6气体火焰切割工艺及参数
(工艺技术)火焰气割工艺

火焰切割工艺标签:切割割嘴钢板氧气乙炔分类:乐业益友2009-02-05 21:45氧气切割厚度大于50mm的厚钢板一般采用火焰切割,也叫氧气切割。
一、火焰切割工艺:(1)根据切割钢板的厚度安装适当孔径的割嘴;(2)将氧气和燃气压力调至规定值;(3)用切割点火器点燃预热焰,接着慢慢打开预热氧气阀,调节火焰白心长度,使火焰成中性焰,预热起割点;(4)在切割起点上只用预热焰加热,割嘴垂直于钢板表面,火焰白心尖端距钢板表面1.5~2.5mm;(5)当起点达到燃烧温度(辉红色)时,打开切割氧气阀,瞬间就可进行切割;(6)在确认已割至钢板下表面后,就沿着切割线以适当的速度移动割嘴继续往前切割;(7)切割终了时,先关闭切割氧气阀,再关闭预热焰的氧气阀。
二、定尺切割定尺方式有碰球定尺和非在线定尺切割:(1) 碰球定尺即切割机定尺脉冲信号由定尺碰球发出,但由于钢坯表面的氧化皮的导电率差,尽管碰到了碰球,但不一定接触良好,为防止误切,系统利用拉矫机速度信号进行积分运算来计算坯长,并与定尺信号进行比较,确保定尺信号的准确性。
(2) 非在线定尺切割利用专门的非在线式铸坯长度测量装置,根据热坯热辐射的原理,通过探头锁定铸坯在导轨内的区域,当铸坯进入区域并占满整个区域后发出定尺信号,然后再给出剪切命令。
三、氧气切割的基本原理:氧气切割是利用气体火焰的热能将工件切割处预热到燃点后,喷出高速切割氧流,使金属燃烧并放出热量而实现切割的方法。
四、氧气切割过程:⑴预热气割开始时,利用气体火焰(氧乙炔焰或氧丙烷焰)将工件待切割处预热到该种金属材料的燃烧温度——燃点(对于碳钢约为1100~1150℃)。
⑵燃烧喷出高速切割氧流,使已达燃点的金属在氧流中激烈燃烧,生成氧化物。
⑶吹渣金属燃烧生成的氧化物被氧流吹掉,形成切口,使金属分离,完成切割过程。
五、氧气切割的三条件:金属材料要进行氧气切割应满足以下三个条件:1)金属燃烧生成氧化物的熔点应低于金属熔点,且流动性要好。
火焰切割工艺

数控火焰切割工艺气割精度是指被切割完的工作几何尺寸与其图纸尺寸对比的误差关系,切割质量是指工件切割断面的表面粗糙度、切口上边缘的熔化塌边程度、切口下边缘是否有挂渣和割缝宽度的均匀性等。
一、气割前的准备工作被切割金属的表面,应仔细地清除铁锈、尘垢或油污。
被切割件应垫平,以便于散放热量和排除熔渣。
决不能放在水泥地上切割,因为水泥地面遇高温后会崩裂。
切割前的具体要求如下。
①检查工作场地是否符合安全要求,割炬、氧气瓶、乙炔瓶(或乙炔发生器及回火防止器)、橡胶管、压力表等是否正常,将气割设备按操作规程连接好。
②切割前,首先将工件垫平,工件下面留出一定的间隙,以利于氧化铁渣的吹除。
切割时,为了防止操作者被飞溅的氧化铁渣烧伤,必要时可加挡板遮挡。
③将氧气调节到所需的压力。
对于射吸式割炬,应检查割炬是否有射吸能力。
检查的方法是:首先拔下乙炔进气软管并弯折起来,再打开乙炔阀门和预热氧阀门。
这时,将手指放在割炬的乙炔过气管接头上,如果手指感到有抽力并能吸附在乙炔进气管接头上,说明割炬有射吸能力,可以使用;反之,说明割炬不正常,不能使用,应检查修理。
④检查风线,方法是点燃火焰并将预热火焰调整适当。
然后打开切割氧气阀门,观察切割氧流(即风线)的形状,风线应为笔直、清晰的圆柱体并有适当的长度。
这样才能使工件切口表面光滑干净,宽窄一致。
如果风线不规则,应关闭所有的阀门,用通针或其他工具修整割嘴的内表面,使之光滑。
预热火焰的功率应根据板材厚度不同加以调整,火焰性质应采用中性焰。
二、钢板表面预处理钢板从钢铁厂经过一系列的中间环节到达切割车间,在这段时间里,钢板表面难免产生一层氧化皮。
再者,钢板在轧制过程中也产生一层氧化皮附着在钢板表面。
