[全]初中七年级数学必考核心题目解析+练习详解总结
(完整word版)最新初一数学知识点讲解习题附答案大全(绝对实用)(良心出品必属精品)

第一章有理数【知识梳理】1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2.2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3.3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离. 5.科学记数法:,其中。
6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。
实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。
正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。
一、选择题。
1.下列说法正确的个数是 ( )①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正的,就是负的④一个分数不是正的,就是负的A 1B 2C 3D 42. a,b是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a,b,-b按照从小到大的顺序排列 ( )A -b<-a<a<bB -a<-b<a<bC -b<a<-a<bD -b<b<-a<a3.下列说法正确的是 ( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A ①②B ①③C ①②③D ①②③④4.下列运算正确的是( )A B -7-2×5=-9×5=-45C 3÷D -(-3)2=-95.若a+b<0,ab<0,则 ( ) A a>0,b>0 B a<0,b<0C a,b两数一正一负,且正数的绝对值大于负数的绝对值D a,b两数一正一负,且负数的绝对值大于正数的绝对值6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A 0.8kgB 0.6kgC 0.5kgD 0.4kg7.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是()A ()5mB [1-()5]mC ()5mD [1-()5]m8.若ab≠0,则的取值不可能是()A 0B 1C 2D -2二、填空题。
(完整版)苏教版七年级下册期末数学必备知识点题目解析

(完整版)苏教版七年级下册期末数学必备知识点题目解析一、选择题1.下列计算结果正确的是()A.a2+a3=a5B.a6÷a3=a2C.a2×a3=a5D.(a3)2=a5答案:C解析:C【分析】根据合并同类项,同底数幂的除法,同底数幂的乘法,幂的乘方的运算性质可逐项计算判定求解.【详解】解:A.a2和a3不是同类项,不能合并,故A选项不符合题意;B.a6÷a3=a3,故B项不符合题意;C.a2×a3=a5,故C选项符合题意;D.(a3)2=a6,故D项不符合题意.故选:C.【点睛】本题考查了合并同类项,同底数幂的除法,同底数幂的乘法,幂的乘方,掌握以上知识是解题的关键.2.如图,图中的内错角的对数是()A.3对B.4对C.5对D.6对答案:C解析:C【分析】利用内错角的定义分析得出答案.【详解】解:如图所示:内错角有:∠FOP与∠OPE,∠GOP与∠OPD,∠CPA与∠HOP,∠FOP与∠OPD,∠EPO与∠GOP都是内错角,故内错角一共有5对.故选:C.【点睛】此题主要考查了内错角的定义,正确把握内错角的定义是解题关键.3.不等式组210x x <⎧⎨+≥⎩的解集在数轴上表示正确的是( ) A .B .C .D .答案:B解析:B【分析】求出不等式组的解集,再找到其公共部分在数轴上表示出来即可得.【详解】解:210x x <⎧⎨+≥⎩①②, 由①得,x <2,由②得,x ≥﹣1,故此不等式组的解集为:12x -≤<, 在数轴上表示为:故选B .【点睛】本题考查了不等式组的解集在数轴上表示出来,解题的关键是要正确求出不等式组的解集,并注意在数轴上表示不等式的解集时,有等号(≥或≤)的画实心圆点,无等号(>或<)的画空心圆圈.4.若()()23P x x =--,()()14Q x x =--,则P 与Q 的大小关系是( )A .P Q >B .P Q <C .P Q =D .由的取值而定 答案:A解析:A【分析】求出P 与Q 的差,即可比较P 、Q 的大小.【详解】解:(2)(3)(1)(4)P Q x x x x -=-----22(56)(54)x x x x =-+--+225654x x x x =-+-+-2=,20>,0P Q ∴->,P Q ∴>故选:A .【点睛】本题主要考查整式的运算,作差比较大小是解题的关键.5.如果关于x 的不等式(a +2020)x ﹣a >2020的解集为x <1,那么a 的取值范围是( )A .a >﹣2020B .a <﹣2020C .a >2020D .a <2020 答案:B解析:B【分析】根据解一元一次不等式的方法和不等式的性质,可以得到a 的取值范围.【详解】解:∵不等式(a +2020)x ﹣a >2020的解集为x <1,∴a +2020<0,解得,a <﹣2020,故选:B .【点睛】本题考查解一元一次不等式,解答本题的关键是明确解一元一次不等式的方法和不等式的性质.6.下列关于命题“若22a b >,则a b >”的说法,正确的是( )A .是真命题B .是假命题,反例是“1,2a b ==”C .是假命题,反例是“2,1a b =-=”D .是假命题,反例是“1,2a b =-=-” 答案:C解析:C【分析】根据真假命题的定义判断,分清条件和结论,若为假命题,举反例时要满足:条件22a b >成立,但结论a b >不成立.【详解】A.当1,0a b =-=时,满足22(1)0->,但-1﹤0,所以为假命题,此选项错题;B.当1,2a b ==,221<2,不满足22a b >,此选项错误;C. 当2,1a b =-=时,满足2221()->,但-2﹤1,假命题,此选项正确;D. 当1,2a b =-=-时,22-(-1)<(2),不满足22a b >,此选项错误,故选:C .【点睛】本题考查真命题与假命题,熟练掌握命题真假的判断方法是解答的关键.、对应的数分别为1 和0.若正方形7.正方形ABCD在数轴上的位置如图所示,点B CABCD绕着点C顺时针方向在数轴上翻转,翻转1次后,点D所对应的数为1;绕点D翻转第2次;继续翻转,则翻转2020次后,数轴上数2020所对应的点是()A.点A B.点B C.点C D.点D答案:C解析:C【分析】根据题意可知每4次翻转为一个循环组依次循环,用2020除以4,根据正好能整除可得解.【详解】解:由题意可得:点C对应0,点D对应1,点A对应2,点B对应3,点C对应4,...,∵每4次翻转为一个循环组依次循环,∴2020÷4=505,∴翻转2020次后,数轴上数2020所对应的点是点C.故选:C.【点睛】本题考查了数轴,根据翻转的变化规律确定出每4次翻转为一个循环组依次循环是解题的关键.8.如图,△ABC中,∠B=40°,∠C=30°,点D为边BC上一点,将△ADC沿直线AD折叠后,点C落到点E处,若DE∥AB,则∠ADE的度数为()A.100°B.110°C.120°D.130°答案:B解析:B【分析】根据三角形的内角和得到∠BAC=110°,由折叠的性质得到∠E=∠C=30°,∠EAD=∠CAD,∠ADC=∠ADE,根据平行线的性质得到∠BAE=∠E=30°,根据三角形的内角和即可得到结论.【详解】解:∵∠B =40°,∠C =30°,∴∠BAC =110°,由折叠的性质得,∠E =∠C =30°,∠EAD =∠CAD ,∠ADE =∠ADC ,∵DE ∥AB ,∴∠BAE =∠E =30°,∴∠CAD =40°,∴∠ADE =∠ADC =180°﹣∠CAD ﹣∠C =110°,故选:B .【点睛】本题考查了三角形的内角和,折叠的性质,平行线的性质,熟练掌握折叠的性质是解题的关键.二、填空题9.计算:32(2)(3)ab a -⋅-=__________________解析:336a b【分析】根据单项式乘以单项式运算法则,系数与系数相乘,相同字母的指数相加即可.【详解】解:()()3223ab a -⋅-1236a b +=336a b =,故答案为:336a b .【点睛】题目主要考查单项式乘以单项式的运算法则,熟练掌握运算法则是解题关键.10.命题“互补的两个角不能都是锐角”是__________命题(填“真”或“假”).解析:真【解析】【分析】利用互补的定义和锐角的定义进行判断后即可得到正确的答案.【详解】解:根据锐角和互补的定义得出,互补的两个角不能都是锐角,此命题是真命题, 故答案为:真.【点睛】本题考查了命题与定理的知识,解题的关键是了解互补的定义及锐角的定义,难度不大. 11.若一个多边形外角和与内角和相等,则这个多边形是_____.解析:四边形.【详解】根据多边形的内角和公式与多边形的外角和定理列出方程,然后解方程即可求出多边形的边数:设这个多边形的边数是n ,则(n ﹣2)•1800=3600,解得n=4.∴这个多边形是四边形.12.若当17x =时,代数式3235685x x x -+的结果为0,那么将3235585x x x -+分解因式的结果为______解析:()()1735x x x --【解析】【分析】先根据因式分解的意义和已知设3235685x x x -+=x(x-17)(3x+a),利用多项式乘以多项式的法则进行计算,列方程组可得结论.【详解】当x =17时,代数式3x 3-56x 2+85x 的结果为0设3235685x x x -+=x(x-17)(3x+a)3235685x x x -+=x(3x 2-51x+ax-17a)∴x(3x 2-56x+85)=x(3x 2-51x+ax-17a),-51561785a a +=-⎧⎨-=⎩解得:a=-5,∴3235685x x x -+=x(x-17)(3x-5),故答案为: ()()1735x x x --.【点睛】本题主要考查了十字相乘法分解因式和提公因式,关键是理解和掌握分解因式和整式的乘法是互逆运算.13.若3,2x y =⎧⎨=⎩是方程10mx y +-=的一组解,则m 的值是________. 解析:13-【分析】根据方程的解满足方程,可得关于m 的方程,根据解方程,可得答案.【详解】解:由题意,得3m+2-1=0, 解得m=13-, 故答案为13-. 【点睛】本题考查了二元一次方程的解,利用方程的解满足方程得处关于m 的方程是解题关键.14.如图,在一块长为am ,宽为bm 的长方形草地上,有一条弯曲的小路,小路的左边线向右平移1m 就是它的右边线.则这块草地的绿地面积是___________m 2.解析:b(a -1)【分析】根据小路的左边线向右平移1m 就是它的右边线,可得路的宽度是1米,根据平移,可把路移到左边,再根据矩形的面积公式,可得答案.【详解】解:小路的左边线向右平移1m 就是它的右边线,路的宽度是1米,草地的长是(a-1)米,故这块草地的绿地面积为(a-1)b (m 2).故答案为:b (a-1).【点睛】本题主要考查了生活中的平移现象,利用矩形的面积公式得出是解题关键.15.如图,六边形ABCDEF 的各角都相等,若//m n ,则12∠+∠=__________︒.答案:【分析】根据六边形ABCDEF 的各角都相等,可得六边形ABCDEF 的对边平行;延长DC ,交直线n 于点G ,再根据平行线的性质解答即可.【详解】解:连接DF ,延长DC ,交直线n 于点G ,∵六边解析:180︒【分析】根据六边形ABCDEF 的各角都相等,可得六边形ABCDEF 的对边平行;延长DC ,交直线n 于点G ,再根据平行线的性质解答即可.【详解】解:连接DF ,延长DC ,交直线n 于点G ,∵六边形ABCDEF 是正六边形,∴每个内角为:(6-2)×180°÷6=120°,∴∠E +∠EDC +∠EFA =360°,∵∠E +∠EDF +∠EFD =180°,∴∠FDC +∠DFA =180°,∴AF ∥DC ,∴∠2=∠3,又∵m ∥n ,∴∠3+∠4=180°,∵∠4=∠1,∴∠1+∠2=180°,故答案为:180.【点睛】本题考查了多边形的内角与外角以及平行线的判定与性质,得出AF ∥DC 是本题的关键. 16.如图,D 、E 分别是△ABC 边AB 、BC 上的点,AD=2BD ,BE=CE .若S ΔABC =18,△ADF 的面积为1S ,△CFE 的面积为2S ,则1S 2S =________答案:3【分析】根据D 、E 分别是△ABC 边AB 、BC 上的点,AD=2BD ,BE=CE ,S △ABC=18,可以得到S △ADC 和S △AEC 的面积,再根据图形,即可得到S1-S2的值.【详解】解:∵D 、解析:3【分析】根据D 、E 分别是△ABC 边AB 、BC 上的点,AD=2BD ,BE=CE ,S △ABC =18,可以得到S △ADC和S△AEC的面积,再根据图形,即可得到S1-S2的值.【详解】解:∵D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,S△ABC=18,∴S△ADC=18×23=12,S△AEC=18×12=9,∵S△ADC=S△ADF+S△AFC,S△AEC=S△CEF+S△AFC,∴S△ADC-S△AEC=S△ADF-S△CEF,∵S△ADC=12,S△AEC=9,∴S△ADC-S△AEC=3,∴S△ADF-S△CEF=3,∵△ADF的面积为S1,△CEF的面积为S2,∴S1-S2=3,故答案为:3.【点睛】本题考查三角形的面积,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.17.计算:(1(﹣2013)0﹣(12)﹣2.(2)a(3a﹣b)﹣3a4b÷a2b.答案:(1)-1;(2)﹣ab【分析】(1)根据算术平方根,零指数次幂,负整数指数幂的性质求解各项的值,再相加减(2)根据单项式乘多项式及单项式除以单项式的运算法则计算,再合并即可求解.【详解】解析:(1)-1;(2)﹣ab【分析】(1)根据算术平方根,零指数次幂,负整数指数幂的性质求解各项的值,再相加减(2)根据单项式乘多项式及单项式除以单项式的运算法则计算,再合并即可求解.【详解】解:(1)原式=2+1﹣4=﹣1;(2)原式=3a2﹣ab﹣3a2=﹣ab.【点睛】本题主要考查了算术平方根,零指数次幂,负整数指数幂和整式的混合运算,解题的关键在于能够熟练掌握相关计算法则.18.因式分解:(1)2484x y xy y -+ (2)22214a a答案:(1);(2)【分析】(1)先提出公因式,再利用完全平方公式,即可求解;(2)先利用平方差公式,再利用完全平方公式,即可求解.【详解】解:(1);(2).【点睛】本题主要解析:(1)()241y x -;(2)()()2211a a -+【分析】(1)先提出公因式,再利用完全平方公式,即可求解;(2)先利用平方差公式,再利用完全平方公式,即可求解.【详解】解:(1)2484x y xy y -+ ()2421y x x =-+()241y x =- ;(2)22214a a 221212a a a a 2211a a .【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的各种因式分解的方法,并根据多项式的特征选用合适的方法是解题的关键.19.解方程组:(1)3281x y y x +=⎧⎨=-⎩. (2)6234()5()2x y x y x y x y +-⎧+=⎪⎨⎪+--=⎩. 答案:(1);(2)【分析】(1)利用代入消元法可进行求解;(2)先把二元一次方程组进行化简,然后再利用加减消元进行求解即可.【详解】解:(1)把②代入①得:,解得:,把代入②得:,∴原方解析:(1)21x y =⎧⎨=⎩;(2)71x y =⎧⎨=⎩【分析】(1)利用代入消元法可进行求解;(2)先把二元一次方程组进行化简,然后再利用加减消元进行求解即可.【详解】解:(1)3281x y y x +=⎧⎨=-⎩①② 把②代入①得:3228x x +-=,解得:2x =,把2x =代入②得:1y =,∴原方程组的解为21x y =⎧⎨=⎩; (2)6234()5()2x y x y x y x y +-⎧+=⎪⎨⎪+--=⎩ 方程组化简得:53692x y x y +=⎧⎨-+=⎩①② ②×5+①得:4646y =,解得:1y =,把1y =代入②得:7x =,∴原方程组的解为71x y =⎧⎨=⎩. 【点睛】本题主要考查二元一次方程组的解法,熟练掌握二元一次方程组的解法是解题的关键.20.解不等式组()2133112x x x +≤⎧⎪⎨+->⎪⎩①②,并把解集在数轴上表示出来.答案:,数轴见解析【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:由①得:由②得:所以不等式组的解为.在数轴解析:21x -<≤,数轴见解析【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:由①得:1x ≤由②得: 2x >-所以不等式组的解为21x -<≤.在数轴上表示为:【点睛】本题主要考查了解一元一次不等式组,并在数轴上表示不等式的解集,解题的关键在于能够熟练掌握解一元一次不等式.三、解答题21.已知:如图,ABC ∆中,在CA 的延长线上取一点E ,作EG BC ⊥于点G (1)如图①,若AD BC ⊥于点,3D E ∠=∠,那么AD 是BAC ∠的平分线吗?若是,请说明理由.请完成下列证明并在下面的括号内填注依据解:是,理由如下:,AD BC EG BC ⊥⊥(已知)4590︒∴∠=∠=(垂直定义)//AD EG ∴( )1E ∴∠=∠(两直线平行,同位角相等)2∠= ( )3E ∠=∠(已知)12∠∠∴=(等量代换)AD ∴平分BAC ∠( )(2)如图②,若ABC ∆中90,BAC ABC CEG ︒∠=∠∠、的角平分线相交于点H . ①求证:180C BFE ︒∠+∠=②随着C ∠的变化,BHE ∠的大小会发生变化吗﹖如果有变化,请直接写出BHE ∠与C ∠的数量关系;如果没有变化,请直接写出BHE ∠的度数.答案:(1)同位角相等,两直线平行;3,两直线平行,内错角相等;角平分线的定义;(2)①见详解;②.【分析】(1)根据题意及平行线的性质可直接进行求解;(2)①由题意易得∠C+∠GEC=90°,∠C解析:(1)同位角相等,两直线平行;3,两直线平行,内错角相等;角平分线的定义;(2)①见详解;②90BHE ∠=︒.【分析】(1)根据题意及平行线的性质可直接进行求解;(2)①由题意易得∠C +∠GEC =90°,∠CEG +∠EFA =90°,则有∠C =∠EFA ,然后问题可求证;②连接CH 并延长,由题意易得11,22HEC CEG HBC ABC ∠=∠∠=∠,然后由三角形外角的性质可得,EHM HEC HCE BHM HBC HCB ∠=∠+∠∠=∠+∠,进而根据角的和差关系可进行求解.