苏科版初二数学上学期期末试卷(1)

合集下载

苏科版第一学期八年级数学期末试卷(含解析)

苏科版第一学期八年级数学期末试卷(含解析)

苏科版第一学期八年级数学期末试卷(含解析)一、选择题1.下列四个图标中,是轴对称图形的是()A.B.C.D.2.如图,在ABC∆中,31C∠=︒,ABC∠的平分线BD交AC于点D,如果DE垂直平分BC,那么A∠的度数为( )A.31︒B.62︒C.87︒D.93︒3.以下列各组线段为边作三角形,不能构成直角三角形的是()A.1,2,5B.3,4,5 C.3,6,9 D.23,7,61 4.某种鲸的体重约为,关于这个近似数,下列说法正确的是()A.精确到百分位B.精确到0.01 C.精确到千分位D.精确到千位5.如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组111222,y k x by k x b=+⎧⎨=+⎩的解为()A.2,4xy=⎧⎨=⎩B.4,2xy=⎧⎨=⎩C.4,xy=-⎧⎨=⎩D.3,xy=⎧⎨=⎩6.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.7.把分式22xyx y-中的x、y的值都扩大到原来的2倍,则分式的值…()A .不变B .扩大到原来的2倍C .扩大到原来的4倍D .缩小到原来的128.由四舍五入得到的近似数48.0110⨯,精确到( ) A .万位 B .百位 C .百分位 D .个位9.在平面直角坐标系中,点(1,2)P 到原点的距离是( ) A .1B .3C .2D .5 10.如图,已知O 为ABC ∆三边垂直平分线的交点,且50A ∠=︒,则BOC ∠的度数为( )A .80︒B .100︒C .105︒D .120︒ 11.给出下列实数:227、25-、39、 1.44、2π、0.16、0.1010010001-⋯(每相邻两个1之间依次多一个0),其中无理数有( )A .2个B .3个C .4个D .5个12.一辆货车从甲地匀速驶往乙地用了2.7h ,到达后用了0.5h 卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地速度的1.5倍,货车离甲地的距离y (km )关于时间x (h )的函数图象如图所示,则a 等于( )A .4.7B .5.0C .5.4D .5.8 13.变量x 与y 之间的关系是y =2x+1,当y =5时,自变量x 的值是( )A .13B .5C .2D .3.5 14.如图,平面直角坐标系中,长方形OABC ,点A ,C 分别在x 轴,y 轴的正半轴上,点B (6,3),现将△OAB 沿OB 翻折至△OA ′B 位置,OA ′交BC 于点P .则点P 的坐标为( )A .(94,3)B .(32,3) C .(125,3) D .(5,32) 15.下列各组数是勾股数的是( ) A .6,7,8B .1,3,2C .5,4,3D .0.3,0.4,0.5二、填空题16.若点(1,35)P m m +-在x 轴上,则m 的值为________.17.已知点(,)P m n 在一次函数31y x =-的图像上,则2296m mn n -+=___________.18.如图,在正方形ABCD 的外侧,作等边三角形CDE ,连接,AE BE ,试确定AEB ∠的度数.19.已知直角三角形的两边长分别为3、4.则第三边长为________.20.已知以点C (a ,b )为圆心,半径为r 的圆的标准方程为(x -a )2+(y -b )2=r 2.例如:以A (2,3)为圆心,半径为2的圆的标准方程为(x -2)2+(y -3)2=4,则以原点为圆心,过点P (1,0)的圆的标准方程为____.21.等腰三角形的一个内角是100︒,则它的底角的度数为_________________.22.如图,在坐标系中,一次函数21y x =-+与一次函数y x k =+的图像交于点(2,5)A -,则关于x 的不等式21x k x +>-+的解集是__________.23.一次函数y 1=ax +3与y 2=kx ﹣1的图象如图所示,则不等式kx ﹣1<ax +3的解集是_____.24.已知A (x 1,y 1)、B (x 2,y 2)是一次函数y =(2﹣m )x +3图象上两点,且(x 1﹣x 2)(y 1﹣y 2)<0,则m 的取值范围为_____.25.若等腰三角形的顶角为30°,那么这个等腰三角形的底角为_____°三、解答题26.如图,在4×3正方形网格中,阴影部分是由5个小正方形组成的一个图形,请你用两种方法分别在下图方格内添涂2个小正方形,使这7个小正方形组成的图形是轴对称图形.27.如图,在ABC ∆中,110ACB ∠=,B A ∠>∠,D ,E 为边AB 上的两个点,且BD BC =,AE AC =.(1)若30A ∠=,求DCE ∠的度数;(2)DCE ∠的度数会随着A ∠度数的变化而变化吗?请说明理由.28.已知坐标平面内的三个点(1,3)A ,(3,1)B ,(0,0)O ,把ABO ∆向下平移3个单位再向右平移2个单位后得DEF ∆.(1)画出DEF ∆;(2)DEF ∆的面积为 .29.(1)求式中x 的值:2(1)16x -=; (2)计算:2020312527--+-30.如图(1)所示,在A ,B 两地间有一车站C ,甲汽车从A 地出发经C 站匀速驶往B 地,乙汽车从B 地出发经C 站匀速驶往A 地,两车速度相同.如图(2)是两辆汽车行驶时离C 站的路程y (千米)与行驶时间x (小时)之间的函数关系的图象.(1)填空:a = km ,b = h ,AB 两地的距离为 km ;(2)求线段PM 、MN 所表示的y 与x 之间的函数表达式(自变量取值范围不用写); (3)求行驶时间x 满足什么条件时,甲、乙两车距离车站C 的路程之和最小?31.涟水外卖市场竞争激烈,美团、饿了么等公司订单大量增加,某公司负责招聘外卖送餐员,具体方案如下:每月不超出750单,每单收入4元;超出750单的部分每单收入m 元.(1)若某“外卖小哥”某月送了500单,收入 元;(2)若“外卖小哥”每月收入为y (元),每月送单量为x 单,y 与x 之间的关系如图所示,求y 与x 之间的函数关系式;(3)若“外卖小哥”甲和乙在某个月内共送单1200单,且甲送单量低于乙送单量,共收入5000元,问:甲、乙送单量各是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】直接根据轴对称图形的概念分别解答得出答案.