这些氧化皮熔点高,不容易燃烧和熔化,增加了预热时间,降低了切割速度;同时经过加热,氧化皮四处飞溅,极易对割嘴造成堵塞,降低了割嘴的使用寿命。
所以,在切割前,很有必要对钢板表面进行除锈预处理。
常用的方法是抛丸除锈,之后喷漆防锈。
气焊与气割

第四节电石和乙炔发生器(站)的 使用安全要求 一、电石的使用安全要求 (一)电石的物理化学性质及毒性 1、电石与水的化合作用 2、电石的分解速度 3、硅铁杂质 4、电石的毒性
(二)电石发生爆炸失火的原因 (三)对电石运输、储存和使用 的安全要求 1、电石的运输 2、电石的储存 3、电石的使用 二、乙炔发生器(站)的使用要 求
(一)乙炔发生器的种类和构造 (二)乙炔发生器着火爆炸的原因 和分类 (三)乙炔发生器的安全装置 阻火装置、防爆泄压装置和指示装 置。 1、回火防止器 2、泄压膜 3、安全阀
4、压力表 四、乙炔发生器安全使用要求 1、乙炔发生器的布置原则 2、使用前的准备工作 3、工作
能够进行氧乙炔切割的金属的五个 条件: 条件: (1)金属在氧气中的燃点应低于其 ) 熔点。 熔点。 (2)气割时金属氧化物的熔点应低 ) 于金属的熔点。 于金属的熔点。 (3)金属在切割氧流中的燃烧应是 ) 放热反应。 放热反应。 (4)金属的导热性不能太高。 )金属的导热性不能太高。 (5)阻碍气割的杂质要少。 )阻碍气割的杂质要少。
中性焰有三个显著的区域:焰芯、内焰 和外焰。 1、焰芯:白而亮,轮廓清晰。温度 800~1200 ℃ 。 2、内焰:内焰处在焰芯前2~4mm部位 燃烧最剧烈,温度最高,可达 3100~3150 ℃ 。火焰具有还原性。 3、外焰:外焰火焰进行第二阶段的燃烧, 生产CO2和水。温度为1200~2500 ℃。 中性焰应用最广泛,一般用于焊接碳素 钢、紫铜和低合金钢等。
二、气焊与气割的安全特点 气焊气割的主要危险是火灾与爆 炸。防火防爆是气焊气割的主要 任务。 任务。
第二节 *
气焊气割火焰及工艺 参数的选择
一、气焊气割火焰 (一)焊接切割的火焰分类 氧—乙炔焰具有很高的温度(约 3200℃),加热集中,是气焊气割中主 要采用的火焰。氧—乙炔焰根据氧和乙 炔混合比的不同,可分为中性焰、碳化 焰和氧化焰。 (二)中性焰
气割原理及安全注意事项

6、辅助工具 氧气丝刷
点火枪
护目镜
三、气割原理及条件
1、气割的原理和过程
气割是利用气体火焰的热能,将工件切割处预热到燃烧温度 后,喷出高速切割氧流,使其燃烧并放出热量,从而实现切割的
方法。
预热 用预热焰将待割金属加热到燃点
三个阶段 燃烧 喷射切割氧,使金属剧烈的燃烧
4、割嘴与焊件的倾斜角度
割嘴与焊件的倾斜角度,直接影 响切割速度和后拖量。当割嘴沿气割 相反方向倾斜一定角度时(后倾), 能使氧化物燃烧而产生的熔渣吹向切 割线的前缘,这样可充分利用燃烧反 应的热量来减少后拖量,从而促使切 割速度的提高。进行直线切割时,应 充分利用这一特性。割嘴与割件倾斜 角大小,主要根据割件厚度而定。
2、切割速度 切割速度与割件厚度和割嘴形状有关,割件越厚,切割速度越慢;
割件越薄,切割速度越快。速度太慢,会使切口边缘熔化;速度过 快,则会产生很大的后拖量(沟纹倾斜)或割不透。切割速度正确 与否,主要根据切口后拖量来判断。
后拖量:是指切割 面上切割氧流轨迹 的始点与终点在水 平方向的距离。
气割方向
输送气体的软管内壁或焊(割)炬内部的气体通道上 粘附了固体碳粒或其他物质
一、气割前清理
用钢丝刷等工具将试 件表面的铁锈、鳞皮和脏 物等仔细清理干净,然后 将割件用耐火砖垫空,便 于切割。
二、操作要点