【详解】(1)解:由题意得:,AD BC EG BC ⊥⊥(已知)4590∴∠=∠=︒(垂直定义)//AD EG ∴(同位角相等,两直线平行)1E ∴∠=∠(两直线平行,同位角相等)2∠=∠3(两直线平行,内错角相等)3E ∠=∠(已知)12∠∠∴=(等量代换)AD ∴平分BAC ∠(角平分线的定义)故答案为同位角相等,两直线平行;3,两直线平行,内错角相等;角平分线的定义; (2)①证明:∵90,BAC EG BC ∠=︒⊥,∴90BAE EGC BAC ∠=∠=∠=︒,∴∠C +∠GEC =90°,∠CEG +∠EFA =90°,∴∠C =∠EFA ,∵180EFB EFA ∠+∠=︒,∴180C BFE ∠+∠=︒;②90BHE ∠=︒,理由如下:连接CH 并延长,如图所示:∵ABC CEG ∠∠、的角平分线相交于点H , ∴11,22HEC CEG HBC ABC ∠=∠∠=∠, 由三角形外角的性质可得,EHM HEC HCE BHM HBC HCB ∠=∠+∠∠=∠+∠,∵∠FEA +∠EFA =∠BFG +∠FBG =90°,∠EFA =∠BFG ,∴∠FEA =∠FBG ,∵,EHB EHM BHM ACB HCE HCB ∠=∠+∠∠=∠+∠, ∴119022BHE GEC ABC ACB GEC ACB ∠=∠+∠+∠=∠+∠=︒. 【点睛】本题主要考查直角三角形的性质、三角形外角的性质、平行线的性质及角平分线的定义,熟练掌握直角三角形的性质、三角形外角的性质、平行线的性质及角平分线的定义是解题的关键.22.某学校为了加强训练学生的篮球和足球运球技能,准备购买一批篮球和足球用于训练,已知购买1个篮球和2个足球共需316元;购买2个篮球和3个足球共需534元. (1)购买1个篮球和1个足球各需多少元?(2)学校准备购进篮球和足球共40个,并且总费用不超过4200元,则篮球最多可购买多少个?答案:(1)购买一个篮球需120元,购买一个足球需98元;(2)12个【分析】(1)设购买一个篮球x 元,购买一个足球y 元,根据“1个篮球和2个足球共需316元,2个篮球和3个足球共需534元”,即可得解析:(1)购买一个篮球需120元,购买一个足球需98元;(2)12个【分析】(1)设购买一个篮球x 元,购买一个足球y 元,根据“1个篮球和2个足球共需316元,2个篮球和3个足球共需534元”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购买m 个篮球,则购买的足球数为(40−m ),根据费用=单价×数量,分别求出篮球和足球的费用,二者相加便是总费用,总费用不超过4200元,列出关于m 的一元一次不等式,解之即可得出结论.【详解】解:(1)设购买一个篮球的需x 元,购买一个足球的需y 元,依题意得231623534x y x y +=⎧⎨+=⎩ 解得12098x y =⎧⎨=⎩答:购买一个篮球需120元,购买一个足球需98元;(2)设购买m 个篮球,则足球数为(40)m -个,依题意得:12098(40)4200m m +-≤, 解得:81211m ≤, 而m 为正整数,12m =最大,答:篮球最多可购买12个.【点睛】本题考查了二元一次方程组的应用及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,正确列出一元一次不等式. 23.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A 型汽车、3辆B 型汽车的进价共计80万元;3辆A 型汽车、2辆B 型汽车的进价共计95万元. (1)求A 、B 两种型号的汽车每辆进价分别为多少万元?(列方程组解应用题)(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买)则该公司共有 种购买方案;(3)若该汽车销售公司销售1辆A 型汽车可获利8000元,销售1辆B 型汽车可获利5000元,在(2)中的购买方案中,假如这些新能源汽车全部售出,最大利润是 元. 答案:(1)型汽车每辆进价为万元,型汽车每辆进价为万元;(2)3;(3)【分析】(1)设型汽车每辆进价为万元,型汽车每辆进价为万元,根据题意列出二元一次方程组解方程组求解即可;(2)设购进型汽车辆,解析:(1)A 型汽车每辆进价为25万元,B 型汽车每辆进价为10万元;(2)3;(3)91000【分析】(1)设A 型汽车每辆进价为x 万元,B 型汽车每辆进价为y 万元,根据题意列出二元一次方程组解方程组求解即可;(2)设购进A 型汽车a 辆,B 型汽车b 辆,依题意列出二元一次方程,根据,a b 为正整数,求得整数解,即可求得方案数(3)根据(2)的方案以及题意,分别计算利润,比较之即可求得最大利润.【详解】(1)设A 型汽车每辆进价为x 万元,B 型汽车每辆进价为y 万元,根据题意,得 23803295x y x y +=⎧⎨+=⎩ 解得2510x y =⎧⎨=⎩答:A 型汽车每辆进价为25万元,B 型汽车每辆进价为10万元.(2)设购进A 型汽车a 辆,B 型汽车b 辆,依题意得2510200a b += ∴285a b =- ,a b 为正整数,65a b =⎧∴⎨=⎩或410a b =⎧⎨=⎩或215a b =⎧⎨=⎩ ∴有3种购买方案故答案为:3(3)该汽车销售公司销售1辆A 型汽车可获利8000元,销售1辆B 型汽车可获利5000元,方案1,65a b =⎧⎨=⎩获得的利润为:8000650005⨯+⨯73000=(元) 方案2,410a b =⎧⎨=⎩获得的利润为:80004500010⨯+⨯82000=(元) 方案3,215a b =⎧⎨=⎩获得的利润为:80002500015⨯+⨯91000=(元) 730008200091000<<∴购进A 型汽车2辆,B 型汽车15辆时,获利最大,最大利润是91000元故答案为:91000【点睛】本题考查了二元一次方程组的应用,找准等量关系列出方程组是解题的关键.24.(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图 1,MN 是平面镜,若入射光线AO 与水平镜面夹角为∠1,反射光线OB 与水平镜面夹角为∠2,则∠1=∠2 .(现象解释)如图 2,有两块平面镜OM,ON,且OM⊥ON,入射光线AB 经过两次反射,得到反射光线CD.求证AB∥CD.(尝试探究)如图 3,有两块平面镜OM,ON,且∠MON =55︒,入射光线AB 经过两次反射,得到反射光线CD,光线AB 与CD 相交于点E,求∠BEC 的大小.(深入思考)如图 4,有两块平面镜OM,ON,且∠MON =α ,入射光线AB 经过两次反射,得到反射光线CD,光线AB 与CD 所在的直线相交于点E,∠BED=β , α 与β 之间满足的等量关系是 .(直接写出结果)答案:【现象解释】见解析;【尝试探究】BEC 70;【深入思考】2.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠解析:【现象解释】见解析;【尝试探究】∠BEC = 70︒;【深入思考】β= 2α.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB∥CD;[尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°;[深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可证得β=2α.【详解】[现象解释]如图2,∵OM⊥ON,∴∠CON=90°,∴∠2+∠3=90°∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴∠DCB+∠ABC=180°,∴AB∥CD;【尝试探究】如图3,在△OBC中,∵∠COB=55°,∴∠2+∠3=125°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=250°,∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,∴∠EBC+BCE=360°-250°=110°,∴∠BEC=180°-110°=70°;【深入思考】如图4,β=2α,理由如下:∵∠1=∠2,∠3=∠4,∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,∵∠BOC=∠3-∠2=α,∴β=2α.【点睛】本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键.25.[原题](1)已知直线 //AB CD ,点P 为平行线AB ,CD 之间的一点,如图①,若52,64ABP CDP ∠∠=︒=︒,BE 平分ABP ∠,DE 平分CDP ∠,则BED ∠=__________.[探究](2)如图②, //AB CD ,当点P 在直线AB 的上方时.若,ABP CDP αβ∠=∠=,ABP ∠和CDP ∠的平分线相交于点1E ,1ABE ∠与1CDE ∠的平分线相交于点2E ,2ABE ∠与2CDE ∠的平分线相交于点3E ……以此类推,求n E ∠的度数.[变式](3)如图③, //AB CD ,ABP ∠的平分线的反向延长线和CDP ∠的补角的平分线相交于点E ,试猜想P ∠与E ∠的数量关系,并说明理由.答案:(1);(2);(3),理由见解析【分析】(1)过作,依据平行线的性质,即可得到,依据角平分线即可得出的度数; (2)依据平行线的性质以及三角形外角性质,求得,,,以此类推的度数为; (3)过作解析:(1)58︒;(2)1()2n βα-;(3)1902DEB P ∠=︒-∠,理由见解析 【分析】(1)过E 作//EF AB ,依据平行线的性质,即可得到BED BEF DEF ABE CDE ∠=∠+∠=∠+∠,依据角平分线即可得出BED ∠的度数; (2)依据平行线的性质以及三角形外角性质,求得11()2E βα∠=-,21()4E βα∠=-,31()8E βα∠=-,以此类推n E ∠的度数为1()2n βα-; (3)过E 作//EG AB ,进而得出DEB BEG DEG MBE FDE ABQ FDE ∠=∠+∠=∠+∠=∠+∠,再根据平行线的性质以及三角形外角性质,即可得到11190()90()90222DEB CDP ABP AHP ABP P ∠=︒-∠-∠=︒-∠-∠=︒-∠ 【详解】解:(1)如图1,过E 作//EF AB ,而//AB CD ,////AB CD EF ∴,ABE FEB ∴∠=∠,CDE FED ∠=∠,BED BEF DEF ABE CDE ∴∠=∠+∠=∠+∠,又52ABP ∠=︒,64CDP ∠=︒,BE 平分ABP ∠,DE 平分CDP ∠, 1262ABE ABP ∴∠=∠=︒,1322CDE CDP ∠=∠=︒, 263258BED ∴∠=︒+︒=︒,故答案为:58︒;(2)如图2,ABP ∠和CDP ∠的平分线交于点1E ,11122ABE ABP α∴∠=∠=,11122CDE CDP β∠=∠=, //AB CD ,112CDF AFE β∴∠=∠=, 111111()222E AFE ABE βαβα∴∠=∠-∠=-=-, 1ABE ∠与1CDE ∠的角平分线交于点2E ,211124ABE ABE α∴∠=∠=,211124CDE CDE β∠=∠=, //AB CD ,214CDG AGE β∴∠=∠=, 2221()4E AGE ABE βα∴∠=∠-∠=-, 同理可得,31()8E βα∠=-, 以此类推,n E ∠的度数为1()2nβα-. (3)1902DEB P ∠=︒-∠.理由如下: 如图3,过E 作//EG AB ,而//AB CD ,////AB CD EG ∴,MBE BEG ∴∠=∠,FDE GED ∠=∠,DEB BEG DEG MBE FDE ABQ FDE ∴∠=∠+∠=∠+∠=∠+∠,又ABP ∠的角平分线的反向延长线和CDP ∠的补角的角平分线交于点E ,11(180)22FDE PDF CDP ∴∠=∠=︒-∠,12ABQ ABP ∠=∠, 111(180)90()222DEB ABP CDP CDP ABP ∴∠=∠+︒-∠=︒-∠-∠, //AB CD ,CDP AHP ∴∠=∠,11190()90()90222DEB CDP ABP AHP ABP P ∴∠=︒-∠-∠=︒-∠-∠=︒-∠.【点睛】本题考查了平行线性质以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解.。
有理数-2023年新七年级数学核心知识点与常见题型(人教版)(解析版)

有理数【知识梳理】1、有理数的概念:整数和分数统称为有理数.2、有理数的分类:①按整数、分数的关系分类:有理数;②按正数、负数与0的关系分类:有理数.注意:如果一个数是小数,它是否属于有理数,就看它是否能化成分数的形式,所有的有限小数和无限循环小数都可以化成分数的形式,因而属于有理数,而无限不循环小数,不能化成分数形式,因而不属于有理数.【考点剖析】一、有理数的意义一、单选题1.(2022秋·广东河源·七年级校考期末)下列结论正确的是()A.有理数包括正数和负数B.有理数包括整数和分数C.0是最小的整数D.两个有理数的绝对值相等,则这两个有理数也相等【答案】B【分析】根据有理数的相关联的知识点分析判断即可.【详解】∵有理数包括正有理数,零和负有理数,∴A错误,不符合题意;∵有理数包括整数和分数,∴B正确,符合题意;∵没有最小的整数,∴C错误,不符合题意;∵两个有理数的绝对值相等,则这两个有理数相等或互为相反数,∴D错误,不符合题意;故选B.【点睛】本题考查了有理数的相关概念,正确理解相关概念是解题的关键.【答案】C【分析】根据整数和分数统称为有理数,判断即可.【详解】解:A、1.21是有理数,故此选项不符合题意;B、2−是有理数,故此选项不符合题意;C、2π不是有理数,故此选项符合题意;D、12是有理数,故此选项不符合题意,故选:C.【点睛】本题考查了有理数的概念,解题的关键是掌握整数和分数统称为有理数,注意有限小数或无限循环小数是有理数.【答案】C【分析】根据有理数的概念进行判别即可.【详解】解:5,32−,103003,211,0,0.12−,是有理数,共6个,2π−是无理数,故选:C.【点睛】本题主要考查了有理数的概念,熟练掌握有理数的概念是解题的关键.0.35,有理数有【答案】5【分析】根据有理数的概念进行判断即可.【详解】解:有理数包括整数和分数,∴是有理数的有221.2,020%0.357−,,,,共5个 故答案为:5【点睛】本题主要考查有理数的概念,熟练掌握有理数的概念是解决本题的关键. 0.13,117−,0.1010010001(相邻两个【答案】3【分析】根据有理数的概念解答即可.有理数的概念:整数和分数统称为有理数.【详解】解:在 3.5+,0.13,117−,2π,0.1010010001(相邻两个1之间依次增加1个0)中,有理数有 3.5+,0.13,117−,共3个. 故答案为:3.【点睛】本题考查了有理数,掌握有理数的概念是解题的关键.6.(2022秋·河北邯郸·七年级统考期中)一个九位数,最高位上是最大的一位数,千万位上是5,十万位上是最小的合数,百位上是最小的质数,其余各位都是0,这个数写作_______.【答案】950400200【分析】根据最大的一位数是9,千万位上是5,最小的合数是4,最小的质数是2,其余各位都是0即可解答.【详解】解:∵最大的一位数是9,千万位上是5,最小的合数是4,最小的质数是2,其余各位都是0, ∴这个数是950400200.故答案为:950400200.【点睛】本题考查的是有理数,熟知最小的合数是4,最小的质数是2是解题的关键.一、单选题 1.(2023秋·广西河池·七年级统考期末)下列说法错误的是( )A .0既不是正数,也不是负数B .零上4摄氏度可以写成4C +︒,也可以写成4C ︒C .若盈利100元记作100+元,则20−元表示亏损20元D .向正北走一定用正数表示,向正南走一定用负数表示【答案】D【分析】根据0的特征、正负数的意义和相反意义的量进行判断即可.【详解】解:A .0既不是正数,也不是负数,故选项正确,不符合题意;B .零上4摄氏度可以写成4C +︒,也可以写成4C ︒,故选项正确,不符合题意;C .若盈利100元记作100+元,则20−元表示亏损20元,故选项正确,不符合题意;D .规定向正北走用正数表示,向正南走才用负数表示,故选项错误,符合题意.故选:D .【点睛】此题考查了0的特征、正负数的意义和相反意义的量,熟练掌握相关基础知识是解题的关键.2.(2022秋·河北秦皇岛·七年级校联考阶段练习)下列语句正确的是( )①一个数前面加上“−”号,这个数就是负数;②如果a 是正数,那么a −一定是负数;③一个有理数不是正的就是负的;④0︒表示没有温度;A .0个B .1个C .2个D .3个 【答案】B【分析】根据正负数的定义和0的意义进行逐一判断即可.【详解】解:①一个正数前面加上“−”号,这个数就是负数,说法错误;②如果a 是正数,那么a −一定是负数,说法正确;③0是有理数,但是0既不是正数也不是负数,说法错误;④0︒表示有温度,说法错误;故选B .【点睛】本题主要考查了正负数的定义和0的意义,熟知相关知识是解题的关键.3.(2022秋·全国·七年级专题练习)下面关于0的说法:(1)0是最小的正数;(2)0是最小的非负数;(3)0既不是正数也不是负数;(4)0既不是奇数也不是偶数;(5)0是最小的自然数;(6)海拔0m就是没有海拔.其中正确说法的个数是()A.0B.1C.2D.3【答案】D【分析】0既不是正数也不是负数,是最小的非负数,最小的自然数,是偶数,判断即可得到结果.【详解】解:(1)0是最小的正数,错误,0不是正数也不是负数;(2)0是最小的非负数,正确,非负数即为正数与0;(3)0既不是正数也不是负数,正确;(4)0既不是奇数也不是偶数,错误,0是偶数;(5)0是最小的自然数,正确;(6)海拔0m就是没有海拔,错误,海拔0m就是与海平面高度相同;则正确的说法有3个.故选:D.【点睛】此题考查了有理数的分类和意义,掌握有理数的分类和0的意义是解本题的关键.4.(2022秋·河北保定·七年级统考期中)下面关于0的说法,正确的是()A.0既不是正数也不是负数B.0既不是整数也不是分数C.0不是有理数D.0的倒数是0【答案】A【分析】依据倒数,有理数相关概念以及有理数分类判断即可.【详解】A.0既不是正数,也不是负数,故此选项正确,符合题意;B.0是整数,不是分数,故此选项错误,不符合题意;C.0是有理数,故此选项错误,不符合题意;D.0不存在倒数,故此选项错误,不符合题意.故选A.【点睛】本题考查了有理数,0是重要的数字,掌握有理数的相关概念和分类是解题的关键.5.(2022秋·天津北辰·七年级统考期中)下列说法正确的是()A.1是最小的正数B.﹣1是最大的负数C.绝对值等于本身的数是0D.0既不是正数也不是负数【答案】D【分析】根据正数、负数的概念,绝对值的意义分析判断即可.【详解】解:A、0是正数和负数的分界点,大于0的数都是正数,故1不是最小的正数,本选项不符合题意;B、0是正数和负数的分界点,小于0的数都是负数,故﹣1不是最大的负数,本选项不符合题意;C、0和正数的绝对值都等于本身,故本选项不符合题意;D、0既不是正数,也不是负数,故本选项符合题意.故选:D.【点睛】本题考查了正数和负数以及0的意义,解题的关键是掌握0是正数和负数的分界点,0既不是正数也不是负数,正数大于0,负数小于0.6.