【详解】A 、不是轴对称图形,不合题意;B 、是轴对称图形,符合题意;C 、不是轴对称图形,不符合题意;D 、不是轴对称图形,不合题意.故选:B .【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C解析:C【解析】【分析】根据垂直平分线的性质,可以得到∠C=∠ABC ,再根据角平分线的性质,得到∠ABC 的度数,最后利用三角形内角和即可解决.【详解】∵DE 垂直平分BC ,DB DC ∴=,31C DBC ︒∴∠=∠=,∵BD 平分ABC ∠,262ABC DBC ︒∴∠=∠=,180A ABC C ︒∴∠+∠+∠=,180180623187A ABC C ︒︒︒︒︒∴∠=-∠-∠=--=故选C【点睛】本题考查了垂直平分线的性质,角平分线的性质和三角形内角和,解决本题的关键是熟练掌握三者性质,正确理清各角之间的关系.3.C解析:C【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.【详解】解:A、∵12+222,故A选项能构成直角三角形;B、∵32+42=52,故B选项能构成直角三角形;C、∵32+62≠92,故C选项不能构成直角三角形;D、∵72+()22,故D选项能构成直角三角形.故选:C.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.4.D解析:D【解析】【分析】先写出其原数,看看近似数的最末一位在原数什么数位上,那么它就是精确到了哪个数位.【详解】解:1.36×105kg=136000kg的最后一位的6表示6千,即精确到千位.故选D.【点睛】本题考查了近似数,掌握用科学记数法表示的数的精确度是解题关键.近似数精确到哪一位,应当看末位数字实际在哪一位,即可得出答案.5.A解析:A【解析】【分析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案.【详解】解:∵直线y1=k1x+b1与y2=k2x+b2的交点坐标为(2,4),∴二元一次方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为2,4.x y =⎧⎨=⎩ 故选A.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.6.D解析:D【解析】试题分析:A .是轴对称图形,故本选项错误;B .是轴对称图形,故本选项错误;C .是轴对称图形,故本选项错误;D .不是轴对称图形,故本选项正确.故选D .考点:轴对称图形.7.A解析:A【解析】 把分式22xy x y -中的x 、y 的值都扩大到原来的2倍,可得222222224(2)(2)44x y xy xy x y x y x y ⋅==---,由此可得分式的值不变,故选A. 8.B解析:B【解析】【分析】由于48.0110⨯=80100,观察数字1所在的数位即可求得答案.【详解】解:∵48.0110⨯=80100,数字1在百位上,∴ 近似数48.0110⨯精确到百位,故选 B.【点睛】此题主要考查了近似数和有效数字,熟记概念是解题的关键.9.D解析:D【解析】【分析】根据:(1)点P(x ,y)到x 轴的距离等于|y|; (2)点P(x ,y)到y 轴的距离等于|x|;利用勾股定理可求得.【详解】在平面直角坐标系中,点(1,2)P 到原点的距离是22125+=故选:D【点睛】考核知识点:勾股定理.理解点的坐标意义是关键.10.B解析:B【解析】【分析】延长AO 交BC 于D ,根据垂直平分线的性质可得到AO=BO=CO ,再根据等边对等角的性质得到∠OAB=∠OBA ,∠OAC=∠OCA ,再由三角形的外角性质可求得∠BOD=∠OAB+∠OBA ,∠COD=∠OAC+∠OCA ,从而不难求得∠BOC 的度数.【详解】延长AO 交BC 于D .∵点O 在AB 的垂直平分线上.∴AO=BO .同理:AO=CO .∴∠OAB=∠OBA ,∠OAC=∠OCA .∵∠BOD=∠OAB+∠OBA ,∠COD=∠OAC+∠OCA .∴∠BOD=2∠OAB ,∠COD=2∠OAC .∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2(∠OAB+∠OAC )=2∠BAC .∵∠A=50°.∴∠BOC=100°.故选:B .【点睛】此题主要考查:(1)线段垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等.(2)三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.11.B解析:B【解析】【分析】根据无理数是无限不循环小数,可得答案.【详解】解:−5,实数:227、2π、0.16、0.1010010001-⋯(每相邻两个1之间依次多一个02π、-0.1010010001…(每相邻两个1之间依次多一个0)共3个.故选:B .【点睛】 本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.12.B解析:B【解析】【分析】先根据路程、速度和时间的关系题意可得甲地到乙地的速度和从乙地到甲地的时间,再由货车返回的速度是它从甲地驶往乙地的速度的1.5倍,列出方程组求得从乙地到甲地的时间t ,进而求得a 的值.【详解】解:设甲乙两地的路程为s ,从甲地到乙地的速度为v ,从乙地到甲地的时间为t , 则 2.71.5v s vt s =⎧⎨=⎩解得,t =1.8∴a =3.2+1.8=5(小时),故选B .【点睛】本题考查了一次函数的图像的应用、方程组的应用,根据一次函数图像以及路程、速度和时间的关系列出方程组是解答本题的关键.13.C解析:C【解析】【分析】直接把y =5代入y =2x+1,解方程即可.【详解】解:当y =5时,5=2x+1,解得:x =2,故选:C .【点睛】此题主要考查了函数值,关键是掌握已知函数解析式,给出函数值时,求相应的自变量的值就是解方程.14.A解析:A【解析】【分析】由折叠的性质和矩形的性质证出OP =BP ,设OP =BP =x ,则PC =6﹣x ,再用勾股定理建立方程9+(6﹣x )2=x 2,求出x 即可.【详解】∵将△OAB 沿OB 翻折至△OA ′B 位置,OA ′交BC 于点P ,∴∠A 'OB =∠AOB ,∵四边形OABC 是矩形,∴BC ∥OA ,∴∠OBC =∠AOB ,∴∠OBC =∠A 'OB ,∴OP =BP ,∵点B 的坐标为(6,3),∴AB =OC =3,OA =BC =6,设OP =BP =x ,则PC =6﹣x ,在Rt △OCP 中,根据勾股定理得,OC 2+PC 2=OP 2,∴32+(6﹣x )2=x 2,解得:x =154, ∴PC =6﹣154=94, ∴P (94,3), 故选:A .