姿势:双脚呈外八字形蹲在工件的一旁,右臂靠住右膝盖,左 臂悬空在两脚中间,以便移动割炬。右手握住割炬手柄,并以 右手的拇指和食指控制预热氧的阀门,便于调整预热火焰和当 回火时及时切断预热氧气。左手的拇指和食指握住切割氧气的 阀门,同时起掌握方向的作用,其余三指平稳地托住混合气管。 操作时上身不要弯得太低,呼吸要有节奏,眼睛应注视工件、 割嘴和割线。
气体火焰切割工艺及参数

气体火焰切割工艺及参数影响气割过程的主要参数影响气体火焰切割过程(包括切割速度和质量)的主要工艺因素有:①切割氧的纯度;②切割氧的流量、压力及氧流形状;③切割氧流的流速、动量和攻角;④预热火焰的功率;⑤被切割金属的成分、性能、表面状态及初始温度;⑥其他工艺因素。
其中切割氧流起着主导作用。
切割氧流既要使金属燃烧,又要把燃烧生成的氧化物从切口中吹掉。
因此,切割氧的纯度、流量、流速和氧流形状对气割质量和切割速度有重要的影响。
⑴切割氧的纯度氧气的纯度是影响气割过程和质量的重要因素。
氧气纯度差,不但切割速度大为降低、切割面粗糙、切口下缘沾渣,而且氧气消耗量的增加。
氧气纯度从99.5%降到98%,即下降1.5%,切割速度下降25%,而耗氧量增加50%。
一般认为,氧气纯度低于95%,就不能气割,要获得无粘渣的气割切口,氧气纯度需达到99.6%。
⑵切割氧流量切割厚度12mm钢板时氧气流量对切割速度的影响如图1所示。
由图可见,随着氧流量的增加,切割速度逐渐增大,切割速度提高,但超过某个界限值反而降低。
因此,对某一钢板厚度存在一个最佳氧流量值,此时不但切割质量最高,而且切割质量最好。
⑶切割氧压力随着切割氧压力的提高,氧流量相应增加,因此能够切割板厚度随之增大。
但压力增加到一定值,可切割的厚度也达到最大值,再增大压力,可切割的厚度反而减小。
切割氧压力对切割速度的影响大致相同。
如图2所示。
由图2可见,用普通割嘴气割时,在压力较低的情况下,随着压力增加,切割速度也提高,但当压力超过0.3MP以后,切割速度反而下降;再继续加大压力,不但切割速度降低,而且切口加宽,切口断面粗糙。
用扩散形割嘴气割时,如果切割氧压力符合割嘴的设计压力,则压力增大时,由于切割氧流的流速和动量增大,所以切割速度比用普通割嘴时也有所增加。
气割工艺参数气割的工艺参数包括预热火焰功率、氧气压力、切割速度、割嘴到工件的距离以及切割倾角等。
⑴预热火焰的选择预热火焰是影响气割质量的重要工艺参数。
火焰切割基本解读

二、割嘴
• 2.1 可燃性气体及对应割嘴
• 现在用于切割的可燃性气体种类较 多,它们在加热性能、点火性能、 安全性能(防回火、防渗漏)上各 有千秋。因此,对于不同的气体要 使用相对应的割嘴。
2.2 主要可燃性气体的特征
乙炔(C2H2)
• 乙炔又称电石气,无色,有刺激性气味, 是最古老的切割用燃气。它在氧气的助燃 下,燃烧温度可达3200℃,但要时刻注意 它的安全。它的特点如下: 比重比空气轻,适合船内等通风不良场所 的作业。 火焰温度高,加热速度快,作业效率高。 火焰的集中性好。
•
• •
乙炔(C2H2)
• 火焰燃烧速度快,易回火。(当混合气体 的喷射速度低于气体燃烧速度时,火焰就 会倒流入割炬及胶管内,造成回火。) • 易爆炸。压力为1.5个大气压,温度的 200~580℃时,就会爆炸。 • 易燃。严防泄漏。 • 使用专用割嘴。
丙烷(C3H8)
• • • • • • • 又称LP气体,通常使用的不是纯丙烷,而是在其内掺有 丁烷、丙烯等气体。它的特点如下: 比重比空气重,不能用于如船内等通风欠佳场所。 火焰温度低,预热时间长,工作效率不如乙炔,特别是 坡口切割时,效果较差。 不易爆炸,安全性能较好。 燃烧速度慢,不易回火。 火焰集中性一般。 使用丙烷割嘴。
一、切割及安全