(2023秋·江苏宿迁·七年级统考期末)既不是正数也不是负数的数是()A.2−B.1−C.0D.1【答案】C【分析】根据有理数的分类,即可求解.【详解】解:A、2−是负数,故本选项不符合题意;B、1−是负数,故本选项不符合题意;C、0既不是正数也不是负数,故本选项符合题意;D、1是正数,故本选项不符合题意;故选:C【点睛】本题主要考查了有理数的分类,熟练掌握0既不是正数也不是负数是解题的关键.7.(2022秋·山西临汾·七年级统考阶段练习)有下列两个判断:①正整数和负整数统称为整数;②整数和分数统称为有理数.其中正确的是()A.①对,②错B.①错,②对C.①②都对D.①②都错【答案】B【分析】根据整数的分类和有理数的定义进行判断即可.【详解】解:①整数包括正整数、负整数和零,故①错误;②整数和分数统称为有理数,故②正确;综上分析可知,①错,②对,故B正确.故选:B.【点睛】本题主要考查了整数的分类和有理数的定义,熟练掌握整数包括正整数、负整数和零,是解题的关键.8.(2022秋·吉林长春·七年级统考期中)课堂上老师要求就数“”发表自己的意见,四位同学共说了下列四句话:①是整数,但不是自然数;②既不是正数,也不是负数;③不是整数,是自然数;④没有实际意义.其中正确的个数是()A.4B.3C.2D.1【答案】D【分析】分别依据整数的定义、0的性质、和0的意义进行判断即可.【详解】解:自然数中包括0,当然0也是整数,所以①③都不正确;0既不是正数也不是负数,所以②正确;而在实际生活中0具有实际的意义,如0℃,所以④不正确;故正确的只有②,故选:D.【点睛】本题主要考查对0的理解,解题的关键是知道0是整数,也是自然数;0既不是正数也不是负数;0具有实际的意义.二、填空题9.(2023秋·全国·七年级专题练习)正数:比____大的数;负数:在正数前面加上_______的数,______既不是正数,也不是负数.【答案】0 负号0【分析】根据有理数的有关概念判断即可.【详解】解:根据题意,正数:比0大的数;负数:在正数前面加上负号的数,0既不是正数,也不是负数.故答案为:0,负号,0【点睛】本题考查了有理数,解题的关键是掌握有理数的定义进行判断.10.(2022秋·全国·七年级专题练习)下列关于零的说法中,正确的是________①零是正数②零是负数③零既不是正数,也不是负数④零仅表示没有【答案】③【分析】根据零既不是正数也不是负数以及不同情形下零表示的意义不同进行逐一判断即可.【详解】解:①零不是正数,说法错误;②零不是负数,说法错误;③零既不是正数,也不是负数,说法正确;④零不仅仅表示没有,不同情形下,零表示的意义不同,说法错误;故答案为:③.【点睛】本题主要考查了有理数的分类,熟知零表示的意义是解题的关键.三、解答题11.(2022秋·山西太原·七年级太原市第十八中学校校考阶段练习)请写四句话,说明数“零”(0)的数学特性.(例:0是绝对值最小的数.例句除外)【答案】见解析【分析】根据题意可以写出零的数学特性,本题得以解决.【详解】解:①零既不是正数也不是负数;②零小于正数,大于负数;③零不能做分母;④零是最小的非负数;⑤零的相反数是零;⑥任何不为零的数的零次幂为1;⑦零乘以任何数都是零等.【点睛】本题考查有理数,解题的关键是明确题意,可以仿照例句写出关于零的别的数学特性.三、有理数的分类一、单选题 1.(2022秋·贵州贵阳·七年级校考阶段练习)下列说法正确的是( )A .0既不是正数,也不是负数B .非负数就是正数C .一个数前面加上“−”号这个数就是负数D .正数和负数统称为有理数【答案】A【分析】根据有理数的有关概念判断即可.【详解】解:A 、0既不是正数,也不是负数,故符合题意;B 、非负数就是0和正数,故不符合题意;C 、一个数前面加上“−”号,这个数不一定是负数,如2−,故不符合题意;D 、零和正数和负数统称为有理数,故不符合题意;故选:A .【点睛】此题考查有理数,关键是根据有理数的有关概念判断.【答案】C【分析】根据整数的定义,即可得到答案.【详解】解:根据题意可得:11405+−−,,,属于整数, ∴整数一共有4个,故选:C .【点睛】本题主要考查了有理数,利用整数的定义是解题的关键.【答案】C 【分析】根据负分数的定义可以得到答案,要注意负小数也可以化为负分数.【详解】解:在数3570.5405156569−−−,,,,,中,负分数有370.54659−−−,,,共有3个, 故选:C .【点睛】本题考查了有理数的分类,解题的关键是掌握负分数的定义,要注意很容易将负小数漏掉,出现错误.二、填空题【答案】0.618,30%,7;7,0,1006+;132−【分析】根据有理数的分类即可解答.【详解】解:正分数集合:(0.618,30%,227);非负整数集合:(7,0,1006+);负分数集合:(132−). 故答案为:0.618,30%,227;7,0,1006+;132−. 【点睛】本题考查了有理数的分类,熟练掌握有理数的分类是解决本题的关键.【答案】 62.49,, 60, 630−,, 3.144−−,【分析】根据分母为1的数是整数,可得整数集合;根据小于零的数是负数,可得负数集合;根据大或等于零的整数是非负整数,可得非负整数集合,根据小于零的分数是负分数,可得负分数集合,根据有理数是有限小数或无限循环小数,可得有理数集合.【详解】解:正数:{6,2.4,29…}非负整数:{6,0…} 整数:{6,3−,0…} 负分数:{3 3.144−−,…}故答案为:6,2.4,29;6,0;6,3−,0;34−, 3.14−.【点睛】此题考查了有理数,熟练掌握有理数的分类是解本题的关键.三、解答题【答案】(1)2,3,7(2) 3.14−,5−,0.1212212221−⋯ (3)2,5− (4) 3.14−,227【分析】根据有理数的分类方法求解即可. 【详解】(1)解:正数有:2,3π,227,故答案为:2,3π,227;(2)解:负数有: 3.14−,5−,0.1212212221−⋯; 故答案为: 3.14−,5−,0.1212212221−⋯; (3)解:整数有:2,5−; 故答案为:2,5−;(4)解:分数有: 3.14−,227;故答案为: 3.14−,227.【点睛】本题主要考查了有理数的分类,熟知有理数的分类方法是解题的关键.【答案】正数:3.14,72+,0.618;负数: 2.5−,2−,0.6−,0.101−;分数: 2.5−,3.14,0.6−,0.618,0.101−;非负数:3.14,72+,0.618,0.【分析】根据有理数的分类方法进行求解即可. 【详解】解: 2.5−是负数,是分数; 3.14是正数,是分数,是非负数;2−是负数;72+是正数,是非负数; 0.6−是负数,是分数;0.618是正数,是分数,是非负数;0是非负数;0.101−是负数,是分数;∴正数:3.14,72+,0.618; 负数: 2.5−,2−,0.6−,0.101−;分数: 2.5−,3.14,0.6−,0.618,0.101−; 非负数:3.14,72+,0.618,0.【点睛】本题主要考查了有理数的分类,熟知有理数的分类方法是解题的关键.四、带“非”字的有理数一、单选题【答案】B【分析】根据有理数的分类进行分析解答即可.【详解】解:没有最小的整数,故①错误,0既不是正数也不是负数,但是有理数,故②错误,非负数是正数和0,故③错误,237是有限小数,故④错误,正数中没有最小的数,负数中没有最大的数,故⑤正确,综上可知,错误的说法为①②③④,故选:B【点睛】此题考查了有理数,熟练掌握有理数的分类是解题的关键.【答案】A【分析】根据有理数的分类方法进行逐一判断即可.【详解】解:A.113,0.3,43−都是分数,故此选项符合题意;B.1, 2.5−−都是负数,故此选项不符合题意;C.0不是正数,故此选项不符合题意;D.132是分数,不是整数,故此选项不符合题意.故选:A.【点睛】本题主要考查了有理数的分类,熟知有理数的分类方法是解题的关键.3.(2022秋·山东日照·七年级校考期末)下列说法中:①0是最小的整数;②有理数不是正数就是负数;③非负数就是正数和0;④整数和分数统称有理数,其中正确的个数是()A.0B.1C.2D.3【答案】C【分析】根据有理数定义及其分类解答即可.【详解】没有最小的整数,故①错误;有理数包括正数、0、负数,故②错误;非负数就是正数和0,故③正确;整数和分数统称有理数,故④正确;故选:C【点睛】本题侧重考查的是有理数,掌握有理数定义及其分类是解决此题的关键.【答案】C【分析】根据非负整数的概念求解即可.【详解】解:()33−−=,∴在3.67,0,1,23−,()3−−,157,6−中,非负整数有:0,1,()3−−,共3个,故选:C.【点睛】此题考查了非负整数的概念,解题的关键是掌握非负整数的概念.非负整数包括正整数和零.5.(2022秋·贵州遵义·七年级校考阶段练习)下列说法正确的是()A.正整数和负整数统称整数B.a−一定是负数C.21n+(n为整数)表示一个奇数D.非负数包括零和负数【答案】C【分析】根据有理数的分类进行判断即可.【详解】解:A.正整数、0和负整数统称整数,说法错误,不符合题意;B.a−不一定是负数,说法错误,不符合题意;C.21n+(n为整数)表示一个奇数,说法正确,符合题意;D .非负数包括零和正数,说法错误,不符合题意; 故选:C .【点睛】本题考查了有理数的分类,熟练掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点是解题的关键.二、填空题【答案】6【分析】根据非负数包括正数和判断即可.【详解】解:在11+,,37−,45+,12,5−,0.26,1.38中,非负数有11+,,45+,12,0.26,1.38,共6个. 故答案为:6.【点睛】本题考查有理数的分类.正确掌握有理数的分类标准是解题的关键.三、解答题【答案】(1) 6.5+,0.5,52;(2)0,13,9−,1−;(3) 6.5+,0.5,0,13,152,3π.【分析】(1)根据正分数的定义:比0大的分数叫正分数,正数前面常有一个符号“+”,通常可以省略不写,据此逐一进行判断即可得到答案;(2)根据整数的定义:整数是正整数、零、负整数的集合,据此逐一进行判断即可得到答案; (3)根据非负数的定义:正数和零总称为非负数,据此逐一进行判断即可得到答案 【详解】(1)解:根据正分数的定义,正分数有: 6.5+,0.5,152,故答案为: 6.5+,0.5,152;(2)解:根据整数的定义,整数有:0,13,9−,1−, 故答案为:0,13,9−,1−;(3)解:根据非负数的定义,非负数有: 6.5+,0.5,0,13,152,3π,故答案为: 6.5+,0.5,0,13,152,3π.【点睛】本题考查了有理数的分类,解题关键是理解正分数,整数,非负数的定义,并正确区别.【答案】(1)13−, 2.23−,0,15%−,132−(2)0.1,27+,0,227(3)13−,0 (4)27+,0【分析】(1)根据“负数和0统称为非正数”即可进行解答; (2)根据“正数和0统称为非负数”即可进行解答; (3)根据“0和负整数统称为非正整数”即可进行解答; (4)根据“0和正整数统称为非负整数”即可进行解答.【详解】(1)解:非正数:{13−, 2.23−,0,15%−,132−,…};故答案为:13−, 2.23−,0,15%−,132−;(2)解:非负数:{0.1,27+,0,227,…};故答案为:0.1,27+,0,227;(3)解:非正整数:{13−,0,…}; 故答案为:13−,0;(4)解:非负整数:{27+,0,…}. 故答案为:27+,0.【点睛】本题主要考查了有理数的分类,熟练掌握有理数的各个分类依据是解题的关键.【答案】(1)0,2021,101− (2)23.01,2021,13−−−(3)22,15%,3.14,0.6187+ (4)22,15%,101,3.14,0.6187+(5)0,2021−(6)22,0,15%,101,3.14,0.6187+【分析】根据有理数的分类即可解答.【详解】(1)解:整数:0,2021,101−(2)解:负数:23.01,2021,13−−−(3)解:正分数:22,15%,3.14,0.6187+ (4)解:正有理数:22,15%,101,3.14,0.6187+(5)解:非正整数:0,2021−(6)解:非负数:22,0,15%,101,3.14,0.6187+【点睛】本题考查的是有理数的分类,熟练掌握有理数的分类是解题的关键.【答案】5、0.75−、310+;3−、2021−;5、0、3+、310+.【分析】直接根据有理数的分类进行解答即可.【详解】分数集合:{15、0.75−、310+…};负整数集合:{3−、2021−…};非负数集合:{15、0、3+、310+…}.故答案为:15、0.75−、310+;3−、2021−;15、0、3+、310+.【点睛】此题考查的是有理数,掌握分数、负整数、非负数的概念是解决此题关键.【过关检测】一.选择题(共10小题)1.(2022秋•东港区校级期末)下列说法中:①0是最小的整数;②有理数不是正数就是负数;③非负数就是正数和0;④整数和分数统称有理数,其中正确的个数是( ) A .0B .1C .2D .3【分析】根据有理数定义及其分类解答即可.【解答】解:①没有最小的整数,故①错误,不符合题意;②有理数包括正有理数、0、负有理数,故②错误,不符合题意;③非负数就是正数和0,故③正确,符合题意;④整数和分数统称有理数,故④正确,符合题意;故选:C.【点评】本题侧重考查的是有理数,掌握有理数定义及其分类是解决此题的关键.2.(2022秋•朝阳区期末)下面的说法中,正确的是()A.正有理数和负有理数统称有理数B.整数和小数统称有理数C.整数和分数统称有理数D.整数、零和分数统称有理数【分析】根据有理数的分类进行判断即可.【解答】解:A.正有理数、0和负有理数统称为有理数,故不符合题意;B.无限不循环小数是无理数,故不符合题意;C.整数和分数统称为有理数,故符合题意;D.整数包括零,故不符合题意.故选:C.【点评】本题考查有理数的分类,熟练掌握有理数的分类方法是解题的关键.3.(2022秋•河池期末)下列数中,是正整数的是()A.﹣1B.0C.1D.【分析】根据正整数的定义进行逐一判断即可.【解答】解:∵这四个数中,只有1是正整数,∴只有选项C符合题意,故选:C.【点评】本题主要考查了正整数的定义,熟知定义是解题的关键.4.(2022秋•巴南区期末)在﹣2022,﹣1,0,1这四个有理数中,最小的有理数是()A.﹣2022B.﹣1C.0D.1【分析】根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.依此即可求解.【解答】解:∵﹣2022<﹣1<0<1,所以最小的有理数是﹣2022.故选:A.【点评】本题考查了有理数大小比较,关键是熟练掌握有理数大小比较的方法.5.(2022秋•隆回县期末)在,,0,﹣1,0.12,14,﹣2,﹣1.5这些数中,正有理数有m个,非负整数有n个,分数有k个,则m﹣n+k的值为()A.3B.4C.6D.5【分析】先求出m,n,k的值,再进行计算即可.【解答】解:∵,0.12,14是正有理数,共3个;0,14是非负整数,共2个;,,0.12,﹣1.5是分数,共4个,∴m=3,n=2,k=4,∴m﹣n+k=3﹣2+4=5.故选:D.【点评】本题考查的是有理数,熟知有理数的分类是解题的关键.6.(2022秋•竞秀区期末)在下列选项中,所填的数正确的是()A.分数{﹣3,0.3,,…}B.非负数{0,﹣1,﹣2.5,…}C.正数{2,1,5,0,…}D.整数{3,﹣5,…}【分析】根据有理数的分类方法进行逐一判断即可.【解答】解:A.都是分数,故此选项符合题意;B.﹣1,﹣2.5都是负数,故此选项不符合题意;C.0不是正数,故此选项不符合题意;D.是分数,不是整数,故此选项不符合题意.故选:A.【点评】本题主要考查了有理数的分类,熟知有理数的分类方法是解题的关键.7.(2022秋•宛城区校级期末)下列说法错误的是()A.0既不是正数,也不是负数B.零上6摄氏度可以写成+6℃,也可以写成6℃C.向东走一定用正数表示,向西走一定用负数表示D.没有最小的有理数【分析】根据有理数的概念和性质判断即可.【解答】A.0既不是正数,也不是负数,正确,故该选项不符合题意;B.零上6摄氏度可以写成+6℃,也可以写成6℃,正确,故该选项不符合题意;C.向东走可以用正数表示,也可以用负数表示,根据相反意义的关系,即可表示另一个方向,故该选项不正确,符合题意;D.没有最小的有理数,正确,故该选项不符合题意.故选:C.【点评】本题考查了有理数的基本概念,熟练掌握有理数的基本概念是解题的关键.8.(2022秋•荆门期末)数0.1不属于()A.正数B.整数C.分数D.有理数【分析】根据有理数的分类解得即可.【解答】解:数0.1是正数,是分数(小数可以化成分数),是有理数,但不是整数.故选:B.【点评】本题考查了有理数,解题的关键是熟练掌握有理数的分类.9.(2022秋•广阳区校级期末)下列各数:,1.010010001,,0,﹣π,﹣2.626626662…,0.,其中有理数的个数是()A.2B.3C.4D.5【分析】直接利用有理数的概念分析得出答案.【解答】解:﹣,1.010010001,,0,﹣π,﹣2.626626662…,0.,其中有理数为:﹣,1.010010001,,0,0.,共5个.故选:D.【点评】此题主要考查了有理数的相关概念,正确把握相关定义是解题关键.10.(2022秋•南宫市期末)若有理数的分类表示为:,则“”表示的是()A.正有理数B.负有理数C.0D.非负数【分析】根据有理数及整数的分类方法判断即可.【解答】解:有理数包括:整数与分数,整数包括:正整数,0和负整数,则“”表示的是0.故选:C.【点评】此题考查了有理数,熟练掌握有理数的分类方法是解本题的关键.二.填空题(共8小题)11.(2022秋•枣阳市期末)在数﹣1,﹣9,﹣2.23,0,+3,,﹣π,,﹣0.01001中,是负分数.【分析】根据有理数的分类逐一判断即可得到答案.【解答】解:负整数:﹣1,﹣9;正整数:+3;正分数:;负分数:﹣2.23,,﹣0.01001;无理数:﹣π,故答案为:﹣2.23,,﹣0.01001.【点评】本题考查了有理数的分类,熟练掌握负分数的概念是解题关键,注意所有的有限小数和无限循环小数都可以化成分数的形式,而无限不循环小数,不能化成分数的形式.12.(2022秋•福清市期末)写一个比﹣1小的有理数.(答案不唯一)(只需写出一个即可)【分析】根据负数的大小比较,绝对值大的反而小,只要绝对值大于1的负数都可以.【解答】解:根据题意,绝对值大于1的负数均可,例如﹣2(答案不唯一).【点评】只要是负数并且绝对值大于1的数就可以,也可以利用数轴根据右边的总比左边的大,选择﹣1左边的数.13.(2022秋•魏县期中)一个九位数,最高位上是最大的一位数,千万位上是5,十万位上是最小的合数,百位上是最小的质数,其余各位都是0,这个数写作.【分析】根据最大的一位数是9,千万位上是5,最小的合数是4,最小的质数是2,其余各位都是0即可解答.【解答】解:∵最大的一位数是9,千万位上是5,最小的合数是4,最小的质数是2,其余各位都是0,∴这个数是950400200.故答案为:950400200.【点评】本题考查的是有理数,熟知最小的合数是4,最小的质数是2是解题的关键.14.(2022秋•新城区校级期中)月考成绩出来后,组长记录了她们组6名同学的数学成绩,她以80分作为计分标准,超过的部分计为正数,不足的部分计为负数,若她们组6名同学的成绩为+16,﹣10,0,+18,﹣4,﹣8,则这6名同学的实际成绩最高分数是分.【分析】这列数字中的最大数加上80就是实际的最高分.【解答】解:80+18=98(分),故答案为:98.【点评】本题考查了有理数,有理数的比较是解题的关键.15.(2022秋•西峰区校级期末)在“﹣1,﹣0.3,+1,0,﹣2.7”这五个数中,负有理数是.【分析】根据小于零的有理数是负有理数,可得答案.【解答】解:负有理数是﹣1,﹣0.3,﹣2.7.故答案为:﹣1,﹣0.3,﹣2.7.【点评】本题考查了有理数,掌握小于零的有理数是负有理数是关键.16.(2022秋•新市区校级期末)在﹣15,,﹣0.23,0.51,0,7.6,2,﹣,314%中,非负数有个.【分析】利用有理数的定义判断.【解答】解:在﹣15,,﹣0.23,0.51,0,7.6,2,﹣,314%中,。