【点睛】此题主要考查折叠和矩形的性质以及利用勾股定理构建方程,熟练掌握,即可解题. 15.C解析:C【解析】【分析】欲求证是否为勾股数,这里给出三边的长,只要验证222+=a b c 即可.【详解】解:A 、222768+≠,故此选项错误;BC 、222345+=,故此选项正确;D 、0.3,0.4,0.5,勾股数为正整数,故此选项错误.故选:C .【点睛】本题考查了勾股数的概念,一般是指能够构成直角三角形三条边的三个正整数.验证两条较小边的平方和与最大边的平方之间的关系,从而作出判断.二、填空题16.【解析】【分析】根据x 轴上点的纵坐标为0列方程求解即可.【详解】∵点在x 轴上,∴3m −5=0,解得m =.故答案为:.【点睛】本题考查了点的坐标,熟记x 轴上点的纵坐标为0是解题的关 解析:53【解析】【分析】根据x 轴上点的纵坐标为0列方程求解即可.【详解】∵点(1,35)P m m +-在x 轴上,∴3m−5=0,解得m =53. 故答案为:53. 【点睛】本题考查了点的坐标,熟记x 轴上点的纵坐标为0是解题的关键.17.1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入===.故答案为:1.【解析:1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入2296m mn n -+=223196())31(m m m m -+--=2229186196m m m m m -++-+=1.故答案为:1.【点睛】此题主要考查了一次函数图象上点的坐标性质,正确代入点的坐标求出是解题关键.18.【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE ,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数.【详解】解:∵在正方形中,,,在解析:30AEB ∠=【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE ,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数.【详解】解:∵在正方形ABCD 中,AD DC =,90ADC ∠=,在等边三角形CDE 中,CD DE =,60CDE DEC ∠=∠=,∴150ADE ADC CDE ∠=∠+∠= ,AD DE =,在等腰三角形ADE 中1801801501522ADE DEA ︒-∠︒-︒∠===︒, 同理得:15BEC ∠=,则60151530AEB DEC DEA BEC ∠=∠-∠-∠=--=.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形内角和定理;熟练掌握正方形和等边三角形的性质是解决问题的关键.19.5或【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:;②长为3、4的边都是直角边时:第三边的解析:5【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为4=②长为3、45;∴或5.考点:1.勾股定理;2.分类思想的应用. 20.x2+y2=1【解析】因为原点为圆心,过点P (1,0)的圆即是以(0,0)半径为1的圆,则标准方程为: (x -0)2+(y -0)2=1,即x2+y2=1,故答案为: x2+y2=1.解析:x 2+y 2=1【解析】因为原点为圆心,过点P (1,0)的圆即是以(0,0)半径为1的圆,则标准方程为:(x -0)2+(y -0)2=1,即x 2+y 2=1,故答案为: x 2+y 2=1.21.【解析】【分析】由于等腰三角形的一个内角为100°,这个角是顶角或底角不能确定,故应分两种情况进行讨论.【详解】①当这个角是顶角时,底角=(180°﹣100°)÷2=40°;②当这个角是解析:40︒【解析】【分析】由于等腰三角形的一个内角为100°,这个角是顶角或底角不能确定,故应分两种情况进行讨论.【详解】①当这个角是顶角时,底角=(180°﹣100°)÷2=40°;②当这个角是底角时,另一个底角为100°,因为100°+100°=200°,不符合三角形内角和定理,所以舍去.故答案为:40°.【点睛】本题考查了等腰三角形的性质,解答此类问题时往往用到三角形的内角和是180°这一隐藏条件.22.【解析】【分析】根据图像解答即可.【详解】由图像可知,关于的不等式的解集是.故答案为:.【点睛】本题主要考查一次函数和一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细解析:2x >-【解析】【分析】根据图像解答即可.【详解】由图像可知,关于x 的不等式21x k x +>-+的解集是2x >-.故答案为:2x >-.【点睛】本题主要考查一次函数和一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.函数y 1>y 2时x 的范围是函数y 1的图象在y 2的图象上边时对应的未知数的范围,反之亦然.23.x <1.【解析】【分析】结合图象,写出直线y1=ax+3在直线y2=kx ﹣1上方所对应的自变量的范围即可.【详解】∵一次函数y1=ax+3与y2=kx ﹣1的图象的交点坐标为(1,2),∴解析:x <1.【解析】【分析】结合图象,写出直线y 1=ax +3在直线y 2=kx ﹣1上方所对应的自变量的范围即可.【详解】∵一次函数y 1=ax +3与y 2=kx ﹣1的图象的交点坐标为(1,2),∴当x <1时,y 1>y 2,∴不等式kx ﹣1<ax +3的解集为x <1.故答案为:x <1.【点睛】本题考查了一次函数与一元一次不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.24.m >2.【解析】【分析】根据(x1﹣x2)(y1﹣y2)<0,得出y 随x 的增大而减小,再根据2﹣m <0,求出其取值范围即可.【详解】(x1﹣x2)(y1﹣y2)<0,即:或,也就是,y解析:m >2.【解析】【分析】根据(x 1﹣x 2)(y 1﹣y 2)<0,得出y 随x 的增大而减小,再根据2﹣m <0,求出其取值范围即可.