• 气体切割 • 原理:氧气-燃气切割是利用氧气和燃气的混合气 体燃烧火焰,将被切割件加热到燃烧的温度,再 打开切割氧气阀,高压氧气流喷射到红热的切割 处,使之发生剧烈的燃烧,形成熔渣并放出大量 的热。熔渣被高压氧吹除,放出的热量又对下层 金属起到加热作用。这种加热--燃烧--吹渣的过程 重复进行,同时移动割炬,就形成整齐的割缝。 气割的过程实质是金属在纯氧中的燃烧过程,而 不是熔化过程。
《气割与气焊》

为人处事经典智慧为人处事是人们一生中最为重要的素养之一。
优秀的人际关系将帮助我们更好地融入社会,并为我们未来的生活和事业奠定基础。
以下是我总结的一些为人处事的经典智慧,希望对你有所帮助。
1. 诚信为本诚信是珍贵的品德,它涵盖了诚实,真实,守信,敬业等多个方面。
诚信是建立信任的基石,只有在相互信任的基础之上,人际关系才会更加融洽。
2. 懂得尊重尊重他人是建立良好人际关系的关键之一。
当我们懂得尊重别人的意见,关心他们的需求和感受,我们才能建立深度的人际关系。
人们通常更愿意与那些懂得尊重他们的人建立关系。
3. 保持沟通沟通是建立关系的基础,它可以让我们理解他人的需求和感受,也可以帮助我们表达自己的想法和情感。
当我们能够耐心地倾听他人的话语,表达自己的想法和感受时,我们就能建立深度的人际关系。
4. 沉着冷静在面对压力和困难时,我们需要沉着冷静。
冷静的思考和决策可以帮助我们面对挑战,保持理智,减少情绪化的行为和可能带来的后果。
沉着冷静的态度也可以让人们感觉到我们的职业道德和自我控制能力。
5. 长期视野在处理人际关系时,我们需要有长期视野。
这意味着我们需要考虑未来的影响,而不只是眼前的利益。
当我们能够保持长期的观点时,我们就可以建立稳定的人际关系,并获得更多的成功。
6. 爱好分享分享是让人们感到满足和幸福的一种行为。
当我们能够分享自己的知识,技能和资源时,我们就能吸引人们注意我们,让人们更乐意和我们建立关系。
通过分享,我们也可以建立地位和声望。
7. 减少批评批评是伤害别人感情的行为。
当我们能够减少批评,关注别人的优点和长处,我们就能建立深度和温暖的人际关系,并让人们信任我们更多。
在总结,为人处事是人们一生中必须掌握的一种技能。
当我们能够诚信,尊重他人,保持沟通,沉着冷静,保持长期视野,喜欢分享,减少批评时,我们就能建立深度,稳定和幸福的人际关系。
这些经典的智慧也可以帮助我们实现成功,并成为更好的人。
焊接工艺第二章气焊与气割_OK

爆炸极限(%) 在氧气的
气体
温度
可燃气体 ----------------------------------- 燃烧速度
(J/L) (℃) (℃) 的体积比 与空气
与氧气 (m/s)
-------------------------------------------------------------------------------------------------------------------------
2021/8/27
15
二 气焊接头的种类及坡口形式
1.气焊接头的种类 常用的气焊接头形式有卷边接头、对接接头及角接接头等几种。
2.气焊焊缝坡口的基本形式与尺寸 参照国家标准GB/T985-1988,根据板厚查处装配间隙。
三 气焊焊接参数
包括焊丝的牌号、直径,熔剂,火焰性质与火焰能率,焊嘴的倾角,焊接方 向和焊接速度等。
乙炔 52754 3087 335
1.15
2.2~81 2.8~93
7.5
丙烷 99227 2526 481
3.5
2.3~9.5
2.0
丙烯 93868 2900 500
3.5
2.0~11
2.0
甲烷 33494 2538
1.5
4.8~14 5.0~59.2
氢 10048 2160
0.3~0.4 3.3~81.5 4.65~93.9
5.橡皮管