(完整版)苏教七年级下册期末复习数学必备知识点题目优质及答案解析

(完整版)苏教七年级下册期末复习数学必备知识点题目优质及答案解析一、选择题1.下列计算正确的是( )A .a 3+a 2=a 5B .a 3•a 2=a 6C .(a 2)3=a 6D .a 6÷a 3=a 2 2.下列图形中,1∠和2∠不是内错角的是( )A .B .C .D .3.不等式331x x -≤+的解集在数轴上表示如下,正确的是( )A .B .C .D . 4.如图,有A 、B 、C 三种不同型号的卡片,每种各10张.A 型卡片是边长为a 的正方形,B 型卡片是相邻两边长分别为a 、b 的长方形,C 型卡片是边长为b 的正方形.从中取出若干张卡片(每种卡片至少一张),把取出的这些卡片拼成一个正方形,所有符合要求的正方形的个数是( )A .4B .5C .6D .75.已知关于x ,y 的不等式组:100x x a ->⎧⎨-≤⎩有以下说法:①若它的解集是14x <≤,则4a =;②当1a =时,它无解;③若它的整数解只有2,3,4,则45a ≤<;④若它有解,则2a ≥.其中所有正确说法的序号是( ).A .①②③B .①②④C .④D .②④ 6.下列命题:①如果a b >,那么a b >;②如果22ac bc >,那么a b >;③同旁内角互补;④若α∠与β∠互余,β∠与γ∠互余,则α∠与γ∠互余.真命题的个数为( ) A .0 B .1 C .2 D .37.任意大于1的正整数m 的三次幂均可“分裂”成m 个连接奇数的和,如:3235=+,337911=++,3413151719=+++,…按此规律,若3m 分裂后,其中一个奇数是2021,则m 的值是( )A .46B .45C .44D .438.矩形ABCD 内放入两张边长分别为a 和()b a b >的正方纸片,按照图①放置,矩形纸片没有两个正方形覆盖的部分(黑色阴影部分)的面积为1S ;按照图②放置,矩形纸片没有被两个正方形覆盖的部分面积为2S ;按图③放置,矩形纸片没有被两个正方形覆盖的部分的面积为3S .已知133S S -=,2312S S -=,设AD AB m -=,则下列值是常数的是( ) A .ma B .mb C .m D .a b +二、填空题9.计算:(-xy)3·(-x 2)= ______;10.已知三条不同的直线a 、b 、c 在同一平面内,下列四条命题:①如果a ∥b ,a ⊥c ,那么b ⊥c ;②如果b ∥a ,c ∥a ,那么b ∥c ;③如果b ⊥a ,c ⊥a ,那么b ⊥c ;④如果b ⊥a ,c ⊥a ,那么b ∥c .其中假命题的是___.(填写序号) 11.一个多边形的内角和与外角和之差为720︒,则这个多边形的边数为______.12.若22(91)(111)81012k--=⨯⨯,则k =___________.13.如果二元一次方程组13x y x y -=⎧⎨+=⎩的解是二元一次方程3x ﹣2y+a =0的一个解,那么a 的值是_____.14.下列三个日常现象:其中,可以用“两点之间线段最短”来解释的是 _____ (填序号).15.已知三角形ABC ,且AB =3厘米,BC =2厘米,A 、C 两点间的距离为x 厘米,那么x 的取值范围是________.16.如图1,将三角板ABC 与三角板ADE 摆放在一起;如图2,固定三角板ABC ,将三角板ADE 绕点A 按顺时针方向旋转,记旋转角∠CAE=α(0°<α<180°).当△ADE 的一边与△ABC 的某一边平行(不共线)时,写出旋转角α的所有可能的度数为 .17.计算:(1)()101334π-⎛⎫+--- ⎪⎝⎭; (2)()()237a b a b ++;(3)4540.20.412.5⨯⨯;(4)()()()2422x x x +-+.18.将下列各式分解因式(1)3222x x y xy -+(2)22222()4a b a b +-(3)2294129x xy y -+-(4)222(2)11(2)24x x x x ---+19.解下列方程组(其中第(1)题用代入消元法解)(1)212316x y x y -=⎧⎨+=⎩ (2)234326x y x y +=⎧⎨-=⎩20.利用数轴解不等式组3(2)41213x xxx--≤-⎧⎪+⎨-≤⎪⎩,并判断32是否是该不等式组的解.三、解答题21.已知:如图,CD⊥AB,FG⊥AB,垂足分别为D、G,点E在AC上,且∠1=∠2.(1)求证:DE//BC;(2)如果∠B=46°,且∠A比∠ACB小10°,求∠DEC的度数.22.某工厂准备用图甲所示的A型正方形板材和B型长方形板材,制作成图乙所示的竖式和横式两种无盖箱子.(1)若现有A型板材150张,B型板材300张,为节约成本,需将板材全部用完,且不能切割板材,则可制作竖式和横式两种无盖箱子各多少个?(2)若该工厂准备用不超过24000元资金去购买A、B两种型号板材,制作竖式、横式箱子共100个.已知A型板材每张20元,B型板材每张60元,问最多可以制作竖式箱子多少个?23.阅读下列材料:问题:已知x﹣y=2,且x>1,y<0解:∵x﹣y=2.∴x=y+2,又∵x>1∴y+2>1∴y>﹣1又∵y<0∴﹣1<y<0①∴﹣1+2<y+2<0+2即1<x<2②①+②得﹣1+1<x+y<0+2∴x+y的取值范围是0<x+y<2请按照上述方法,完成下列问题:(1)已知x ﹣y =3,且x >﹣1,y <0,则x 的取值范围是 ;x +y 的取值范围是 ; (2)已知x ﹣y =a ,且x <﹣b ,y >2b ,根据上述做法得到-2<3x -y <10,求a 、b 的值. 24.【问题探究】如图1,DF ∥CE ,∠PCE=∠α,∠PDF=∠β,猜想∠DPC 与α、β之间有何数量关系?并说明理由;【问题迁移】如图2,DF ∥CE ,点P 在三角板AB 边上滑动,∠PCE=∠α,∠PDF=∠β.(1)当点P 在E 、F 两点之间运动时,如果α=30°,β=40°,则∠DPC= °.(2)如果点P 在E 、F 两点外侧运动时(点P 与点A 、B 、E 、F 四点不重合),写出∠DPC 与α、β之间的数量关系,并说明理由.(图1) (图2)25.模型规律:如图1,延长CO 交AB 于点D ,则1BOC B A C B ∠=∠+∠=∠+∠+∠.因为凹四边形ABOC 形似箭头,其四角具有“BOC A B C ∠=∠+∠+∠”这个规律,所以我们把这个模型叫做“箭头四角形”.模型应用(1)直接应用:①如图2,60,20,30A B C ∠=︒∠=︒∠=︒,则BOC ∠=__________︒;②如图3,A B C D E F ∠+∠+∠+∠+∠+∠=__________︒;(2)拓展应用:①如图4,ABO ∠、ACO ∠的2等分线(即角平分线)1BO 、1CO 交于点1O ,已知120BOC ∠=︒,50BAC ∠=︒,则1BO C ∠=__________︒;②如图5,BO 、CO 分别为ABO ∠、ACO ∠的10等分线1,2,3,,(,)89i =⋯.它们的交点从上到下依次为1O 、2O 、3O 、…、9O .已知120BOC ∠=︒,50BAC ∠=︒,则7BO C ∠=__________︒;③如图6,ABO ∠、BAC ∠的角平分线BD 、AD 交于点D ,已知120,44BOC C ∠=︒∠=︒,则ADB =∠__________︒;④如图7,BAC ∠、BOC ∠的角平分线AD 、OD 交于点D ,则B 、C ∠、D ∠之同的数量关系为__________.【参考答案】一、选择题1.C解析:C【分析】根据同类项定义与合并同类项法则可判断A ,利用幂指数运算法则分别计算出各项的结果,可判断B 、C 、D 即可.【详解】解:A .a 3与a 2不是同类项不能合并,a 3+a 2≠a 5,故选项A 错误;B .a 3•a 2=a 56a ≠,故选项B 错误;C .(a 2)3=a 6,故选项C 正确;D .a 6÷a 3=a 32a ≠,故选项D 错误.故选:C .【点睛】本题主要考查了幂指数的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.2.B解析:B【分析】根据内错角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角解答.【详解】解:A 、∠1和∠2是内错角,故选项不合题意;B 、∠1和∠2不是内错角,故选项符合题意;C 、∠1和∠2是内错角,故选项不合题意;D 、∠1和∠2是内错角,故选项不合题意;故选B .【点睛】本题考查了“三线八角”问题,确定三线八角的关键是从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.3.B解析:B【分析】先根据不等式的性质:先移项,然后合并同类项再系数化1即可求得不等式的解集,然后在数轴上表示不等式的解集即可.【详解】不等式331x x -≤+,移项得:331x x -≤+,合并同类项得:24x -≤解得:2x ≥-;在数轴上表示为:故选:B .【点睛】本题考查了解一元一次不等式以及数轴上表示不等式的解集,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.4.C解析:C【分析】每一种卡片10张,并且每种卡片至少取1张,根据完全平方公式的特点可确定拼成的正方形的边长可以为(a+b),(a+2b),(a+3b),(2a+b),(2a+2b),(3a+b)共六种情况.【详解】解:∵每一种卡片10张,并且每种卡片至少取1张拼成正方形,∴正方形的边长可以为:(a+b),(a+2b),(a+3b),(2a+b),(2a+2b),(3a+b)六种情况;(注意每一种卡片至少用1张,至多用10张)即:(a+b)2=a2+2ab+b2,需要A卡片1张,B卡片2张,C卡片1张;(a+2b)2=a2+4ab+4b2,需要A卡片1张,B卡片4张,C卡片4张;(a+3b)2=a2+6ab+9b2,需要A卡片1张,B卡片6张,C卡片9张;(2a+b)2=4a2+4ab+b2,需要A卡片4张,B卡片4张,C卡片1张;(2a+2b)2=4a2+8ab+4b2,需要A卡片4张,B卡片8张,C卡片4张;(3a+b)2=9a2+6ab+b2,需要A卡片9张,B卡片6张,C卡片1张;故选:C.【点睛】本题考查的是完全平方公式的意义和应用,面积法表示完全平方公式是解题的关键.5.A解析:A【分析】根据不等式组的解集的定义,解不等式组,不等式组解集的整数解等概念,逐项分析即可【详解】①100 xx a->⎧⎨-≤⎩①②解不等式①得:1x>解不等式②得:x a≤若10xx a->⎧⎨-≤⎩①②的解集是14x<≤则1x a<≤4a=∴①正确;②当1a=时,原不等式组为:1010 xx->⎧⎨-≤⎩①②解不等式①得:1x>解不等式②得:1x ≤则原不等式组无解∴②正确;③若100x x a ->⎧⎨-≤⎩①②有解,由①可知解集为:1x a <≤ 若它的整数解只有2,3,4,则45a ≤<∴③正确;④若100x x a ->⎧⎨-≤⎩①②有解,由①可知解集为:1x a <≤ 则1a >∴④不正确.综上所述,正确的是①②③.故选A.【点睛】本题考查了不等式组的解集的定义,解不等式组,不等式组解集的整数解等概念,熟练以上知识是解题的关键.6.B解析:B【分析】根据绝对值、不等式的性质、平行线的性质、同角的余角相等分别对各小题进行判断后即可求解.【详解】①当a =1,b =−2时,|a|=1,|b|=2,|a|<|b|,故此命题假命题;②如果22ac bc >,那么a >b ;真命题;③同旁内角互补;假命题;④若α∠与β∠互余,β∠与γ∠互余,则α∠与γ∠相等,故此命题是假命题; 真命题的个数为1个;故选:B .【点睛】本题考查了命题与定理,熟记概念与性质是解题的关键.7.B解析:B【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m 3的所有奇数的个数的表达式,再求出奇数2021的是从3开始的第1010个数,然后确定出1007所在的范围即可得解.【详解】解:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m 3分裂成m 个奇数,所以,到m 3的奇数的个数为:2+3+4+…+m=(2)(1)2m m +-, ∵2n+1=2021,n=1010,∴奇数2021是从3开始的第1010个奇数, ∵(442)(441)(452)(451)989,103422+⨯-+⨯-==, ∴第1010个奇数是底数为45的数的立方分裂的奇数的其中一个,即m=45.故选:B .【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.8.B解析:B【分析】利用面积的和差表示出S 2-S 1,根据图①与图②分别表示出矩形的面积,进而得到b (AD-AB )=12,从而求解.【详解】解:由1323312S S S S -⎧⎨-⎩==, 可得:S 2-S 1=9,由图①得:S 矩形ABCD =S 1+a 2+b (AD-a ),由图②得:S 矩形ABCD =S 2+a 2+b (AB-a ),∴S 1+a 2+b (AD-a )=S 2+a 2+b (AB-a ),∴S 2-S 1=b (AD-AB ),∵AD-AB=m ,∴mb=12.故选:B .【点睛】本题考查了整式的混合运算,“整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.二、填空题9.x 5y 3【分析】直接利用积的乘方运算法则计算进而利用单项式乘以单项式计算得出答案.【详解】(-xy)3·(-x 2)= (-x 3y 3)·(-x 2)= x 5y 3,【点睛】本题考查了积的乘方运算和单项式与单项式相乘,熟练掌握运算法则是解题的关键. 10.③【分析】根据两直线的位置关系一一判断即可.【详解】解:①如果a ∥b ,a ⊥c ,那么b ⊥c ,正确,是真命题;②如果b ∥a ,c ∥a ,那么b ∥c ,正确,是真命题;③如果b ⊥a ,c ⊥a ,那么b ⊥c ,错误,应该是b ∥c ,故原命题是假命题;④如果b ⊥a ,c ⊥a ,那么b ∥c ,正确,是真命题.假命题有③,故答案为:③.【点睛】本题考查两直线的位置关系,解题的关键是掌握垂直于同一直线的两条直线平行,平行于同一直线的两条直线平行.11.8【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.【详解】设这个多边形的边数是n ,则(n-2)•180°-360°=720°,解得n=8.故答案为8.【点睛】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关. 12.10【分析】利用平方差公式分解因式后化简可求解.【详解】解:∵22(91)(111)81012k --=⨯⨯, ∴22(91)(111)81012k --=⨯⨯ (91)(91)(111)(111)81012+-+-=⨯⨯ =810101281012⨯⨯⨯=⨯⨯ 10=【点睛】本题主要考查因式分解的应用,将分子分解因式是解题的关键.13.﹣4【分析】解出方程组,求出x ,y 代入计算即可;【详解】解二元一次方程组13x y x y -=⎧⎨+=⎩得,21x y =⎧⎨=⎩, 代入3x ﹣2y+a =0得,32210a ⨯-⨯+=,∴4a =-.故答案是4-.【点睛】本题主要考查了二元一次方程组的求解,准确计算是解题的关键.14.②.【分析】利用线段的性质进行解答即可.【详解】解:图①利用垂线段最短;图②利用两点之间线段最短;图③利用两点确定一条直线;故答案为:②.【点睛】本题主要考查了线段的性质,熟悉相关性质是解题的关键.15.1<x <5【分析】直接根据三角形三边的关系进行求解即可;【详解】根据三角形三边关系可得:AB-BC <AC <AB+BC ,∵AB=3,BC=2∴1<x <5,故答案为:1<x <5.【点睛解析:1<x <5【分析】直接根据三角形三边的关系进行求解即可;【详解】根据三角形三边关系可得:AB-BC<AC<AB+BC,∵AB=3,BC=2∴1<x<5,故答案为:1<x<5.【点睛】本题考查了三角形的三边关系,正确理解题意是解题的关键.16.15°,45°,105°,135°,150°.【详解】试题分析:要分5种情况进行讨论:AD∥BC、DE∥AB、DE∥BC、DE∥AC、AE∥BC分别画出图形,再分别计算出度数即可.解:当△AD解析:15°,45°,105°,135°,150°.【详解】试题分析:要分5种情况进行讨论:AD∥BC、DE∥AB、DE∥BC、DE∥AC、AE∥BC分别画出图形,再分别计算出度数即可.解:当△ADE的一边与△ABC的某一边平行(不共线)时,旋转角α的所有可能的情况如下图所示:①当AD ∥BC 时,α=15°;②当DE ∥AB 时,α=45°;③当DE ∥BC 时,α=105°;④当DE ∥AC 时,α=135°;⑤当AE ∥BC 时,α=150°.故答案为15°,45°,105°,135°,150°.考点:旋转的性质.17.(1)2;(2);(3)0.4;(4)【分析】(1)先算负整数指数幂,零指数幂和绝对值,再算加减法,即可求解; (2)根据多项式乘多项式法则,即可求解;(3)根据积的乘方运算的逆运算法则,即可解析:(1)2;(2)2221721a ab b ++;(3)0.4;(4)416x -【分析】(1)先算负整数指数幂,零指数幂和绝对值,再算加减法,即可求解;(2)根据多项式乘多项式法则,即可求解;(3)根据积的乘方运算的逆运算法则,即可求解;(4)利用平方差公式,进行计算,即可.【详解】解:(1)原式=413+-=2;(2)原式=22214321a ab ab b +++=2221721a ab b ++;(3)原式=()40.20.412.50.4⨯⨯⨯=410.4⨯=0.4;(4)原式=()()2244x x +- =416x -.【点睛】本题主要考查整式的运算和实数的运算,掌握平方差公式,多项式乘多项式法则,积的乘方法则,负整数指数幂和零指数幂的性质,是解题的关键.18.