【详解】(x 1﹣x 2)(y 1﹣y 2)<0,即:121200x x y y >⎧⎨<⎩﹣﹣或121200x x y y <⎧⎨>⎩﹣﹣, 也就是,y 随x 的增大而减小,因此,2﹣m <0,解得:m >2,故答案为:m >2.【点睛】本题主要考查了一次函数的图象和性质,掌握一次函数的增减性以及适当的转化是解决问题的关键.25.75【解析】【分析】根据等腰三角形两个底角相等可得解.【详解】依题意知,等腰三角形两个底角相等.当顶角=30°时,两底角的和=180°-30°=150°.所以每个底角=75°.故答案解析:75【解析】【分析】根据等腰三角形两个底角相等可得解.【详解】依题意知,等腰三角形两个底角相等.当顶角=30°时,两底角的和=180°-30°=150°.所以每个底角=75°.故答案为75.考点:三角形内角和与等腰三角形性质.点评:本题难度较低.已知角为顶角,根据等腰三角形性质与三角形内角和性质计算即可.三、解答题26.见详解.【解析】试题分析:按轴对称的特征进行添涂即可.试题解析:如图所示:27.(1)35°;(2)DCE ∠的度数不会随着A ∠度数的变化而变化,是35°.【解析】【分析】(1)根据等腰三角形性质求出∠ACE=∠AEC ,∠BCD=∠BDC ,得∠BCE=∠ACB-∠ACE =110°-75°=35°;再根据∠DCE=∠BCD-∠BCE 可得;(2)解题方法如(1),求∠ACE=∠AEC=180∠2A ;∠BCD=∠BDC=()1807018022A B --∠-∠=,∠BCE=∠ACB-∠ACE ,所以∠DCE=∠BCD-∠BCE=1102A +∠-(110°-180∠2A ). 【详解】因为BD BC =,AE AC =所以∠ACE=∠AEC=180180307522A -∠-== ; ∠BCD=∠BDC=180180407022B -∠-==所以∠BCE=∠ACB-∠ACE=110°-75°=35°所以∠DCE=∠BCD-∠BCE=70°-35°=35°;(2)DCE ∠的度数不会随着A ∠度数的变化而变化,理由:因为在ABC ∆中,110ACB ∠=,所以18011070;B A A ∠=--∠=-∠因为BD BC =,AE AC =所以∠ACE=∠AEC=180∠2A ;∠BCD=∠BDC=()18070180110222A B A --∠-∠+∠== 所以∠BCE=∠ACB-∠ACE=110°-180∠2A 所以∠DCE=∠BCD-∠BCE=1102A +∠-(110°-180∠2A )=35° 故DCE ∠的度数不会随着A ∠度数的变化而变化,是35°.【点睛】考核知识点:等腰三角形.理解等腰三角形边角关系是关键.28.(1)见详解;(2)4.【解析】【分析】(1)根据点的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减可以直接算出A 、B 、O 三个对应点D 、E 、F 的坐标,然后画出图形即可;(2)把△DEF 放在一个矩形中,利用矩形的面积减去周围多余三角形的面积即可. 【详解】 解:(1)∵点A (1,3),B (3,1),O (0,0),∴把△ABO 向下平移3个单位再向右平移2个单位后A 、B 、O 三个对应点D (1+2,3-3)、E (3+2,1-3)、F (0+2,0-3),即D (3,0)、E (5,-2)、F (2,-3);如图:(2)△DEF 的面积:11133131322=9 1.5 1.52=4222⨯-⨯⨯-⨯⨯-⨯⨯---. 【点睛】此题主要考查了坐标与图形的变化,解题的关键是掌握平移后点的变化规律.29.(1)x =5或﹣3;(2)﹣9.【解析】【分析】(1)直接利用平方根的定义化简得出答案;(2)直接利用立方根以及算术平方根的定义化简得出答案.【详解】(1)(x ﹣1)2=16,x ﹣1=±4,解得:x =5或﹣3;(2)2020312527--=﹣1﹣5﹣3=﹣9.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.30.(1)120,2,420;(2)线段PM 所表示的y 与x 之间的函数表达式是y =﹣60x +300,线段MN 所表示的y 与x 之间的函数表达式是y =60x ﹣300;(3)行驶时间x 满足2≤x ≤5时,甲、乙两车距离车站C 的路程之和最小.【解析】【分析】(1)根据题意和图象中的数据,可以求得a 、b 的值以及AB 两地之间的距离;(2)根据(1)中的结果和函数图象中的数据,可以求得线段PM 、MN 所表示的y 与x 之间的函数表达式;(3)根据题意,可以写出甲、乙两车距离车站C 的路程之和和s 之间的函数关系式,然后利用一次函数的性质即可解答本题.【详解】(1)两车的速度为:300÷5=60km/h ,a =60×(7﹣5)=120,b =7﹣5=2,AB 两地的距离是:300+120=420.故答案为:120,2,420;(2)设线段PM 所表示的y 与x 之间的函数表达式是y =kx +b ,30050b k b =⎧⎨+=⎩,得60300k b =-⎧⎨=⎩, 即线段PM 所表示的y 与x 之间的函数表达式是y =﹣60x +300;设线段MN 所表示的y 与x 之间的函数表达式是y =mx +n ,507120m n m n +=⎧⎨+=⎩,得60300m n =⎧⎨=-⎩, 即线段MN 所表示的y 与x 之间的函数表达式是y =60x ﹣300;(3)设DE 对应的函数解析式为y =cx +d ,12020d c d =⎧⎨+=⎩,得60120c d =-⎧⎨=⎩, 即DE 对应的函数解析式为y =﹣60x +120,设EF 对应的函数解析式为y =ex +f ,207300e f c f +=⎧⎨+=⎩,得60120e f =⎧⎨=-⎩, 即EF 对应的函数解析式为y =60x ﹣120,设甲、乙两车距离车站C 的路程之和为skm ,当0≤x ≤2时,s =(﹣60x +300)+(﹣60x +120)=﹣120x +420,则当x =2时,s 取得最小值,此时s =180,当2<x ≤5时,s =(﹣60x +300)+(60x ﹣120)=180,当5≤x ≤7时,s =(60x ﹣300)+(60x ﹣120)=120x ﹣420,则当x =5时,s 取得最小值,此时s =180,由上可得:行驶时间x 满足2≤x ≤5时,甲、乙两车距离车站C 的路程之和最小.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.31.(1)2000;(2)y=5x﹣750;(3)甲送250单,乙送950单【解析】【分析】(1)根据题意可以求得“外卖小哥”某月送了500单的收入情况;(2)分段函数,运用待定系数法解答即可;(3)根据题意,利用分类讨论的方法可以求得甲、乙送单量各是多少.【详解】解:(1)由题意可得,“外卖小哥”某月送了500单,收入为:4×500=2000元,故答案为:2000;(2)当0≤x<750时,y=4x当x≥750时,当x=4时,y=3000设y=kx+b,根据题意得3000750 55001250k bk b=+⎧⎨=+⎩,解得5750kb=⎧⎨=-⎩,∴y=5x﹣750;(3)设甲送a单,则a<600<750,则乙送(1200﹣a)单,若1200﹣a<750,则4a+4(1200﹣a)=4800≠5000,不合题意,∴1200﹣a>750,∴4a+5(1200﹣a)﹣750=5000,∴a=250,1200﹣a=950,故甲送250单,乙送950单.【点睛】本题考查的知识点是一次函数的应用以及二元一次方程组,从函数图象中找出有用的信息是解此题的关键.。