氧气橡皮管应为黑色,内径8mm,乙炔橡皮管应为红色,内径10mm,连接焊
炬或割炬的橡皮管不能短于5m一般在10~15m为宜,太长会增加气体流动的阻
力2。021/8/27
12
6.回火保险器
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半 制 品 直 线 有机加工余 表面切割质量 精确的直线 精 确 的 成 形
切割
量的切割 要求低的切割
切割
切割
5
---
330-350
710-760
590-640
400-500
10
710-730
330-470
570-620
480-520
320-400
20
580-630
400
470-500
390-420
④ 切割碳含量较高或合金元素含量较高的钢材时,因它们的燃点较高,预热火焰的功率要 大一些; ⑤ 用单割嘴切割坡口时,因熔渣被吹向切口外侧,为补充热量,要加大火焰的功率; ⑥ 使用石油气或天然气作为燃气,因其火焰温度低,预热时间较长;在切割小尺寸零 件等需频繁预热起割的场合,为提高切割效率,可把火焰调节成氧化焰,开始切割后再恢复 到中性焰。 2)操作技术 气割操作因个人的习惯不同,可以有所不同。一般是右手把住割炬把手,以右手的拇指和食 指把住预热氧的阀门,以便于调整预热火焰和当回火时及时切断预热氧气。左手的拇指和食 指把住开关切割氧的阀门,同时还要起掌握方向的作用。其余三个手指平稳地托住混合室。 上身不要弯得太低,呼吸要有节奏;眼睛应注视和割嘴,并着重注视割口前面的割线。这种 气割方法为“抱切法”,一般是按照从右向左的方向切割。开始切割时,先预热钢板的边缘, 待切口位置出现微红的时候,将火焰局部移出边缘线以外,同时慢慢打开切割氧气阀门。当 有氧化铁渣随氧气流一起飞出时,证明已经割透,这时应移动割炬逐渐向前切割。 切割很厚的金属时,割嘴与被切割金属表面大约成 10°~20°倾角,以便能更好地加热割件边 缘,使切割过程容易开始。切割厚度 50mm 以下的金属,割嘴开始应与被切割金属表面成 垂直位置。如果是从零件内廓开始切割,必须预先在被切割件上面作孔(孔的直径等于切割 宽度)。开始切割时,先用预热火焰加热金属边缘,直至加热到使其能在氧中可以燃烧的温 度,即在割件表面层出现将要熔化的状态时,再放出切割氧进行切割。切割时割嘴与被切割 金属表面的距离应根据火焰焰心长度来决定,最好使焰心尖端距割件 1.5~3mm,绝不可使 火焰焰心触及割件表面。为了保证割缝质量,在全部气割过程中,割嘴到割件表面的距离应 保持一致。 沿直线切割钢板时,割枪应向运动反方向倾斜 20°~30°,这时切割最为有效。但在沿曲线外 轮廓切割时,割嘴必须严格垂直于切割金属的表面。 切割过程中,有时因割嘴过热和氧化铁渣的飞溅,使切割割嘴堵住或乙炔供应不及时,割嘴 产生鸣爆并发生回火现象。这时应迅速关闭预热氧气阀门,阻止氧气倒流入乙炔管内,使回 火熄灭。如果此时割炬内还在发出嘶嘶的响声,说明割炬内回火尚未熄灭,这时应迅速再将 乙炔阀门关闭或迅速拔下割炬上的乙炔软管,使回火的火焰气体排出。处理完毕后,应先检 查割炬的射吸能力,然后才可以重新点燃割炬。 气割过程中,若操作者需移动身体位置时,应先关闭切割氧阀门,然后移动身体位置。如果 切割较薄的钢板,在关闭切割氧的同时,火焰应迅速离开钢板表面,以防止因板薄受热快, 引起变形和使割缝重新粘合。当继续切割时,割嘴一定要对准割缝的接割处,并适当预热, 然后慢慢打开切割氧气阀门,继续进行切割。 切割临近终点时,割嘴应向切割前进的反方向倾斜一些,以利于钢板的下部提前割透,使收 尾的割缝较整齐。当到达终点时,应迅速关闭切割氧气的阀门并将割炬抬起,然后关闭乙炔 阀门,最后关闭预热氧气阀门。如果停止工作时间较长,应将氧气阀门关闭,松开减压器调 节螺丝,并将氧气胶管中的氧气放出。结束切割工作时,将减压器卸下并将乙炔供气阀门关 闭。 气割缺陷及防止措施 气体火焰切割作业中,常常因为气割工艺参数调整和操作不当,会造成各种切割缺陷。切割 之后的切口状态及原因见图 5。气割生产中常见缺陷的种类、产生原因及防止措施见表 6。
