)上是减函数.故选D .
5.已知f (x )=2+log 3x ,1981x ⎡⎤∈⎢⎥⎣⎦
,,则f (x )的最小值为 ( ) A .-2 B .-3 C .-4 D .0
【答案】A .
【解析】
∵函数3()2log f x x =+在1981⎡⎤⎢⎥⎣⎦
,上是增函数,∴当181x =时f (x )取最小值,最小值为433112log 2log 32428181f -⎛⎫=+=+=-=- ⎪⎝⎭
.。

相关文档
最新文档