《初二上学期期末试卷》(期末试卷)2(苏科版初二上)初中数学(1)

《初二上学期期末试卷》(期末试卷)2(苏科版初二上)初中数学(1)

《初二上学期期末试卷》(期末试卷)2(苏科版初二上)doc 初中数学八年级数学试题题号一二三四五总分1-1011-20 21-25 26 27 28 29 30 31 得分第一部分〔选择题,共 30 分〕本卷须知:答卷前将密封线内的项目填写清晰一、选择题:〔本大题共10小题,每题3分,共30分.在每题给出的4个选项中,只有1项是符合题目要求的,请正确答案的序号填写在下面的括号内〕.1.以下函数中,一次函数是A.x2y B.y=5x 2 C.y=1+5x D.y=x 2+x(x-1)2.假设x<-3,那么A .-2x>6B .2x>-6C .-2x<6D .2x<63.在坐标平面内有一点P(a ,b),且a 与b 的乘积为零,那么P 的位置一定在 A.原点 B.x 轴上 C.y 轴上 D.坐标轴上4.四边形ABCD 的对角线相交于O ,且OA=OB=OC=OD ,那么那个四边形 A.仅是轴对称图形 B.仅是中心对称图形C.即是轴对称图形又是中心对称图形 D.即不是轴对称图形,又不是中心对称图形 5.8的平方根是 A.22B.-22C.±22D.不存在6.在学校对学生进行的体温测量中,学生甲连续10天的体温与36℃的上下波动数据为0.2,0.3,0.1,0.1,0,0.2,0.1,0,0.1,0.1,那么在这10天中该学生的体温波动数据中不正确的选项......是.A.平均数为0.12 B.众数为0.1 C.中位数为0.1 D.平均数为0.027.五根小木棒,其长度分不为7、15、20、24、25,现想把它们摆成两个直角三角形,以下图中题号 1 2 3 4 5 6 7 8 9 10答案2024正确的选项是8a =,那么以下结论正确的选项是A.4.5 5.0a << B.5.0 5.5a <<C.5.5 6.0a << D.6.0 6.5a <<9.如图,点阵中以相邻4个点为顶点的小正方形的面积为1, 那么△ABC 的面积为 A .3 B .3.5 C .4 D .4.510.一列火车从盐城站动身,加速行驶一段时刻后开始匀速行驶,过了一段时刻,火车到达下一个车站.乘客上、下车后,火车又加速,一段时刻后再次开始匀速行驶.下面哪幅图能够近似地刻画出火车在这段时刻内的速度变化情形.第二部分〔非选择题,共 120 分〕本卷须知:第二部分试题答案用钢笔或圆珠笔直截了当写在试卷上。

苏科版八年级上第一学期期末数学试卷

苏科版八年级上第一学期期末数学试卷

苏科版八年级上第一学期期末数学试卷一、选择题 1.如图,一次函数(0)y kx b k =+>的图象过点(0,2),则不等式20kx b +->的解集是( )A .0x >B .0x <C .2x <D .2x >2.下列图书馆的馆徽不是..轴对称图形的是( ) A . B . C . D .3.若a 满足3a a =,则a 的值为( ) A .1 B .0 C .0或1 D .0或1或1-4.下列四个图标中,是轴对称图形的是( )A .B .C .D .5.如图,在△ABC 中,AB="AC," AB +BC=8.将△ABC 折叠,使得点A 落在点B 处,折痕DF 分别与AB 、AC 交于点D 、F ,连接BF ,则△BCF 的周长是( )A .8B .16C .4D .10 6.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( ) A . B . C . D .7.已知点P (1+m ,3)在第二象限,则m 的取值范围是( )A .1m <-B .1m >-C .1m ≤-D .1m ≥-8.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s (km),甲出发后的时间为t (h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )A .甲的速度是4km/hB .乙的速度是10km/hC .乙比甲晚出发1hD .甲比乙晚到B 地3h 9.在平面直角坐标系中,把直线23y x =-沿y 轴向上平移2个单位后,所得直线的函数表达式为( )A .22y x =+B .25y x =-C .21y x =+D .21y x =- 10.若分式12x x -+的值为0,则x 的值为( ) A .1 B .2- C .1- D .211.如图, Rt ABC 中,90,B ED ∠=︒垂直平分,AC ED 交AC 于点D ,交BC 于点E .已知ABC 的周长为24,ABE 的周长为14,则AC 的长( )A .10B .14C .24D .1512.若点Α()m,n 在一次函数y=3x+b 的图象上,且3m-n>2,则b 的取值范围为 ( ) A .b>2 B .b>-2 C .b<2 D .b<-213.下列标志中,不是轴对称图形的是( )A .B .C .D .14.已知:如图,在△AOB 中,∠AOB =90°,AO =3cm ,BO =4cm ,将△AOB 绕顶点O ,按顺时针方向旋转到△A 1OB 1处,此时线段OB 1与AB 的交点D 恰好为AB 的中点,则线段B 1D 的长度为( )A .12cmB .1cmC .2cmD .32cm 15.到ABC ∆的三顶点距离相等的点是ABC ∆的是( )A .三条中线的交点B .三条角平分线的交点C .三条高线的交点D .三条边的垂直平分线的交点二、填空题16.已知直线l 1:y =x +a 与直线l 2:y =2x +b 交于点P (m ,4),则代数式a ﹣12b 的值为___.17.一次函数y =2x +b 的图象沿y 轴平移3个单位后得到一次函数y =2x +1的图象,则b 值为_____.18.