⑶切割速度
切割速度与工件厚度、割嘴形式有关,一般随工件厚度增大而减慢。切割速度必须与切口
内金属的氧化速度想适应。切割速度太慢会使切口上缘熔化,太快则后拖量过大,甚至割不
透,造成切割中断。在切割操作时,切割速度可根据熔渣火花在切口中落下的方向来掌握,
当火花呈垂直或稍偏向前方排出时,即为正常速度。在直线切割时,可采用火花稍偏向后方
排出的较快的速度。
氧化速度快,排渣能力强,则可以提高切割速度。切割速度过慢会降低生产率,且会造成切
口局部熔化,影响割口表面质量。机器切割速度比手工切割速度平均可提高 20%,表 4 列 出机械化切割时切割速度的推荐数据。
⑷割嘴到工件表面的距离
割嘴到工件表面的距离是根据工件厚度及预热火焰长度来确定。割嘴高度过低会使切口上线
⑴切割氧的纯度 氧气的纯度是影响气割过程和质量的重要因素。氧气纯度差,不但切割速度大为降低、切割 面粗糙、切口下缘沾渣,而且氧气消耗量的增加。氧气纯度从 99.5%降到 98%,即下降 1.5%, 切割速度下降 25%,而耗氧量增加 50%。一般认为,氧气纯度低于 95%,就不能气割,要 获得无粘渣的气割切口,氧气纯度需达到 99.6%。 ⑵切割氧流量 切割厚度 12mm 钢板时氧气流量对切割速度的影响如图 1 所示。由图可见,随着氧流量的 增加,切割速度逐渐增大,切割速度提高,但超过某个界限值反而降低。因此,对某一钢板 厚度存在一个最佳氧流量值,此时不但切割质量最高,而且切割质量最好。
发生熔塌,飞溅时易堵塞割嘴,甚至引起回火。割嘴高度过大,热损失增加,且预热火焰对
切口前缘的加热作用减弱,预热不充分,切割氧流动能下降,使排渣困难,影响切割质量。
同时进入切口的氧纯度也降低,导致后拖量和切口宽度增大,在切割薄板场合还会使切割速
度降低。
表 4 机械切割时切割速度的推荐数据
钢板厚度 切割形式
气体火焰切割工艺及参数
影响气割过程的主要参数 影响气体火焰切割过程(包括切割速度和质量)的主要工艺因素有: ①切割氧的纯度; ②切割氧的流量、压力及氧流形状; ③切割氧流的流速、动量和攻角; ④预热火焰的功率; ⑤被切割金属的成分、性能、表面状态及初始温度; ⑥其他工艺因素。 其中切割氧流起着主导作用。切割氧流既要使金属燃烧,又要把燃烧生成的氧化物从切口中 吹掉。因此,切割氧的纯度、流量、流速和氧流形状对气割质量和切割速度有重要的影响。
等。
⑴预热火焰的选择
预热火焰是影响气割质量的重要工艺参数。气割时一般选用中性焰或轻微的氧化焰。同时火
焰的强度要适中。应根据工件厚度、割嘴种类和质量要求选用预热火焰。
① 预热火焰的功率要随着板厚的增大而加大,割件越厚,预热火焰功率越大。氧-乙 炔预热火焰的功率与板厚的关系见表 1。
表 1 氧-乙炔预热火焰的功率与板厚的关系
但当压力超过 0.3MP 以后,切割速度反而下降;再继续加大压力,不但切割速度降低,而
且切口加宽,切口断面粗糙。用扩散形割嘴气割时,如果切割氧压力符合割嘴的设计压力,
则压力增大时,由于切割氧流的流速和动量增大,所以切割速度比用普通割嘴时也有所增加。
气割工艺参数
气割的工艺参数包括预热火焰功率、氧气压力、切割速度、割嘴到工件的距离以及切割倾角
板厚/mm
火焰功率/L.min-1
3-25
4-8.3
Hale Waihona Puke 25-509.2-12.5
50-100
12.5-16.7
100-200
16.7-20