(1);(2);(3);(4)【分析】(1)先提取公因式,然后用完全平方公式进行分解即可;(2)先用完全平方公式展开,合并同类项,然后用完全平方公式进行分解即可;(3)原式进行整理先用完全平解析:(1)()2x x y -;(2)222()a b -;(3)()()323323x y x y +--+;(4)()()()()3142x x x x -+-+【分析】(1)先提取公因式,然后用完全平方公式进行分解即可;(2)先用完全平方公式展开,合并同类项,然后用完全平方公式进行分解即可; (3)原式进行整理先用完全平方公式合并,然后再用平方差公式进行因式分解; (4)用十字相乘进行因式分解即可.【详解】解:(1)原式=()222x x xy y -+=()2x x y -; (2)原式=4224224224+24-2a a b b a b a a b b +-=+=222()a b -;(3)原式=()()22294-12+9=9-23x xy y x y --=()()323323x y x y +--+; (4)原式=22(2-3)(2-8)=x x x x --()()()()3142x x x x -+-+.故答案为:(1)()2x x y -;(2)222()a b -;(3)()()323323x y x y +--+;(4)()()()()3142x x x x -+-+【点睛】本题考查了用提公因式法,公式法和十字相乘法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.19.(1) (2)【分析】(1)先将变形为再代入中,求出y 的值,再代入即可求出x 的值;(2)根据加减消元法求解即可.【详解】解:(1)将①变形为:③,将③代入②得,解得将代入③解析:(1)52x y =⎧⎨=⎩ (2)20x y =⎧⎨=⎩【分析】(1)先将21x y -=变形为12x y =+再代入236x y +=中,求出y 的值,再代入12x y =+即可求出x 的值;(2)根据加减消元法求解即可.【详解】解:(1)212316x y x y ①②-=⎧⎨+=⎩将①变形为:12x y =+③,将③代入②得,()212316y y ++=解得2y =将2y =代入③,得1225x =+⨯=∴原方程组的解为:52x y =⎧⎨=⎩; (2)234326x y x y +=⎧⎨-=⎩①② ①×3-②×2,得13y =0,解得y =0,把y =0代入②,得3x -0=6,解得x =2,∴原方程组的解为20x y =⎧⎨=⎩. 【点睛】本题考查的是二元一次方程组的解法,运用代入法和加减法是解二元一次方程组常用的方法.20.1≤x≤4,不是【分析】分别求出每一个不等式的解集,在数轴上表示出不等式的解集,从而得到不等式组的解集,再进一步判断是否在此范围即可.【详解】解:,解不等式①,得:x≥1,解不等式②,得解析:1≤x ≤4,不是【分析】分别求出每一个不等式的解集,在数轴上表示出不等式的解集,从而得到不等式组的解集,再进一步判断【详解】 解:3(2)41213x x x x --≤-⎧⎪⎨+-≤⎪⎩①②, 解不等式①,得:x ≥1,解不等式②,得:x ≤4,将不等式的解集表示在数轴上如下:∴不等式组的解集为1≤x≤4,∵324,∴32【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.三、解答题21.(1)见解析;(2)108°【分析】(1)根据CD⊥AB,FG⊥AB,可判定CD∥FG,利用平行线的性质可知∠2=∠BCD,已知∠1=∠2,等量代换得∠1=∠BCD,故可证平行;(2)根据三角解析:(1)见解析;(2)108°【分析】(1)根据CD⊥AB,FG⊥AB,可判定CD∥FG,利用平行线的性质可知∠2=∠BCD,已知∠1=∠2,等量代换得∠1=∠BCD,故可证平行;(2)根据三角形内角和求出∠ACB=72°,再根据平行线的性质即可求解.【详解】解:(1)证明:∵CD⊥AB,FG⊥AB,∴CD∥FG.∴∠2=∠BCD,又∵∠1=∠2,∴∠1=∠BCD,∴DE∥BC.(2)∵∠B=46°,∠ACB-10°=∠A,∴∠ACB+(∠ACB-10°)+46°=180°,∴∠ACB=72°,由(1)知,DE∥BC,∴∠DEC+∠ACB=180°,∴∠DEC=108°.【点睛】此题考查了平行线的判定与性质,熟记“内错角相等,两直线平行”、“两直线平行,同旁内角互补”是解题的关键.22.(1)可制作竖式无盖箱子30个,横式无盖箱子60个;(2)最多可以制作竖式箱子50个【分析】(1)设可制作竖式无盖箱子个,横式无盖箱子个,根据“有型板材150张,型板材300张,为节约成本,需将解析:(1)可制作竖式无盖箱子30个,横式无盖箱子60个;(2)最多可以制作竖式箱子50个【分析】(1)设可制作竖式无盖箱子x 个,横式无盖箱子y 个,根据“有A 型板材150张,B 型板材300张,为节约成本,需将板材全部用完,且不能切割板材,”列出方程组,即可求解; (2)设制作竖式无盖箱子m 个,则制作横式无盖箱子()100m -个,根据“A 型板材每张20元,B 型板材每张60元,”和“用不超过24000元资金去购买A 、B 两种型号板材,”列出不等式,即可求解.【详解】解:(1)设可制作竖式无盖箱子x 个,横式无盖箱子y 个,依题意得:215043300x y x y +=⎧⎨+=⎩, 解得3060x y =⎧⎨=⎩, 答:可制作竖式无盖箱子30个,横式无盖箱子60个;(2)设制作竖式无盖箱子m 个,则制作横式无盖箱子()100m -个,依题意得:()()202100604310024000m m m m ⨯+-+⨯+-≤⎡⎤⎡⎤⎣⎦⎣⎦,解得50m ≤.答:最多可以制作竖式箱子50个.【点睛】本题主要考查了二元一次方程组和一元一次不等式的应用,明确题意,准确得到数量关系是解题的关键.23.(1)-1<x <3,-5<x+y <3;(2)a =3,b =-2.【分析】(1)仿照阅读材料即可先求出-1<x <3,然后即可求出x+ y 的取值范围; (2)先仿照阅读材料求出3x-y 的取值范围,然后解析:(1)-1<x <3,-5<x +y <3;(2)a =3,b =-2.【分析】(1)仿照阅读材料即可先求出-1<x <3,然后即可求出x + y 的取值范围;(2)先仿照阅读材料求出3x -y 的取值范围,然后根据已知条件可列出关于a 、b 的方程组,解出即可求解.【详解】解:(1)∵x -y =3,∴x =y +3.∵x >-1,∴y +3>-1,即y >-4.又∵y <0,∴-4<y <0①,∴-4+3<y +3<0+3,即-1<x <3②,由①+②得:-1-4<x +y <0+3,∴x +y 的取值范围是-5<x +y <3;(2)∵x -y =a ,∴x =y +a ,∵x <-b ,∴y +a <-b ,∴y <-a -b .∵y >2b ,∴2b <y <-a -b ,∴a +b <-y <-2b ①,2b +a <y +a <-b ,即2b +a <x <-b ,∴6b +3a <3x <-3b ②由①+②得:7b +4a <3x -y <-5b ,∵-2<3x -y <10,∴742510b a b ⎧+=-⎨-=⎩, 解得:32a b ⎧=⎨=-⎩即a =3,b =-2.【点睛】本题主要考查了不等式的性质,解一元一次不等式和解二元一次方程组,理解阅读材料,列出不等式和方程组是解题的关键.24.∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α – β,理由见解析.【解析】(1)过P 作PE ∥AD 交CD 于E ,推出AD ∥PE ∥BC ,根据平行线的性质得出∠α=∠DPE ,∠β=∠C解析:∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α – β,理由见解析.【解析】(1)过P 作PE ∥AD 交CD 于E ,推出AD ∥PE ∥BC ,根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出答案;(2)化成图形,根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出答案.【问题探究】解:∠DPC=α+β如图,过P作PH∥DF∵DF∥CE,∴∠PCE=∠1=α,∠PDF=∠2∵∠DPC=∠2+∠1=α+β【问题迁移】(1)70(图1)(图2)(2) 如图1,∠DPC=β -α∵DF∥CE,∴∠PCE=∠1=β,∵∠DPC=∠1-∠FDP=∠1-α.∴∠DPC=β -α如图2,∠DPC= α -β∵DF∥CE,∴∠PDF=∠1=α∵∠DPC=∠1-∠ACE=∠1-β.∴∠DPC=α - β25.(1)①110;②260;(2)①85;②110;③142;④∠B-∠C+2∠D=0 【分析】(1)①根据题干中的等式直接计算即可;②同理可得∠A+∠B+∠C+∠D+∠E+∠F=∠BOC+∠DO解析:(1)①110;②260;(2)①85;②110;③142;④∠B-∠C+2∠D=0【分析】(1)①根据题干中的等式直接计算即可;②同理可得∠A+∠B+∠C+∠D+∠E+∠F=∠BOC+∠DOE,代入计算即可;(2)①同理可得∠BO1C=∠BOC-∠OBO1-∠OCO1,代入计算可得;②同理可得∠BO7C=∠BOC-17(∠BOC-∠A),代入计算即可;③利用∠ADB=180°-(∠ABD+∠BAD)=180°-12(∠BOC-∠C)计算可得;④根据两个凹四边形ABOD和ABOC得到两个等式,联立可得结论.【详解】解:(1)①∠BOC=∠A+∠B+∠C=60°+20°+30°=110°;②∠A+∠B+∠C+∠D+∠E+∠F=∠BOC+∠DOE=2×130°=260°;(2)①∠BO1C=∠BOC-∠OBO1-∠OCO1=∠BOC-12(∠ABO+∠ACO)=∠BOC-12(∠BOC-∠A)=∠BOC-12(120°-50°)=120°-35°=85°;②∠BO7C=∠BOC-17(∠BOC-∠A)=120°-17(120°-50°)=120°-10°=110°;③∠ADB=180°-(∠ABD+∠BAD)=180°-12(∠BOC-∠C)=180°-12(120°-44°)=142°;④∠BOD=12∠BOC=∠B+∠D+12∠BAC,∠BOC=∠B+∠C+∠BAC,联立得:∠B-∠C+2∠D=0.【点睛】本题主要考查了新定义—箭头四角形,利用了三角形外角的性质,还考查了角平分线的定义,图形类规律,解题的关键是理解箭头四角形,并能熟练运用其性质.。
(完整word版)最新初一数学知识点讲解习题附答案大全(绝对实用)(word文档良心出品)

第一章有理数【知识梳理】1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2.2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3.3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.5.科学记数法:,其中。
6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。
实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。
正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。
一、选择题。
1.下列说法正确的个数是( )①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正的,就是负的④一个分数不是正的,就是负的A 1B 2C 3D 42.a,b是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a,b,-b按照从小到大的顺序排列( )A -b<-a<a<bB -a<-b<a<bC -b<a<-a<bD -b<b<-a<a3.下列说法正确的是( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A ①②B ①③C ①②③D ①②③④4.下列运算正确的是 ( )A B -7-2×5=-9×5=-45C 3÷D -(-3)2=-95.若a+b<0,ab<0,则( )A a>0,b>0B a<0,b<0C a,b两数一正一负,且正数的绝对值大于负数的绝对值D a,b两数一正一负,且负数的绝对值大于正数的绝对值6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A 0.8kgB 0.6kgC 0.5kgD 0.4kg7.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是()A ()5mB [1-()5]mC ()5mD [1-()5]m8.若ab≠0,则的取值不可能是()A 0B 1C 2D -2二、填空题。
七年级数学核心题目解析

关 注 初 中 数 学 ( chuzh ong -shux ue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详解以 及 数 姐 贴 心 答 疑 解 惑 。
关 注 初 中 数 学 ( chuzh ong -shux ue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详解以 及 数 姐 贴 心 答 疑 解 惑 。
关 注 初 中 数 学 ( chuzh ong -shux ue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详解以 及 数 姐 贴 心 答 疑 解 惑 。
关 注 初 中 数 学 ( chuzh ong -shux ue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详解以 及 数 姐 贴 心 答 疑 解 惑 。
关 注 初 中 数 学 ( chuzh ong -shux ue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详解以 及 数 姐 贴 心 答 疑 解 惑 。
关 注 初 中 数 学 ( chuzh ong -shux ue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详解以 及 数 姐 贴 心 答 疑 解 惑 。
关 注 初 中 数 学 ( chuzh ong -shux ue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详解以 及 数 姐 贴 心 答 疑 解 惑 。
关 注 初 中 数 学 ( chuzh ong -shux ue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详解以 及 数 姐 贴 心 答 疑 解 惑 。
(完整版)苏教版七年级下册期末数学重点初中题目经典解析

(完整版)苏教版七年级下册期末数学重点初中题目经典解析一、选择题1.下列运算正确的是()-+=B.(a3)3=a6C.(ab)2=ab2D.a3·a2=a5A.330a a a答案:D解析:D【分析】分别根据合并同类项,幂的乘方运算法则,积的乘方运算法则以及同底数幂的乘法法则逐一判断即可.【详解】解:A.a-3与a3不属于同类项,不能合并,故A选项不合题意;B.(a3)3=a9,故B选项不符合题意;C.(ab)2=a2b2,故C选项不符合题意;D.a3•a2=a5,故D选项符合题意;故选:D.【点睛】本题考查了同底数幂的乘法,合并同类项以及幂的乘方与积的乘方,掌握相关运算法则是解答本题的关键.2.如图,∠1和∠2不是同位角的是()A.B.C.D.答案:D解析:D【分析】根据同位角的定义,“在两条被截直线的同方,截线的同侧的两个角,即为同位角”直接分析得出即可.【详解】解:A、∠1和∠2是同位角,故此选项不符合题意;B、∠1和∠2是同位角,故此选项不符合题意;C、∠1和∠2是同位角,故此选项不符合题意;D、∠1和∠2不是同位角,故此选项符合题意;【点睛】此题主要考查了同位角的定义,正确掌握同位角定义是解题关键.3.若不等式()11m x m ->-的解集得1x <,则m ( ).A .1m ≠B .1mC .1m <D .m 为任何有理数 答案:C解析:C【分析】根据不等式的基本性质3求解即可.【详解】解:∵关于x 的不等式(m ﹣1)x >m ﹣1的解集为x <1,∴m ﹣1<0,则m <1,故选:C .【点睛】本题主要考查解一元一次不等式,解题的关键是掌握不等式的基本性质3:不等式两边乘(或除以)同一负数,不等号的方向改变.4.若a <b ,则下列各式中正确的是( )A .a +b <0B .-a <-bC .3a >3bD .a -b <0 答案:D解析:D【分析】根据不等式的性质逐个判断即可.【详解】解:A 、∵a <b ,∴a +b 不一定小于0,如a =0,b =1,a +b >0,故本选项不符合题意; B 、∵a <b ,∴-a >-b ,故本选项不符合题意;C 、∵a <b ,∴3a <3b ,故本选项不符合题意; D 、∵a <b ,∴a -b <0,故本选项符合题意;故选:D .【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键,注意:不等式的性质1是:不等式的两边都加(或减)同一个数或式子,不等号的方向不变,不等式的性质2是:不等式的两边都乘(或除以)同一个正数,不等号的方向不变,不等式的性质3是:不等式的两边都乘(或除以)同一个负数,不等号的方向改变.5.若关于x 的不等式组2+74+12x x x k >⎧⎨-<⎩的解集为x <3,则k 的取值范围为( ) A .k >1 B .k <1 C .k ≥1 D .k ≤1解析:C【分析】求出原不等式组的解集为32x x k<⎧⎨<+⎩,再利用已知解集为3x <,可知23k +≥,即可求出k 的取值范围.【详解】由27412x x x k +>+⎧⎨-<⎩, 解得:32x x k <⎧⎨<+⎩, 又∵不等式组的解集为3x <,∴23k +≥,∴1k .故选C【点睛】本题考查解不等式组.根据不等式组的解集列出关于k 的不等式是解答本题的关键. 6.下列命题是真命题的是( )A .如果a 2=b 2,那么a=bB .如果两个角是同位角,那么这两个角相等C .相等的两个角是对项角D .在同一平面内,垂直于同一条直线的两条直线平行答案:D解析:D【分析】利用平方的定义、平行线的性质、对顶角的性质及平面内两直线的位置关系分别判断后即可确定正确的选项.【详解】A 、如果a 2=b 2,那么a=±b ,故错误,是假命题;B 、两直线平行,同位角才相等,故错误,是假命题;C 、相等的两个角不一定是对项角,故错误,是假命题;D 、平面内,垂直于同一条直线的两条直线平行,正确,是真命题,故选D .【点睛】本题考查了命题与定理的知识,解题的关键是了解平方的定义、平行线的性质、对顶角的性质及平面内两直线的位置关系等知识,难度不大.7.定义一种对正整数n 的“F ”运算:①当n 为奇数时,结果为35n +;②当n 为偶数时,结果为2k n ;(其中k 是使2kn 为奇数的正整数),并且运算可以重复进行,例如,取n=.则:26n=,则第2021次“F运算”的结果是()若49A.68 B.78 C.88 D.98答案:D解析:D【分析】根据题意,可以写出前几次的运算结果,从而可以发现数字的变化特点,然后即可写出第2021次“F运算”的结果.