如图,在ABC ∆中,AD 平分BAC ∠,DE AB ⊥于点E ,ABC ∆的面积为15,3DE =,6AB =,则AC 的长________.19.如图,点C 坐标为(0,1)-,直线334y x =+交x 轴,y 轴于点A 、点B ,点D 为直线上一动点,则CD 的最小值为_________.20.已知113-=a b ,则分式232a ab b a ab b+-=--__________.21.若等腰三角形的顶角为80°,则这个等腰三角形的底角为____度; 22.若某个正数的两个平方根分别是21a +与25a -,则a =_______.23.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB 绕点B 顺时针旋转90°至CB ,那么点C 的坐标是 .24.已知函数y=x+m-2019 (m 是常数)是正比例函数,则m= ____________25.对某班组织的一次考试成绩进行统计,已知80.5~90.5分这一组的频数是10,频率是0.2,那么该班级的人数是_____人.三、解答题26.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400 m ,先到终点的人在终点休息等候对方.已知甲先出发4 min ,在整个步行过程中,甲、乙两人的距离y m 与甲出发的时间t min 之间的函数关系如图所示.(1)甲步行的速度为 m/min ;(2)解释点P (16,0)的实际意义;(3)乙走完全程用了多少分钟?(4)乙到达终点时,甲离终点还有多少米?27.甲、乙两同学的家与学校的距离均为3200米.甲同学先步行200米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的13,公交车的速度是乙骑自行车速度的3倍.甲、乙两同学同时从家出发去学校,结果甲同学比乙同学早到8分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?28.如图,在平面直角坐标系中,点(1,3)A ,点(3,1)B ,点(4,5)C .(1)画出ABC ∆关于y 轴的对称图形111A B C ∆,并写出点A 的对称点1A 的坐标; (2)若点P 在x 轴上,连接PA 、PB ,则PA PB +的最小值是 ;(3)若直线//MN y 轴,与线段AB 、AC 分别交于点M 、N (点M 不与点A 重合),若将AMN ∆沿直线MN 翻折,点A 的对称点为点'A ,当点'A 落在ABC ∆的内部(包含边界)时,点M 的横坐标m 的取值范围是 .29.定义:若两个分式的和为n (n 为正整数),则称这两个分式互为“n 阶分式”,例如分式31x +与31x x+互为“3阶分式”. (1)分式1032x x +与 互为“5阶分式”; (2)设正数,x y 互为倒数,求证:分式22x x y +与22y y x +互为“2阶分式”; (3)若分式24a a b +与222b a b+互为“1阶分式”(其中,a b 为正数),求ab 的值. 30.如图,己知,A (0, 4),B (t ,0)分别在y 轴,x 轴上,连接AB ,以AB 为直角边分别作等腰Rt △ABD 和等腰Rt △ABC .直线BC 交y 轴于点E. 点G (-2,3)、H (-2,1)在第二象限内.(1)当t =-3时,求点D 的坐标.(2)若点G 、H 位于直线AB 的异侧,确定t 的取值范围.(3)①当t 取何值时,△ABE 与△ACE 的面积相等.②在①的条件下,在x 轴上是否存在点P ,使△PCB 为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,说明理由.31.(1)计算:01)|2|+(2)求x 的值:8(x +1)3=1【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】由图知:一次函数y=kx+b 的图象与y 轴的交点为(0,2),且y 随x 的增大而增大,由此得出当x >0时,y >2,进而可得解.【详解】根据图示知:一次函数y=kx+b 的图象与y 轴的交点为(0,2),且y 随x 的增大而增大; 即当x >0时函数值y 的范围是y >2;因而当不等式kx+b-2>0时,x 的取值范围是x >0.故选:A .【点睛】本题主要考查的是一次函数与一元一次不等式,在解题时,认真体会一次函数与一元一次不等式(组)之间的内在联系.理解一次函数的增减性是解决本题的关键.2.D解析:D【解析】【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:A 、是轴对称图形,不符合题意;B 、是轴对称图形,不符合题意;C 、是轴对称图形,不符合题意;D 、因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不是轴对称图形,符合题意;故选:D .【点睛】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.C解析:C【解析】【分析】只有0和1的算术平方根与立方根相等.【详解】∴a为0或1.故选:C.【点睛】本题考查了立方根:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.也考查了算术平方根.4.B解析:B【解析】【分析】直接根据轴对称图形的概念分别解答得出答案.【详解】A、不是轴对称图形,不合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不合题意.故选:B.【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.A解析:A【解析】【分析】由将△ABC折叠,使得点A落在点B处,折痕DF分别与AB、AC交于点D、F,可得BF=AF,又由在△ABC中,AB=AC,AB+BC=8,易得△BCF的周长等于AB+BC,则可求得答案.【详解】解:由将△ABC折叠,使得点A落在点B处,折痕DF分别与AB、AC交于点D、F,可得BF=AF,又由在△ABC中,AB=AC,AB+BC=8,所以△BCF的周长等于BC+CF+BF=BC+CF+AF=AB+BC=8.故答案选A.【点睛】此题考查了折叠的性质.此题难度不大,解题的关键是掌握折叠前后图形的对应关系,注意等量代换,注意数形结合思想的应用.6.D解析:D【解析】试题分析:A.是轴对称图形,故本选项错误;B.是轴对称图形,故本选项错误;C.