200-300
20-21.7
②在切割较厚钢板时,应采用轻度碳化焰,以免切口上缘熔塌,同时也可使外焰长一些。
③使用扩散行割嘴和氧帘割嘴切割厚度 200mm 以下钢板时,火焰功率选大一些,以加速切
口的前缘加热到燃点,从而获得较高的切割速度。
④切割碳含量较高或合金元素教多的钢材时,因为他们燃点较高,预热火焰的功率要大一些。
⑤用单割嘴切割坡口时,因熔渣被吹向切口外侧,为补充能量,要加大火焰功率。
气体火焰切割的预热时间应根据割件厚度而定,表 2 列出火焰切割选定预热时间的经验数
据。
表 2 气体火焰切割选定预热时间的经验数据
⑶切割氧压力 随着切割氧压力的提高,氧流 量相应增加,因此能够切割板厚度随之增大。但压力增加到一定值,可切割的厚度也达到最 大值,再增大压力,可切割的厚度反而减小。切割氧压力对切割速度的影响大致相同。如图 2 所示。
由图 2 可见,用普通割嘴气割时,在压力较低的情况下,随着压力增加,切割速度也提高,
260-330
30
520-560
350
410-450
350-380
230-290
50
440-480
330
350-380
300-320
200-250
100
380-420
290
310-330
260-280
170-220
150
360-390
260
290-310
240-260
160-200
(5)切割倾角 割嘴与割件间的切割倾角直接影响气割速度和后拖量。切割倾角的大小主要根据工件厚度而 定,工件厚度在 30mm 以下时,后倾角为 20°~30°;工件厚度大于 30mm 时,起割是为 5°~10°的前倾角,割透后割 嘴垂直于工件,结束时为 5°~10°的后倾角。手工曲线切割时,割嘴垂直于工件。 割嘴的切割倾角与切割厚度的关系如图 3 所示。
热工件和进行切割。 1)火焰调整 根据燃气与氧的混合比不同,切割火焰分为碳化焰、中性焰和氧化焰,如图 4 所示。
在使用乙炔的场合,氧与乙炔的体积比(O2/C2H2)为 1.1~1.15 时,形成的火焰为中性焰, 由焰芯、内焰和外焰组成。焰芯为 C2H2 与 O2 的混合气。内焰为 C2H2 与 O2 发生一次燃 烧的反应区,其反应式为 C2H2 O2→2CO H2 在内焰中距离焰芯 2~3mm 处,温度最高,约 3100°C。外焰是一次燃烧生成的 CO 和 H2、 空气中氧化合成而燃烧的区域,其反应式为 2CO H2 1.5O2→2CO2 H2O 火焰温度约 2500°C。外焰越长,保护切割氧流的效果越好。 O2/C2H2 比值小于 1.1 时形成碳化焰,也有焰芯、内焰和外焰,内焰中存在未燃烧的碳,火 焰长而软,温度也较低。O2/C2H2 比值小于 1.15 时形成氧化焰,只有焰芯和外焰两部分。 火焰短而挺直并伴随有“嘶、嘶……”声,最高温度可达约 3300°C。因火焰中存在过剩氧, 具有氧化性。 气割时一般应调整火焰到中性焰,同时火焰的强度要适中。一般不采用碳化焰,因为碳化焰 会使切割边缘增碳。调整好火焰后,应当放出切割氧,检查火焰性质是否有变化。 切割火焰过强时会出现以下问题: ① 切口上边缘熔塌,并粘有颗粒状熔滴; ② 切割面不平整,粗糙度变差; ③ 切口下缘粘渣。 切割火焰过弱时会发生以下问题: ① 切割速度减慢,且易发生切割中断现象; ② 易发生回火; ③ 后拖量增大。 应根据工件厚度、割嘴种类和质量要求确定预热和切割火焰,其要点如下: ① 预热和切割火焰的功率(乙炔流量、氧气流量)要随着钢板厚度增大而加大; ② 切割较厚钢板时,火焰宜用轻度碳化焰,以免切口上缘熔塌,同时也可使外焰长一些; ③ 使用扩散形割嘴和氧帘割嘴切割厚度 20mm 以下钢板时,火焰功率应大一些,以加速切 口前缘加热到燃点,从而获得较高的切割速度;