【详解】解:本题提供的“F运算”,需要对正整数n分情况(奇数、偶数)循环计算,由于n=49为奇数应先进行F①运算,即3×49+5=152(偶数),需再进行F②运算,即152÷23=19(奇数),再进行F①运算,得到3×19+5=62(偶数),再进行F②运算,即62÷21=31(奇数),再进行F①运算,得到3×31+5=98(偶数),再进行F②运算,即98÷21=49,再进行F①运算,得到3×49+5=152(偶数),…,即第1次运算结果为152,…,第4次运算结果为31,第5次运算结果为98,…,可以发现第6次运算结果为49,第7次运算结果为152,则6次一循环,2021÷6=336…5,则第2021次“F运算”的结果是98.故选:D.【点睛】本题考查了整式的运算能力,既渗透了转化思想、分类思想,又蕴涵了次数、结果规律探索问题,检测学生阅读理解、抄写、应用能力.8.如图,△ABC中∠A=30°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=82°,则原三角形的∠B的度数为()A.75°B.72°C.78°D.82°答案:C解析:C【分析】在图①的△ABC中,根据三角形内角和定理,可求得∠B+∠C=150°;结合折叠的性质和图②③可知:∠B=3∠CBD,即可在△CBD中,得到另一个关于∠B、∠C度数的等量关系式,联立两式即可求得∠B的度数.【详解】在△ABC中,∠A=30°,则∠B+∠C=150°…①;根据折叠的性质知:∠B=3∠CBD,∠BCD=∠C;在△CBD中,则有:∠CBD+∠BCD=180°-82°,即:13∠B+∠C=98°…②;①-②,得:23∠B=52°,解得∠B=78°.故选:C.【点睛】此题主要考查的是图形的折叠变换及三角形内角和定理的应用,能够根据折叠的性质发现∠B和∠CBD的倍数关系是解答此题的关键.二、填空题9.计算:﹣3x•2xy=.解析:﹣6x2y【分析】根据单项式乘以单项式的法则即可求出答案.【详解】解:﹣3x•2xy=﹣3×2•(x•x)y=﹣6x2y.故答案为:﹣6x2y.【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.10.命题:“任意两个负数之和是负数”的逆命题是______命题.(填“真”或“假”).解析:假【分析】写出原命题的逆命题后判断正误即可.【详解】解:命题:“任意两个负数之和是负数”的逆命题是负数是两个负数之和,错误,为假命题,故答案为:假.【点睛】考查了命题与定理的知识,解题的关键是了解如何写出一个命题的逆命题,难度不大. 11.若一个正多边形的每一个外角都是30,则这个正多边形的边数为__________. 解析:12【分析】根据正多边形的每一个外角都相等以及多边形的外角和为360°,多边形的边数=360°÷30°,计算即可求解.【详解】解:这个正多边形的边数:360°÷30°=12,故答案为:12.【点睛】本题考查了多边形的内角与外角的关系,熟记正多边形的边数与外角的关系是解题的关键.12.已知x +y =﹣2,xy =4,则x 2y +xy 2=______解析:-8【分析】先提出公因式,进行因式分解,再代入,即可求解.【详解】解:()22x y xy xy x y +=+∵x +y =﹣2,xy =4,∴()22428x y xy +=⨯-=-.故答案为:8- .【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法,并会根据多项式的特征选用合适的方法是解题的关键.13.若满足方程组22133x y k x y k -=+⎧⎨+=-⎩的解x 与y 互为相反数,则k 的值为__________. 解析:-11【分析】由题意根据x 与y 互为相反数,得到y=-x ,代入方程组求出k 的值即可.【详解】解:由题意得:y=-x ,代入方程组得:221 33x x kx x k⎧⎨⎩++--==,消去x得:21323k k+-=,解得:k=-11故答案为:-11.【点睛】本题考查二元一次方程组的解,注意掌握方程组的解即为能使方程组中两方程都成立的未知数的值.14.如图,从位置P到直线公路MN共有四条小道PA、PB、PC、PD,若用相同的速度行走,能最快到达公路MN的小道是__________,理由是__________.答案:B解析:PB垂线段最短【分析】根据垂线段最短,即可求解【详解】根据垂线段最短得,能最快到达公路MN的小道是PB,故答案为:PB,垂线段最短.【点睛】本题考查了直线外一点到直线的距离,熟练掌握直线外一点到直线的距离垂线段最短是解题关键.15.已知一个多边形的每一个内角都等于108°,则这个多边形的边数是_____.答案:5【详解】试题分析:∵多边形的每一个内角都等于108°,∴每一个外角为72°.∵多边形的外角和为360°,∴这个多边形的边数是:360÷÷72=5.解析:5【详解】试题分析:∵多边形的每一个内角都等于108°,∴每一个外角为72°.∵多边形的外角和为360°,∴这个多边形的边数是:360÷÷72=5.16.如图在三角形ABC中BD平分∠ABC,CD平分外角∠ACE,∠A=60°则∠D=______.答案:30°【分析】根据角平分线定义求出,,根据三角形外角性质求出,,推出,得出,即可求出答案.【详解】解:平分,平分,,,,,,,,,故答案为:.【点睛】本题考查了三角形外角性解析:30°【分析】根据角平分线定义求出2ABC DBC ∠=∠,2ACE DCE ∠=∠,根据三角形外角性质求出2ACE DCE A ABC ∠=∠=∠+∠,22()2DCE D DBC D ABC ∠=∠+∠=∠+∠,推出2A ABC D ABC ∠+∠=∠+∠,得出2A D ∠=∠,即可求出答案.【详解】解:BD 平分ABC ∠,CD 平分ACE ∠,2ABC DBC ∴∠=∠,2ACE DCE ∠=∠,2ACE DCE A ABC ∠=∠=∠+∠,22()2DCE D DBC D ABC ∠=∠+∠=∠+∠,2A ABC D ABC ∴∠+∠=∠+∠,2A D ∴∠=∠,60A ∠=︒,30D ∴∠=︒,故答案为:30.【点睛】本题考查了三角形外角性质,角平分线定义的应用,关键是推出2A D ∠=∠. 17.计算(1)(-2a 2)3+2a 2·a 4-a 8÷a 2 (2)201()( 3.14)|3|2π-+--- 答案:(1)-7a6;(2)2【分析】(1)直接利用幂的乘方、同底数幂的乘法、同底数幂的除法计算可得; (2)直接利用负整数指数幂的性质、零指数幂、去绝对值符号求解即可.【详解】(1)解:原式=-解析:(1)-7a 6;(2)2【分析】(1)直接利用幂的乘方、同底数幂的乘法、同底数幂的除法计算可得;(2)直接利用负整数指数幂的性质、零指数幂、去绝对值符号求解即可.【详解】(1)解:原式=-8a 6+2a 6-a 6=-7a 6(2)解:原式413=+-=2【点睛】本题考查了幂的乘法、同底数幂的乘法、同底数幂的除法、负整数指数幂的性质、零指数幂、去绝对值符号,解题的关键是:掌握相关的运算法则.18.因式分解:(1)3x 2+6xy+3y 2(2)(x 2+1)2-4x 2答案:(1)3(x+y )2;(2)(x-1)2(x+1)2.【分析】(1)直接提取公因式3,再利用公式法分解因式进而得出答案;(2)直接利用平方差公式以及完全平方公式分解因式得出答案.【详解】解解析:(1)3(x+y )2;(2)(x-1)2(x+1)2.【分析】(1)直接提取公因式3,再利用公式法分解因式进而得出答案;(2)直接利用平方差公式以及完全平方公式分解因式得出答案.【详解】解:(1)3x 2+6xy+3y 2=3(x 2+2xy+y 2)=3(x+y )2;(2)原式=(x 2+1-2x )(x 2+1+2x )=(x-1)2(x+1)2.【点睛】本题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键. 19.解方程组:(1)528x y x y =+⎧⎨-=⎩; (2)3410435x y x y +=⎧⎨-=⎩. 答案:(1);(2)【分析】(1)应用代入消元法,求出方程组的解是多少即可.(2)应用加减消元法,求出方程组的解是多少即可.【详解】解:(1),①代入②,可得:,解得,把代入①,解得,原解析:(1)32x y =⎧⎨=-⎩;(2)21x y =⎧⎨=⎩ 【分析】(1)应用代入消元法,求出方程组的解是多少即可.(2)应用加减消元法,求出方程组的解是多少即可.【详解】解:(1)528x y x y =+⎧⎨-=⎩①②, ①代入②,可得:2(5)8y y +-=,解得2y =-,把2y =-代入①,解得3x =,∴原方程组的解是32x y =⎧⎨=-⎩. (2)3410435x y x y +=⎧⎨-=⎩①②, ①3⨯+②4⨯,可得2550x =,解得2x =,把2x =代入①,解得1y =,∴原方程组的解是21xy=⎧⎨=⎩.【点睛】此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.20.利用数轴解不等式组3(2)41213x xxx--≤-⎧⎪+⎨-≤⎪⎩,并判断32是否是该不等式组的解.答案:1≤x≤4,不是【分析】分别求出每一个不等式的解集,在数轴上表示出不等式的解集,从而得到不等式组的解集,再进一步判断是否在此范围即可.【详解】解:,解不等式①,得:x≥1,解不等式②,得解析:1≤x≤4,不是【分析】分别求出每一个不等式的解集,在数轴上表示出不等式的解集,从而得到不等式组的解集,再进一步判断32是否在此范围即可.【详解】解:3(2)41213x xxx--≤-⎧⎪⎨+-≤⎪⎩①②,解不等式①,得:x≥1,解不等式②,得:x≤4,将不等式的解集表示在数轴上如下:∴不等式组的解集为1≤x≤4,∵324,∴32【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.三、解答题21.已知:如图,AE平分∠BAD,AB//CD,CD与AE相交于点F,∠CFE=∠E,求证:AD//BC.证明:∵AB//CD(已知),∴∠1=∠(两直线平行,同位角相等).∵AE平分∠BAD(已知),∴∠1=∠2().∴∠2=∠CFE(等量代换).又∵∠CFE=∠E(已知),∴∠=∠E(等量代换).∴AD//BC().答案:CFE;角平分线的定义;2;内错角相等,两直线平行;【分析】第一空,由平行线的性质:两直线平行,同位角相等可得∠1=∠CFE;第二空,根据角平分线的定义即可得出答案;第三空,由已知条件∠CFE=解析:CFE;角平分线的定义;2;内错角相等,两直线平行;【分析】第一空,由平行线的性质:两直线平行,同位角相等可得∠1=∠CFE;第二空,根据角平分线的定义即可得出答案;第三空,由已知条件∠CFE=∠E,等量代换即可得出答案;第四空,由平行线的判定即可得出答案.【详解】证明:∵AB∥CD(已知),∴∠1=∠CFE(两直线平行,同位角相等).∵AE平分∠BAD(已知),∴∠1=∠2(角平分线的定义).∴∠2=∠CFE(等量代换).又∵∠CFE=∠E(已知),∴∠2=∠E(等量代换).∴AD∥BC(内错角相等,两直线平行).故答案为:CFE;角平分线的定义;2;内错角相等,两直线平行.【点睛】本题主要考查了平行线的性质与判定,角平分线的定义,解题的关键在于能够熟知相关知识点进行证明求解.22.为了让市民树立起“珍惜水、节约水、保护水”的用水理念,居民生活用水按阶梯式计算水价,水价计算方式如表所示,每吨水还需另加污水处理费0.60元.已知乐乐家4月份用水20吨,交水费60元;5月份用水25吨,交水费79元.(提示:水费=水价+污水处理费)(2)为了节省开支,乐乐计划把6月份的水费控制在不超过家庭月收入的2%.若乐乐家的月收入为11650元,则乐乐家6月份最多能用水多少吨?答案:(1)m=2.4,n=3.2;(2)小明家月份最多能用水55吨【分析】(1)根据题意,当用水20吨,交水费60元;用水25吨,交水费79元,据此列方程组求解;(2)先求出小明家月份的用水量范围解析:(1)m=2.4,n=3.2;(2)小明家6月份最多能用水55吨【分析】(1)根据题意,当用水20吨,交水费60元;用水25吨,交水费79元,据此列方程组求解;(2)先求出小明家6月份的用水量范围,再根据6月份的水费不超过家庭月收入的2%,列出不等式求解即可.【详解】解:(1)由题意得20200.660 205250.679mm n+⨯=⎧⎨++⨯=⎩,解得2.43.2mn=⎧⎨=⎩,即m的值为2.4,n的值为3.2;(2)由(1)得m=2.4,n=3.2,当用水量为30吨时,水费为:20×2.4+10×3.2+30×0.6=98(元),2%×11650=233(元),∵233>98,∴小明家6月份用水量超过30吨.可设小明家6月份用水x吨,由题意得98+(2×2.4+0.6)(x−30)≤233,解得x≤55,答:小明家6月份最多能用水55吨.【点睛】本题主要考查了二元一次方程组和一元一次不等式的应用,关键是正确理解题意,根据水的收费标准,列方程和不等式求解.23.千佛山、趵突泉、大明湖并称济南三大风景名胜区.为了激发学生个人潜能和团队精神,历下区某学校组织学生去千佛山开展为期一天的素质拓展活动.已知千佛山景区成人票每张30元,学生票按成人票五折优惠.某班教师加学生一共去了50人,门票共需810元.(1)这个班参与活动的教师和学生各多少人?(应用二元一次方程组解决)(2)某旅行网上成人票价格为28元,学生票价格为14元,若该班级全部网上购票,能省多少钱?答案:(1)教师4人,学生46人;(2)54元【分析】(1)根据班教师加学生一共去了50人,门票共需810元,列出两个等式,求解即可;(2)门店的门票费减去网购的门票费就等于节省的钱.【详解】解解析:(1)教师4人,学生46人;(2)54元【分析】(1)根据班教师加学生一共去了50人,门票共需810元,列出两个等式,求解即可; (2)门店的门票费减去网购的门票费就等于节省的钱.【详解】解:设这个班参与活动的教师有x 人,学生有y 人,∵千佛山景区成人票每张30元,学生票按成人票五折优惠,由题意得:503015810x y x y +=⎧⎨+=⎩解得:446x y =⎧⎨=⎩ 答:这个班参与活动的教师有4人,学生有46人.(2)由(1)求得这个班参与活动的教师有4人,学生有46人.∴网购的总费用为:28×4+14×46=756(元)∴节省了:810-756=54(元).答:该班级全部网上购票,能省54元.【点睛】本题考查了二元一次方程组的应用,读懂题意找出等量关系,列出等式并解出二元一次方程组是解题的一般思路.24.在△ABC 中,∠BAC =90°,点D 是BC 上一点,将△ABD 沿AD 翻折后得到△AED ,边AE 交BC 于点F .(1)如图①,当AE ⊥BC 时,写出图中所有与∠B 相等的角: ;所有与∠C 相等的角: .(2)若∠C -∠B =50°,∠BAD =x °(0<x ≤45) .① 求∠B 的度数;②是否存在这样的x 的值,使得△DEF 中有两个角相等.若存在,并求x 的值;若不存在,请说明理由.答案:(1)∠E 、∠CAF ;∠CDE 、∠BAF ; (2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B 相等的角;由等角代换即可得与∠C 相等的角;(2)①由三角形内角和定理可得,解析:(1)∠E 、∠CAF ;∠CDE 、∠BAF ; (2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B 相等的角;由等角代换即可得与∠C 相等的角;(2)①由三角形内角和定理可得90B C ∠+∠=︒,再由50C B ∠∠︒-=根据角的和差计算即可得∠C 的度数,进而得∠B 的度数.②根据翻折的性质和三角形外角及三角形内角和定理,用含x 的代数式表示出∠FDE 、∠DFE 的度数,分三种情况讨论求出符合题意的x 值即可.【详解】(1)由翻折的性质可得:∠E =∠B ,∵∠BAC =90°,AE ⊥BC ,∴∠DFE =90°,∴180°-∠BAC =180°-∠DFE =90°,即:∠B +∠C =∠E +∠FDE =90°,∴∠C =∠FDE ,∴AC ∥DE ,∴∠CAF =∠E ,∴∠CAF =∠E =∠B故与∠B 相等的角有∠CAF 和∠E ;∵∠BAC =90°,AE ⊥BC ,∴∠BAF +∠CAF =90°, ∠CFA =180°-(∠CAF +∠C )=90°∴∠BAF +∠CAF =∠CAF +∠C =90°∴∠BAF =∠C又AC ∥DE ,∴∠C =∠CDE ,∴故与∠C 相等的角有∠CDE 、∠BAF ;(2)①∵90BAC ∠=︒∴90B C ∠+∠=︒又∵50C B ∠∠︒-=,∴∠C =70°,∠B =20°;②∵∠BAD =x °, ∠B =20°则160ADB x ∠︒︒=-,20ADF x ∠︒︒=+,由翻折可知:∵160ADE ADB x ∠∠︒︒==-, 20E B ∠∠︒==,∴1402FDE x ∠︒︒=-, 202DFE x ∠︒︒=+,当∠FDE =∠DFE 时,1402202x x ︒︒︒︒-=+, 解得:30x ︒︒=;当∠FDE =∠E 时,140220x ︒︒︒-=,解得:60x ︒︒=(因为0<x ≤45,故舍去); 当∠DFE =∠E 时,20220x ︒︒︒+=,解得:0x ︒=(因为0<x ≤45,故舍去);综上所述,存在这样的x 的值,使得△DEF 中有两个角相等.且30x =.【点睛】本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.25.已知:∠MON=36°,OE 平分∠MON ,点A ,B 分别是射线OM ,OE ,上的动点(A ,B 不与点O 重合),点D 是线段OB 上的动点,连接AD 并延长交射线ON 于点C ,设∠OAC=x ,(1)如图1,若AB ∥ON ,则①∠ABO 的度数是______;②当∠BAD=∠ABD 时,x=______;当∠BAD=∠BDA 时,x=______;(2)如图2,若AB ⊥OM ,则是否存在这样的x 的值,使得△ABD 中有两个相等的角?若存在,求出x 的值;若不存在,请说明理由.答案:(1)①18°;②126°;③63°;(2)当x=18、36、54时,△ADB 中有两个相等的角.【分析】(1)运用平行线的性质以及角平分线的定义,可得∠ABO 的度数;根据∠ABO 、∠BAD 的度数解析:(1)①18°;②126°;③63°;(2)当x=18、36、54时,△ADB中有两个相等的角.【分析】(1)运用平行线的性质以及角平分线的定义,可得∠ABO的度数;根据∠ABO、∠BAD的度数以及△AOB的内角和,可得x的值;(2)根据三角形内角和定理以及直角的度数,可得x的值.【详解】解:(1)如图1,①∵∠MON=36°,OE平分∠MON,∴∠AOB=∠BON=18°,∵AB∥ON,∴∠ABO=18°;②当∠BAD=∠ABD时,∠BAD=18°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=180°-18°×3=126°;③当∠BAD=∠BDA时,∵∠ABO=18°,∴∠BAD=81°,∠AOB=18°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=180°-18°-18°-81°=63°,故答案为①18°;②126°;③63°;(2)如图2,存在这样的x的值,使得△ADB中有两个相等的角.∵AB⊥OM,∠MON=36°,OE平分∠MON,∴∠AOB=18°,∠ABO=72°,若∠BAD=∠ABD=72°,则∠OAC=90°-72°=18°;若∠BAD=∠BDA=(180°-72°)÷2=54°,则∠OAC=90°-54°=36°;若∠ADB=∠ABD=72°,则∠BAD=36°,故∠OAC=90°-36°=54°;综上所述,当x=18、36、54时,△ADB中有两个相等的角.【点睛】本题考查了三角形的内角和定理和三角形的外角性质的应用,三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角之和.利用角平分线的性质求出∠ABO的度数是关键,注意分类讨论思想的运用.。