是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项正确.故选D.考点:轴对称图形.7.A解析:A【解析】【分析】令点P的横坐标小于0,列不等式求解即可.【详解】解:∵点P P(1+m,3)在第二象限,∴1+m<0,解得: m<-1.故选:A.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8.C解析:C【解析】甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C.9.D解析:D【解析】【分析】根据平移法则“上加下减”可得出平移后的解析式.【详解】解:直线23y x =-沿y 轴向上平移2个单位后的解析式为:y=2x-3+2,即y=2x-1. 故选:D .【点睛】本题考查一次函数图象平移问题,掌握平移法则“左加右减,上加下减”是解决此题的关键.10.A解析:A【解析】【分析】根据分式的值为0,分子等于0,分母不等于0列式计算即可得解.【详解】根据题意得,1-x=0且x+2≠0,解得x=1且x≠-2,所以x=1.故选:A .【点睛】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.11.A解析:A【解析】【分析】首先依据线段垂直平分线的性质得到AE=CE ;接下来,依据AE=CE 可将△ABE 的周长为:14转化为AB+BC=14,求解即可.【详解】∵DE 是AC 的垂直平分线,∴AE=CE ,∴△ABE 的周长为:AB+BE+AE=AB+BE+CE=AB+BC∵ABC 的周长为24,ABE 的周长为14∴AB+BC=14∴AC=24-14=10故选:A【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键. 12.D解析:D【解析】分析:由点(m,n )在一次函数3y x b =+的图像上,可得出3m+b=n ,再由3m-n >2,即可得出b <-2,此题得解.详解:∵点A (m ,n )在一次函数y=3x+b 的图象上,∴3m+b=n .∵3m-n >2,∴3m-(3m+b)>2,即-b>2,∴b <-2.故选D .点睛:考查了一次函数图象上点的坐标特征:点的坐标满足函数的解析式,根据一次函数图象上点的坐标特征,再结合3m-n >2,得出-b >2是解题的关键.13.B解析:B【解析】【分析】根据轴对称图形的性质对各项进行判断即可.【详解】A. 是轴对称图形;B. 不是轴对称图形;C. 是轴对称图形;D. 是轴对称图形;故答案为:B .【点睛】本题考查了轴对称图形的问题,掌握轴对称图形的性质是解题的关键.14.D解析:D【解析】【分析】先在直角△AOB 中利用勾股定理求出AB =5cm ,再利用直角三角形斜边上的中线等于斜边的一半得出OD =12AB =2.5cm .然后根据旋转的性质得到OB 1=OB =4cm ,那么B 1D =OB 1﹣OD =1.5cm .【详解】∵在△AOB 中,∠AOB =90°,AO =3cm ,BO =4cm ,∴AB =5cm ,∵点D 为AB 的中点,∴OD =12AB =2.5cm .∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.5cm.故选:D.【点睛】本题主要考查勾股定理和直角三角形的性质以及图形旋转的性质,掌握“直角三角形斜边上的中线等于斜边的一半”是解题的关键.15.D解析:D【解析】【分析】根据垂直平分线的性质进行判断即可;【详解】∵到△ABC的三个顶点的距离相等,∴这个点在这个三角形三条边的垂直平分线上,即这点是三条垂直平分线的交点.故答案选D.【点睛】本题主要考查了垂直平分线的性质,准确理解性质是解题的关键.二、填空题16.【解析】【分析】将点P代入y=x+a和y=2x+b中,再进行适当变形可得代数式a﹣b的值. 【详解】解:把点P(m,4)分别代入y=x+a和y=2x+b得:4=m+a①,4=2m+b,∴2解析:【解析】【分析】将点P代入y=x+a和y=2x+b中,再进行适当变形可得代数式a﹣12b的值.【详解】解:把点P(m,4)分别代入y=x+a和y=2x+b得:4=m+a①,4=2m+b,∴2=m+12b②,∴①﹣②得,a﹣12b=2,故答案为:2.【点睛】本题考查了一次函数,一次函数图像上的点适合该函数的解析式,熟练掌握函数图像上的点与函数解析式的关系是解题的关键.17.﹣2或4【解析】【分析】由于题目没说平移方向,所以要分两种情况求解,然后根据直线的平移规律:上加下减,左加右减解答即可.【详解】解:由题意得:平移后的直线解析式为y=2x+b±3=2x+1解析:﹣2或4【解析】【分析】由于题目没说平移方向,所以要分两种情况求解,然后根据直线的平移规律:上加下减,左加右减解答即可.【详解】解:由题意得:平移后的直线解析式为y=2x+b±3=2x+1.∴b±3=1,解得:b=﹣2或4.故答案为:﹣2或4.【点睛】本题考查了直线的平移,属于基本题型,熟练掌握直线的平移规律是解答的关键.18.4【解析】【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【详解】过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=3,∴S△解析:4【解析】【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【详解】过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴S △ABC =12×6×3+12AC ×3=15, 解得AC =4.故答案为:4.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.19.【解析】【分析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】 连接AC ,过点C 作CD⊥AB,则CD 的长最短,如图,对于直线令y=0,则,解得x=-4,令x=0解析:165【解析】【分析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】连接AC ,过点C 作CD ⊥AB ,则CD 的长最短,如图,对于直线334y x =+令y=0,则3304x +=,解得x=-4,令x=0,则y=3,∴A(-4,0),B(0,3),∴OA=4,OB=3,在Rt △OAB 中,222AB OA OB =+∴22435∴OC=1,∴BC=3+1=4, ∴1122ABC S BC AO AB CD ==,即1144=522CD ⨯⨯⨯⨯, 解得,165CD =. 