代数式的值-2023年新七年级数学核心知识点与常见题型(沪教版)(解析版)

代数式的值【知识梳理】(1)代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.(2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值. 题型简单总结以下三种:①已知条件不化简,所给代数式化简; ②已知条件化简,所给代数式不化简; ③已知条件和所给代数式都要化简.【考点剖析】 一、用代数式数、图形的规律 一、单选题1.(2021秋·上海·七年级期中)某影院第一排有20个座位,每退一排就多1个座位,则第n 排有座位( ) A .()20n +个 B .()21n +个C .()19n +个D .()18n +个【答案】C【分析】根据后面每一排都比前一排多1个座位表示出前几排的座位数,即可得出规律,然后求解即可. 【详解】第一排有20个座位,第二排有21个座位,第三排有22个座位,…,第n 排有(n+19)个座位. 故选C .【点睛】本题考查了列代数式,是规律探寻题,比较简单.二、填空题2.(2022秋·上海·七年级专题练习)七(1)班共有n 名同学,每两人握一次手,他们一共握了____次手.【答案】()21n n −【分析】自己不能跟自己握手,所以需要握手的人数应该是除自己外的(n−1)个人.【详解】每个人都要和另外的n−1个人握一次手,n 个人共握手n×(n−1)次,由于每两人握手,应算作一次,需去掉重复的情况,实际只握了n×(n−1)÷2=()21n n −次.故答案为()21n n −【点睛】本题目考查的是握手问题,如果人数比较少,可以用枚举法解答;如果人数比较多,可以用公式:()21n n −解答.【答案】4x +16/164x +【分析】日历中任意框出4个数,设其中最小的数为x ,并用x 分别表示出其他三个数,然后4个数相加即可.【详解】解:最小的数为x ,则其它3个分别是1x +,7x +,8x +, 这4个数之和为178416x x x x x ++++++=+, 故答案为:416x +【点睛】本题考查了代数式的应用,理解日历中任意框出4个数的关系是解题关键.【答案】 32 76 (1)1(1)n n n n +++12=3212-13=761134−=13121145−=2120()()11111+11n n n n n n ++−=++【答案】(4n+1).【分析】根据题目中的图形变化规律可知,每一次变化增加四个三角形,从而可以解答本题. 【详解】解:由图可得, 图(1)所得三角形总个数为:1+4=5; 图(2)所得三角形总个数为:1+4×2=9; 图(3)所得三角形总个数为:1+4×3=13; 所以第n 个图中共有(4n+1)个三角形; 故答案为:(4n+1).【点睛】本题主要考查图形的变化类,解答本题的关键是发现题目中图形的变化规律,求出相应的三角形的个数.6.(2022秋·上海·七年级专题练习)如图为手的示意图,在各个手指间标记字母A ,B ,C ,D .请你按图中箭头所指方向(即A →B →C →D →C →B →A →B →C →…的方式)从A 开始数连续的正整数1,2,3,…,当字母C 第()21n −次出现时(n 为正整数),恰好数到的数是______(用含n 的代数式表示).【答案】63n −【分析】根据题意可以发现六个为一个循环,每个循环中字母C 出现两次,从而可以解答本题.【详解】解:按照A →B →C →D →C →B →A →B →C →…的方式进行,每6个字母ABCDCB 一循环,每一循环里字母C 出现2次,当循环n 次时,字母C 第2n 次出现时(n 为正整数),此时数到最后一个数为6n , 当字母C 第()21n −次出现时(n 为正整数),再数3个数为63n −.故答案为:63n −.【点睛】本题考查代数式、数的规律,是基础考点,难度较易,掌握相关知识是解题关键.三、解答题(2)a n = (用含n 的代数式表示)(3)按照上述方法,能否得到2019个正方形?如果能,请求出n ;如果不能,请简述理由. 【答案】(1)10,13;(2)3n-2;(3)不能,【分析】根据已知图形可以发现:每次剪开,都会增加3个正方形,所以可以得到此题的规律为:第n 个图形中的正方形个数为:3n-2.【详解】(1)根据已知图形可以发现:每次剪开,都会增加3个正方形, ∴第4个图中为7+3=10个,第5个图中为10+3=13个;(2)根据(1)中的数据规律可知:第n 个图形中的正方形个数为:32n −; (3)不能.∵若能得到2019个正方形,则有322019n −=,则32021n =,但是2021不能被3整除,∴不能得到2019个正方形.【点睛】本题考查了图形的变化类问题,关键是要通过观察图形,分析、归纳发现其中的规律. (2019++2022+++2019+2020+2021=++【答案】(1)12n (n+1)(2)12(n+1)2【分析】(1)根据题目中的方法进行求解即可; (2)仿照题目中的方法进行求解即可. (1)解:由题意得:1+2+3+…+(n-2)+(n-1)+n=12n(n+1);(2)1+3+5+…+(2n+1)=12×12(1+2n+1)(n+1)=12(n+1)2.【点睛】本题主要考查规律型:数字的变化类,列代数式,解答的关键是总结出存在的规律.【答案】(1)-3(2)5;-20;42k−【分析】尝试:(1)将前4个数字相加可得;(2)根据“相邻四个台阶上数的和都相等”列出方程求解可得;应用:根据“台阶上的数字是每4个一循环”求解可得;发现:由循环规律即可知数“2”所在的台阶数为4k﹣2.(1) 解:尝试: (1)()()52193++−+−=−答:前4个台阶上数的和是3−.(2)∵任意相邻四个台阶上数的和都相等, ∴()()2193x +−+−+=−,解得5x =第5个台阶上的数x 是5.应用:由题意知台阶上的数字4个一循环, ∵3849÷=……2 ∴()935220⨯−++=−即从下到上前38个台阶上数的和20− 发现:数“2”所在的台阶数42k − (2)解:(2)∵任意相邻四个台阶上数的和都相等, ∴()()2193x +−+−+=−,解得5x =第5个台阶上的数x 是5.应用:由题意知台阶上的数字4个一循环, ∵3849÷=……2 ∴()935220⨯−++=−即从下到上前38个台阶上数的和20− 发现:数“2”所在的台阶数42k −.【点睛】本题主要考查了列代数式,解一元一次方程,解题的关键是根据相邻四个台阶上数的和都相等得出台阶上的数字是每4个一循环. 二、已知字母的值,求代数值的值 一、单选题1.(2022秋·上海青浦·七年级校考期中)已知()42251A x =+,则当1x =时,3A 的值为( ) A .8000 B .1000C .1000±D .8000±【答案】D【分析】利用乘方的逆运算以及已知条件求出A 的值,然后利用乘法运算法则求出3A 的值即可. 【详解】解:∵()4222[5(51]21)x A x ++=±=,1x =,∴225(1)5(11)20A x =±+=±⨯+=±,∴33(20)8000A =±=±.故选:D .【点睛】本题主要考查了乘法运算、乘方的逆运算以及代数式求值,解题关键是熟练掌握相关运算法则.二、填空题【答案】119/9【分析】直接代入求值即可.【详解】解:当13x =-时,原式2111913⎛⎫=⎪+ =−⎝⎭, 故答案为:119.【答案】8−/0.125−【分析】直接利用偶次方的性质以及绝对值的性质得出a ,b 的值,进而代入得出答案. 【详解】解:∵230.2504a b ⎛⎫−++= ⎪⎝⎭, ∴30.250,04a b −=+=,∴30.25,4a b ==−,∴222233139120.2520.2544168168a ab b ⎛⎫⎛⎫−−=−⨯⨯−−−=+−=−⎪ ⎪⎝⎭⎝⎭.故答案为:18−.【点睛】此题主要考查了非负数的性质,代数式求值,正确得出a ,b 的值是解题关键.【答案】8【分析】直接把12x =代入计算即可. 【详解】解:当12x =时,()113131922228x x ⎛⎫⨯⨯+ ⎪+⎝⎭==故答案为:98【点睛】本题主要考查了代数式求值,有理数的混合运算法则,在解题时要根据题意代入计算即可. 5.(2022秋·上海嘉定·七年级校考期中)当2x =−,3y =时,代数式22x xy y ++的值是___________. 【答案】7【分析】将x 、y 的值代入计算即可. 【详解】解:当2x =−,3y =时, 22x xy y ++()()222233=−+−⨯+469=−+ 7=.故答案为7.【点睛】考查了代数式求值,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值,正确进行计算是解题的关键.6.(2022秋·上海静安·七年级校考阶段练习)当2a =−时,代数式3(1)a a +的值等于__________. 【答案】6【分析】根据题意,直接将2a =−代入代数式进行计算即可求解. 【详解】解:当2a =−时,代数式3(1)a a +()()32216=⨯−⨯−+=,故答案为:6.【点睛】本题考查了代数式求值,正确的计算是解题的关键.7.(2023秋·上海静安·七年级新中初级中学校考期末)当a =5,b =-3时,a -b 的值为__________. 【答案】8【分析】根据已知字母的值,直接代入求值即可. 【详解】解:∵a=5,b=-3, ∴a-b=5-(-3)=8; 故答案为:8.【点睛】此题主要考查了代数式求值,掌握代数式求值方法是解题的关键.【答案】2或18/18或2【分析】根据a 与b 都为正整数即可求得. 【详解】解:根据题意得,只有当2b =和18时, 17a =和1,故答案为:2或18.【点睛】本题考查了正整数的定义(大于0的整数),准确的计算是解决本题的关键.【答案】41【分析】把a 、b 、c 的值代入代数式进行计算即可. 【详解】解:把2a =,3b =−,4c =−代入得:()()224342441b ac −=−−⨯⨯−=,故答案为:41.【点睛】本题考查了代数式求值,准确计算是解题的关键.10.(2022秋·上海·七年级校考阶段练习)当1x =,代数式31px qx ++的值为2022,则当=1x −,代数式31px qx ++的值是_______.【答案】2020−【分析】根据“当1x =,代数式31px qx ++的值为2022”可得2021p q +=,再将=1x −代入31px qx ++可得()p q −++1,再整体代入计算即可.【详解】解:∵当1x =,代数式31px qx ++的值是2022.∴把1x =代入31px qx ++得,12022p q ++=∴2021p q +=∴把=1x −代入31px qx ++得,1()1202112020p q p q −−+=−++=−+=−故答案为:2020−.【点睛】本题考查代数式求值,根据题意得出2021p q +=是解决问题的关键.三、解答题【答案】(1)2212x x −+;(2)218m . 【分析】(1)根据题意“目”字形的窗框,长有4段,总长为4AD =4x 米,则AB =2442x−米,再根据长方形面积计算公式即可得出答案;(2)把x =3代入(1)中关于面积的代数式中即可得出答案.【详解】(1)根据题意得AB=2441222x x −=−,∴S 长方形ABCD ()2122212x x x x =−⋅=−+.(2)当3x =时,221229123x x −+=−⨯+⨯1836=−+218m =.答:长方形ABCD 面积为218m .【点睛】本题主要考查了列代数及代数式的求值,根据题意列出合理的代数式是解决本题的关键.【答案】(1)22ab b −(2)222a ab b −+ (3)7800【分析】(1)根据题意表示出十字路的面积即可;(2)根据题意表示出铺设的草坪的面积即可;(3)根据(1)表示出的式子,把a 与b 的值代入计算即可得出答案.【详解】(1)根据题意可得,()222ab b a b ab ab b ab b +−=+−=− ∴修建的道路是22ab b −平方米;铺设的草坪的面积为()2222a b a ab b −=−+;(3)当20a =,1b =时, 2222201139ab b −=⨯⨯−=(平方米),392007800⨯=(元).∴需要投资7800元修建道路.【点睛】本题考查代数式求值,以及列代数式,整式的混合运算,熟练掌握运算法则是解题的关键. (1)试用含a 的代数式表示(2)当12a =时,比较S 阴影【答案】(1)213182a a −+(2)BGF S S ∆=阴【分析】(1)根据图形,把阴影的面积表示出来ABCD ECGF ABD BGF S S S S S ∆∆=+−−阴,化简即可解得. (2)把当12a =代入求值,即可解得.【详解】(1)解:∵22ABCD ECGF S S a b +=+,212ABD S a ∆=,()()1632BGF S a b a b ∆=⨯+⨯=+, ∴ABCD ECGF ABD BGF S S S S S ∆∆=+−−阴()221332a b a a b =+−−+213182a a =−+;()2131832BGF S S a a a b ∆−=−+−+阴 ()21122a a =−将12a =代入,0BGF S S ∆−=阴, ∴BGF S S ∆=阴.【点睛】此题考查了列代数式求阴影的面积,解题的关键是把阴影部分的面积表示出来. 14.(2022秋·上海徐汇·七年级上海市徐汇中学校联考期末)已知52345670123456721)x a a x a x a x a x a x a x a x −=+++++++((1)求01234567a a a a a a a a −+−+−+−的值.(2)求0246a a a a +++的值.【答案】(1)243−(2)121−【分析】(1)根据已知条件,=1x −代入即可解得.(2)把1x =代入进行计算,最后再与(1)中所得等式进行相加即可求解.【详解】(1)52345670123456721)x a a x a x a x a x a x a x a x −=+++++++(把=1x −代入,01234567a a a a a a a a −+−+−+−()521=--243=− (2)把1x =代入,52345670123456721)x a a x a x a x a x a x a x a x −=+++++++(,解得:012345671a a a a a a a a +++++++=①,根据第一问可得∶01234567243a a a a a a a a -+-+-+-=-②, ①+②得:()02462242a a a a +++=-∴0246121a a a a +++=- 【点睛】本题主要考查的是求代数式的值,特殊值法的应用是解题的关键. (1)求这个无盖长方体纸盒的表面积(用含(2)求这个无盖长方体纸盒的容积(用含【答案】(1)2604a −(2)3243260a a a −+,31.5 【分析】(1)根据题意易知,无盖长方体纸盒的表面积即长方形纸片的面积减去四个小正方形的面积;(2)长方形纸盒的长为102a −,宽为62a −,高为a ,容积=长⨯宽⨯高,再将32a =代入即可.【详解】(1)解:由题意可知,无盖长方体纸盒的表面积即长方形纸片的面积减去四个小正方形的面积, 221064604S a a =⨯−=−,∴这个无盖长方体纸盒的表面积为2604a −.(2)长方形纸盒的长为102a −,宽为62a −,高为a ,容积=长⨯宽⨯高()()321026243260a a a a a a=−⨯−⨯=−+, 将32a =代入,得:323334326031.5222⎛⎫⎛⎫⎛⎫⨯−⨯+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭答:容积为31.5.【点睛】本题考查了列代数式,解题的关键是正确表示纸盒的长,宽,高.三、已知式子的值,求代数式的值一、单选题1.(2023秋·上海静安·七年级新中初级中学校考期末)已知x − 2y = 2,则2x — 4y 的值是( )A .5B .2C .4D .7【答案】C 【分析】先根据x−2y =2,再变形,最后代入求出即可.【详解】解:∵x−2y =2,∴2x−4y =2(x−2y )=2×2=4,故选:C .【点睛】本题考查了求代数式的值,能够整体代入是解此题的关键.二、填空题2.(2023秋·上海嘉定·七年级上海市育才中学校考期末)如果34a b −=,那么261a b −−的值是________.【答案】7【分析】用整体代入法求解即可.【详解】解:∵34a b −=,∴()261231817a b a b −−=−−=−=.故答案为:7.【点睛】此题考查了代数式求值,代数式中字母的值没有明确告知,而是隐含在已知条件中,首先应从条件“整体代入法”求代数式的值. 3.(2023秋·上海浦东新·七年级校考期中)已知3x =时,代数式38ax bx ++的值是12;那么当3x =−时,代数式35ax bx +−的值为__________.【答案】9−【分析】将3x =代入38ax bx ++,求出273a b +值,将3x =−,以及273a b +值,代入35ax bx +−进行求值即可.【详解】解:∵3x =时,代数式38ax bx ++的值是12,即:273812a b ++=,∴2734a b +=;当3x =−时:()3527352735459ax bx a b a b +−=−−−=−+−=−−=−.故答案为:9−.【点睛】本题考查代数式求值.解题的关键是利用整体思想,代入求值. 4.(2022秋·上海·七年级校考期末)已知231x y +=,那么代数式()()72345x y x y +−−−的值是___________.【答案】7【分析】去括号,合并同类项,再代入求值即可.【详解】解:()()72345x y x y +−−−72345x y x y =+−++465x y =++()2235x y =++231x y += 原式215=⨯+7= 故答案为:7.【点睛】本题考查了整式的化简和整体代入法求值;解题的关键是去括号,根据已知构造相同整式.【答案】5/0.8【分析】由题意易得2x y =,然后代入求解即可.【详解】解:由2x y =可知2x y =,∴2224365x y y y x y y y ++==−−; 故答案为45.【点睛】本题主要考查代数式的值,解题的关键是得到2x y =.6.(2022秋·上海·七年级校考期中)已知210a a −−=,则代数式326a a −+=_____.【答案】7【分析】根据已知条件得到2a a −=1,再把原式变形,代入即可求解.【详解】解:∵210a a −−=,∴2a a −=1,326a a −+32226a a a a −+−+=()2226a a a a a −+−+=226a a a +−+=26a a −+= 16+=7=.故答案为:7.【点睛】此题主要考查代数式求值以及利用提取公因式求式子的值,将式子转化为32226a a a a −+−+,以及利用()322a a a a a −−=是解题的关键.【答案】36−【分析】由相伴数的定义分别计算[]a ,[]b 的值,再计算3b a −=−,最后利用整体思想解题.【详解】根据题意得,111a b −=++,则3b a −=−,()()()3333327936b a a b b a b a −−+=−+−=−−=−.故答案为:36−.【点睛】本题考查新定义计算、已知式子的值,求代数式的值,理解题意是解题关键.【答案】5或11−/11−或5【分析】根据a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,可以得到0a b +=,1cd =,2m =±,然后代入所求式子计算即可.【详解】解:依题意0a b +=,1cd =,||2m =,2m ∴=±,当2m =时,22043423152121a bm cd m m ++−=+⨯−⨯=++;当2m =−时,()20434231112121a bm cd m m ++−=+⨯−−⨯=−++;故答案为:5或11−.【点睛】本题考查代数式求值,绝对值,相反数和倒数的性质,解答本题的关键是求出0a b +=,1cd =,2m =±.三、解答题【答案】(1)b −(2)-2,2(3)-9【分析】(1)根据每行、每列的3个代数式的和相等,可得a 与b 的关系;(2)根据第一行与第三列、对角线上与第二行的和相等,可得a 与b 的值;(3)根据“等和格”的定义可得方程,分别进行整理代入可求出b 的值.【详解】(1)解:如图2,根据题意得232−+=+a a b a ,33a b ∴−=,解得a b =−,故答案为:b −;(2)解:如图3,可得2322283a a b a a a b b −+=+⎧⎨−+=−+⎩,解得22a b =−⎧⎨=⎩,故答案为:2,2−;(3)解:如图4,可得2222223a a a a a a a ++−=++−,∴23a a +=,又22223322a a a b a a a a ++−=++++,2223b a a ∴=−−−,∴22()32339b a a =−+−=−⨯−=−,故答案为:9−.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是充分利用“每行,每列及对角线上的3个数(或代数式)的和都相等”,得出等式求解.10.(2022秋·上海·七年级专题练习)在某班小组学习的过程中,同学们碰到了这样的问题:“已知【答案】(1)7 (2)34【分析】(1)由已知115a b ab a b +=+=,113b c bc b c +=+=,116c a ca c a +=+=,可得111111536a b b c c a +++++=++,即可得出答案;(2)由已知216m m +=,可得16m m +=,m 4+1m 2=m 2+1m 2=(m +1m)2−2,即可得出答案.【解答】解:(1)115a b ab a b +=+=,113b c bc b c +=+=,116c a ca c a +=+=,∴111111536a b b c c a +++++=++, ∴22214a b c ++=,∴1a+1b+1c=ab+bc+ca abc=7;(2)216m m +=,∴16m m +=,422211m m m m +=+,∴m 2+1m 2=(m +1m)2−2=62−2=34.∴42134m m +=.【点评】本题主要考查了代数式求值,合理应运题目所给条件是解决本题的关键.11.(2022秋·上海·七年级专题练习)已知a 、b 互为相反数,x 、y 互为倒数,m 到原点距离2个单位. (1)根据题意,m =________.【答案】(1)2或-2;(2)5.【分析】(1)根据绝对值的定义可得答案;(2)先根据相反数的性质、倒数的定义得出a+b=0,xy=1,再结合m 的值分别代入计算即可. 【详解】解:(1)∵m 到原点距离2个单位, ∴m=2或-2, 故答案为:2或-2;(2)根据题意知a+b=0,xy=1,m=2或-2, 当m=2时,()202022a b m xy +++−=22+0+(-1)2020=4+1=5; 当m=-2时,()202022a b m xy +++−=(-2)2+0+(-1)2020=4+1=5;综上,()202022a b m xy +++−的值为5.【点睛】本题主要考查了有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则. 四、程序流程图与代数式的值 一、单选题【答案】C【分析】输入4,计算234x x −=,判断40>,输出4,输入2,计算232x x −=−,判断20−<,输出12,最后计算142+的和即可.【详解】解:输入4,计算22343416124x x −=−⨯=−=,40>∴输出4;输入2,计算223232462x x −=−⨯=−=−,20−<计算112x = ∴输出12;19422∴+=故选:C .【点睛】本题考查已知字母的值,求整式的值,是基础考点,掌握相关知识是解题关键.2.(2020秋·上海·七年级上海市进才中学北校校考阶段练习)如图,是一个运算程序的示意图,如果开始输入的x 的值为81,那么第2020次输出的结果为( )A .3B .27C .81D .1【答案】Dx ,输出27;输入27,输出9;输入9,输出3;输入3,输出1;输入1,输出3L 直至出现循环规律,分奇数次与偶数次输入,据此解题.【详解】根据题意,第1次输入x 的值为81,1x ≠,计算11=81=2733x ⨯,输出27,第2次输入x 的值为27,1x ≠,计算11=27=933x ⨯,输出9, 第3次输入x 的值为9,1x ≠,计算11=9=333x ⨯,输出3, 第4次输入x 的值为3,1x ≠,计算11=3=133x ⨯,输出1,第5次输入x 的值为1,=1x ,计算+2=1+2=3x ,输出3,第6次输入x 的值为3,1x ≠,计算11=3=133x ⨯,输出1,第7次输入x 的值为1,=1x ,计算+2=1+2=3x ,输出3,L从第3次开始,第奇数次输出的结果为3,第偶数次输出的结果为1,2020>3且为偶数,第2020次输出的结果为1,故选:D.【点睛】本题考查代数式求值,是重要考点,难度较易,掌握相关知识是解题关键.3.(2019秋·上海杨浦·七年级校考阶段练习)在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()A.4,2,1B.2,1,4C.1,4,2D.2,4,1【答案】D【详解】A.把x=4代入得:42=2,把x=2代入得:22=1,本选项不合题意;B.把x=2代入得:22=1,把x=1代入得:3+1=4,本选项不合题意;C.把x=1代入得:3+1=4,把x=4代入得:42=2,本选项不合题意;D.把x=2代入得:22=1,把x=1代入得:3+1=4,本选项符合题意,故选:D.【过关检测】一.选择题(共6小题)1.(2020秋•虹口区校级期末)当x=3,y=2时,代数式的值是()A.B.2C.0D.3【分析】当x=3,y=2时,直接代入代数式即可得到结果.【解答】解:==.故选:A.【点评】此题较简单,代入时细心即可.2.(2020秋•浦东新区校级月考)如图,是一个运算程序的示意图,若开始输入x的值为81,则第2020次输出的结果是()A.3B.27C.9D.1【分析】分别求出第一次输出27,第二次输出9,第三次输出3,第四次输出1,第五次输出3,第六次输出1,……由此可得,从第三次开始,每两次一个循环.【解答】解:由题可知,第一次输出27,第二次输出9,第三次输出3,第四次输出1,第五次输出3,第六次输出1,……由此可得,从第三次开始,每两次一个循环,∵(2020﹣2)÷2=1009,∴第2020次输出结果与第4次输出结果一样,∴第2020次输出的结果为1,故选:D.【点评】本题考查数字的变化规律;能够通过所给例子,找到循环规律是解题的关键.3.(2022秋•闵行区期中)当x=2时,整式ax3+bx﹣1的值等于﹣19,那么当x=﹣2时,整式ax3+bx﹣1的值为()A.19B.﹣19C.17D.﹣17【分析】将x=2代入整式,使其值为﹣19,列出关系式,把x=﹣2代入整式,变形后将得出的关系式代入计算即可求出值.【解答】解:∵当x=2时,整式ax3+bx﹣1的值为﹣19,∴8a+2b﹣1=﹣19,即8a+2b=﹣18,则当x=﹣2时,原式=﹣8a﹣2b﹣1=18﹣1=17.故选:C.【点评】本题考查了代数式的求值,正确变形并整体代入,是解题的关键.4.(2019秋•浦东新区期末)已知:(2x+1)3=ax3+bx2+cx+d,那么代数式﹣a+b﹣c+d的值是()A.﹣1B.1C.27D.﹣27【分析】在(2x+1)3=ax3+bx2+cx+d中,令x=﹣1,求出代数式﹣a+b﹣c+d的值是多少即可.【解答】解:当x=﹣1时,﹣a+b﹣c+d=(﹣2+1)3=﹣1故选:A.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.5.(2019秋•乐亭县期末)当x=﹣1时,3x2+9x﹣1的值为()A.0B.﹣7C.﹣9D.3【分析】把x=﹣1代入3x2+9x﹣1,转化为有理数的混合运算,计算求值即可.【解答】解:把x=﹣1代入3x2+9x﹣1得:原式=3×(﹣1)2+9×(﹣1)﹣1=3﹣9﹣1=﹣7,故选:B.【点评】本题考查了代数式求值,正确掌握代入法和有理数的混合运算是解题的关键.6.(2019秋•浦东新区期中)如果﹣x=1,那么3x2﹣3x﹣2的值是()A.1B.﹣1C.2D.﹣2【分析】把x2﹣x=1整体代入原式=3(x2﹣x)﹣2,计算可得.【解答】解:∵x2﹣x=1,∴3x2﹣3x﹣2=3(x2﹣x)﹣2=3×1﹣2=1.故选:A.【点评】本题主要考查代数式求值,解题的关键是熟练掌握整体代入思想的运用.二.填空题(共12小题)7.(2022秋•静安区月考)当a=﹣2时,代数式3a(a+1)的值等于.【分析】直接把a=﹣2代入代数式中进行计算即可.【解答】解:原式=3×(﹣2)×(﹣2+1)=﹣6×(﹣1)=6.故答案为:6.【点评】本题考查了代数式求值:把字母的值代入代数式进行计算得到对应的代数式的值.8.(2022秋•闵行区校级期中)当x=﹣时,代数式x2+1的值是.【分析】把x=﹣代入原式计算即可.【解答】解:当x=﹣时,原式=+1=1,故答案为:1.【点评】本题考查了代数式的求值,掌握用数值代替代数式里的字母进行计算,正确计算结果是解题关键.9.(2022•闵行区校级开学)已知x﹣5=y+4=z+1,代数式(y﹣x)2+(z﹣x)2+(y﹣z)2的值为.【分析】先加减法求出z﹣x=﹣6,y﹣x=﹣9,y﹣z=﹣3,进而代入解答即可.【解答】解:∵x﹣5=y+4=z+1,∴z﹣x=﹣6,y﹣x=﹣9,y﹣z=﹣3,把z﹣x=﹣6,y﹣x=﹣9,y﹣z=﹣3代入(y﹣x)2+(z﹣x)2+(y﹣z)2=81+36+9=126,故答案为:126.【点评】此题主要考查了代数式求值,正确将原式变形是解题关键.10.(2022秋•嘉定区校级期末)如果a﹣3b=4,那么2a﹣6b﹣1的值是.【分析】首先把2a﹣6b﹣1化成2(a﹣3b)﹣1,然后把a﹣3b=4代入化简后的算式计算即可.【解答】解:∵a﹣3b=4,∴2a﹣6b﹣1=2(a﹣3b)﹣1=2×4﹣1=8﹣1=7.故答案为:7.【点评】此题主要考查了代数式求值问题,求代数式的值可以直接代入计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.11.(2022秋•宝山区期末)当a=3时,代数式﹣2a2+a的值是.【分析】未知数的值已给出,直接代入求解.【解答】解:根据题意,直接将a=3代入,得(﹣2)×32+3=﹣18+3=﹣15.故答案为:﹣15.【点评】本题考查了用代入法求解,掌握代入法求解的方法是关键.12.(2022秋•浦东新区期中)定义a﹣b=0,则称a、b互容,若2x2﹣2与x+4互容,则6x2﹣3x﹣9=.【分析】先根据新定义求出2x2﹣x=6,再把6x2﹣3x﹣9化为3(2x2﹣x)﹣9的形式,整体代入计算即可.【解答】解:∵2x2﹣2与x+4互容,∴2x2﹣2﹣(x+4)=0,∴2x2﹣x=6,∴6x2﹣3x﹣9=3(2x2﹣x)﹣9=3×6﹣9=9,故答案为:9.【点评】本题考查了代数式的求值,掌握乘法分配律的逆运算,把(2x2﹣x)看做一个整体进行计算是解题关键.13.(2022•闵行区校级开学)当x时代数式ax2+bx﹣3的值为5,当x=1时代数式(2ax2+bx﹣5)4的值为.【分析】直接把x=2代入进而得出4a+2b=8,再把x=1代入求出答案.【解答】解:∵当x=2时,代数式ax2+bx﹣3的值为5,∴4a+2b=8,∴2a+b=4,∴当x=1时,代数式(2ax2+bx﹣5)4=(4﹣5)4=1.故答案为:1.【点评】此题主要考查了代数式求值,正确将原式变形是解题关键.14.(2022秋•宝山区校级月考)当a=﹣2时,﹣a2﹣2a+1=.【分析】把a的值代入代数式进行计算即可得解.【解答】解:当a=﹣2时,﹣a2﹣2a+1=﹣(﹣2)2﹣2×(﹣2)+1=﹣4+4+1=1.故答案为:1.【点评】本题考查了代数式求值,比较简单,把a的值代入代数式进行计算即可.15.(2022秋•黄浦区期中)定义:对于一个数x,我们把[x]称作x的相伴数;若x≥0,则[x]=x﹣1;若x<0,则[x]=x+1.例=,[﹣2]=﹣1;已知当a>0,b<0时有[a]=[b]+1,则代数式(b﹣a)3﹣3a+3b的值为.【分析】根据定义的新运算可得a﹣1=b+1+1,从而可得a﹣b=3,然后利用整体的思想进行计算即可解答.【解答】解:当a>0,b<0时,[a]=[b]+1,∴a﹣1=b+1+1,∴a﹣b=3,∴(b﹣a)3﹣3a+3b=﹣(a﹣b)3﹣3(a﹣b)=﹣33﹣3×3=﹣27﹣9=﹣36,故答案为:﹣36.【点评】本题考查了代数式求值,熟练掌握求代数式值中的整体思想是解题的关键.16.(2022秋•长宁区校级期中)当x=3时,代数式2x3+3x2﹣x+3的值是.【分析】将x=3代入运算即可.【解答】解:当x=3时,原式=2×33+3×32﹣3+3=2×27+3×9﹣3+3=54+27=81,故答案为:81.【点评】本题主要考查了求代数式的值,正确利用有理数的混合运算的法则运算是解题的关键.17.(2022秋•青浦区校级期中)当x=﹣2时,代数式的值为.【分析】将x=﹣2代入代数式,按照代数式要求的运算顺序和运算法则计算可得.【解答】解:当x=﹣2时,==3,故答案为:3.【点评】本题考查了代数式的求值,属于基础题,只要将已知条件代入求值即可.18.(2022秋•闵行区期中)如果代数式﹣2a2+3b+8的值为1,那么代数式4a2﹣6b+2的值等于.【分析】根据﹣2a2+3b+8的值为1,可得:﹣2a2+3b+8=1,所以﹣2a2+3b=﹣7,据此求出代数式4a2﹣6b+2的值等于多少即可.【解答】解:∵﹣2a2+3b+8的值为1,∴﹣2a2+3b+8=1,∴﹣2a2+3b=﹣7,∴4a2﹣6b+2=﹣2(﹣2a2+3b)+2=﹣2×(﹣7)+2=14+2=16故答案为:16.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.三.解答题(共8小题)19.(2021秋•松江区期中)如图所示,已知正方形的边长为2a.(1)用含有a的代数式表示阴影部分的面积;(2)当a=2时,求阴影部分的面积.(保留π)【分析】(1)先表示出半圆的面积,再表示出大三角形的面积,最后用正方形的面积减去半圆和大三角形的面积即可得出阴影部分的面积;(2)把a=2代入(1)中的结论,即可得出答案.【解答】解:(1)由题意得,半圆的面积为=,大三角形的面积为=a2,∵正方形的面积为2a×2a=4a2,∴阴影部分的面积为==(3﹣)a2;(2)当a=2时,(3﹣)a2=(3﹣)×22=12﹣2π,∴阴影部分的面积为12﹣2π.【点评】本题主要考查的是列代数式求值的问题,关键是要牢记圆,三角形和正方形的面积公式.20.(2021秋•浦东新区期中)某中学有一块长30m,宽20m的长方形空地,计划在这块空地上划分出部分区域种花,小明同学设计方案如图,设花带的宽度为x米.(1)请用含x的式子表示空白部分长方形的面积;(要化简)(2)当花带宽2米时,空白部分长方形面积能超过400m2吗?请说明理由.【分析】(1)空白部分长方形的两条边长分别是(30﹣2x)m,(20﹣x)m.得空白部分长方形的面积;(2)通过有理数的混合运算得结果与400进行比较.【解答】解:(1)空白部分长方形的两条边长分别是(30﹣2x)m,(20﹣x)m.白部分长方形的面积:(30﹣2x)(20﹣x)=2x2﹣70x+600.(2)答:超过.∵2×22﹣70×2+600=468(m2),∵468>400,∴空白部分长方形面积能超过400 m2.【点评】本题考查有代数式表示实际问题,掌握用代数式表示长方形的边长,读懂题意列出代数式是解决此题关键.21.(2020秋•嘉定区期末)在某班小组学习的过程中,同学们碰到了这样的问题:“已知=5,=3,=6,求的值”.根据已知条件中式子的特点,同学们会想起+=,于是问题可转化为:“已知=+=5,=+=3,=+=6,求=++的值”,这样解答就方便了.(1)通过阅读,试求的值;(2)利用上述解题思路请你解决以下问题:已知=6,求的值.【分析】(1)由已知=+=5,=+=3,=+=6,可得+++++=5+3+6,即可得出答案;(2)由已知=6,可得m+=6,=(m+)2﹣2,即可得出答案.【解答】解:(1)∵=+=5,=+=3,=+=6,∴+++++=5+3+6,∴,∴++==7;(2)∵=6,∴,,∴m2+=(m)2﹣2=62﹣2=34.∴.【点评】本题主要考查了代数式求值,合理应运题目所给条件是解决本题的关键.22.(2021秋•金山区期中)如图,正方形ABCD的边长等于a,正方形BEFG的边长等于b(a>b),其中,点G、E分别在AB、BC上.(1)用a、b的代数式表示图中的阴影部分面积;(2)当a=5,b=2时,求图中的阴影部分面积.【分析】(1)用正方形ABCD的面积减去正方形BEFG的面积再减去直角三角形AGD与在直角三角形DCE的和即可得出结论;(2)将a=5,b=2代入(1)中的代数式计算即可.【解答】解:S阴影=S正方形ABCD﹣S正方形BEFG﹣(S△ADG+S△DEC)==ab﹣b2.(2)当a=5,b=2时,ab﹣b2=5×2﹣4=6.【点评】本题主要考查了列代数式,求代数式的值,正确使用图形的面积公式是解题的关键.23.(2021秋•黄浦区期中)老王想靠着一面足够长的旧墙EF,开垦一块长方形的菜地ABCD,如图所示,菜地的一边靠墙,另外三边用竹篱笆围起来,并在平行于墙的一边BC上留1米宽装门,已知现有竹篱。