故答案为:165. 【点睛】 此题主要考查了一次函数的应用以及三角形面积公式的运用,解答此题的关键是利用三角形面积相等求出CD 的长.20.【解析】【分析】首先把两边同时乘以,可得 ,进而可得,然后再利用代入法求值即可.【详解】解:∵,∴ , ∴,∴故答案为:【点睛】 此题主要考查了分式化简求值,关键是掌握代入求值时,解析:34【解析】【分析】首先把113-=a b两边同时乘以ab ,可得3b a ab -= ,进而可得3a b ab -=-,然后再利用代入法求值即可.【详解】解:∵113-=a b, ∴3b a ab -= , ∴3a b ab -=-,∴2323263334a b ab a ab bab ab a ab b a b ab ab ab故答案为:3 4【点睛】此题主要考查了分式化简求值,关键是掌握代入求值时,有直接代入法,整体代入法等常用方法.21.50【解析】【分析】因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;【详解】底角:(180解析:50【解析】【分析】因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;【详解】底角:(180°−80°)÷2=100°÷2=50°它的底角为50度故答案为:50.【点睛】此题考查三角形的内角和,等腰三角形的性质,解题关键在于利用内角和定理进行解答. 22.1【解析】【分析】根据一个正数的两个平方根互为相反数可得2a+1+2a-5=0,解方程求出a值即可.【详解】∵某个正数的两个平方根分别是2a+1与2a-5,∴2a+1+2a-5=0,解解析:1【解析】【分析】根据一个正数的两个平方根互为相反数可得2a+1+2a-5=0,解方程求出a值即可.【详解】∵某个正数的两个平方根分别是2a+1与2a-5,∴2a+1+2a-5=0,解得:a=1故答案为:1【点睛】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.23..【解析】【分析】【详解】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,∠CBD=∠BAO,,.解析:(21)【解析】【分析】【详解】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,∠CBD=∠BAO,∠BDC=∠AOB, BC=AB,∴△ABO≌△BCD(AAS),∴CD=OB,BD=AO,∵点A(1,0),B(0,2),∴CD=2,BD=1,∴OD=OB-BD=1,又∵点C在第二象限,∴点C的坐标是(-2,1).24.2019【解析】【分析】根据正比例函数的定义,m-2019=0,从而求解.【详解】解:根据题意得:m-2019=0,解得:m=2019,故答案为2019.【点睛】本题主要考查了正比解析:2019【解析】【分析】根据正比例函数的定义,m-2019=0,从而求解.【详解】解:根据题意得:m-2019=0,解得:m=2019,故答案为2019.【点睛】本题主要考查了正比例函数的定义,形如y=kx(k是常数,k≠0)的函数,其中k叫做比例系数.正比例函数一定是一次函数,但一次函数不一定是正比例函数.25.50【解析】【分析】利用数据的总数=该组的频数÷该组的频率解答即可.【详解】解:该班级的人数为:10÷0.2=50.故答案为:50.【点睛】本题考查了频数与频率,熟练掌握数据的总数与解析:50【解析】【分析】利用数据的总数=该组的频数÷该组的频率解答即可.【详解】解:该班级的人数为:10÷0.2=50.故答案为:50.【点睛】本题考查了频数与频率,熟练掌握数据的总数与频数、频率的关系是解题的关键.三、解答题26.(1)甲步行的速度为60 m/min;(2)当甲出发16 min时,甲乙两人距离0 m(或乙出发12 min时,乙追上了甲);(3)乙步行的速度为80 m/min;乙走完全程用的时间为30min;(4)乙到达终点时,甲离终点距离是360米.【解析】【分析】(1)根据甲先出发4 min,结合图象可知4 min他们的距离为240,即可求甲的速度;(2)结合函数图象可知,当t=16分钟时,y为0,据此可答;(3)根据t=16分钟时,甲乙所走的路程相等求得乙步行的速度,再用总路程÷乙步行的速度即可得解;(4)甲的速度×(乙走完全程的时间+4)=乙到达终点时甲的路程.再用总路程-甲的路程即可.【详解】(1)甲步行的速度为:240÷4=60 m/min;(2)当甲出发16 min时,甲乙两人距离0 m(或乙出发12 min时,乙追上了甲);(3)乙步行的速度为:16×60÷12=80 m/min;乙走完全程用的时间为:2400÷80=30min;(4)乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.27.(1)乙骑自行车的速度为200m/min;(2)乙同学离学校还有1600m【解析】【分析】(1)设乙骑自行车的速度为x m/min,则甲步行速度是13x m/min,公交车的速度是3xm/min,根据题意列方程即可得到结论;(2)200×8=1600米即可得到结果.【详解】解:(1)设乙骑自行车的速度为xm/min,则公交车的速度是3x m/min,甲步行速度是13x m/min.由题意得:320020032002008133x xx--=+,解得x=200,经检验x=200原方程的解答:乙骑自行车的速度为200m/min.(2)当甲到达学校时,乙同学还要继续骑行8分钟 200×8=1600m ,答:乙同学离学校还有1600m.【点睛】此题主要考查了分式方程的应用,根据题意列出方程是解题关键.28.(1)详见解析;1A 的坐标(-1,3);(2)25;(3)1<m ≤1.25【解析】【分析】(1)根据轴对称定义画图,写出坐标;(2)作点B 根据x 轴的对称点B ',连接A B ',与x 轴交于点P ,此时PA+PB=A B ',且值最小. (3)证AE//x 轴,再求线段AE 中点的横坐标,根据轴对称性质可得.【详解】解:(1)如图,111A B C ∆为所求,1A 的坐标(-1,3);(2)如图,作点B 根据x 轴的对称点B ',连接A B ',与x 轴交于点P ,此时PA+PB=A B ',且值最小.即PA+PB=A B '=22224225AD DB '+=+=(3)由已知可得,BC 的中点坐标是(3415,22++),即(3.5,3) 所以AE//x 轴,所以线段AE 中点的横坐标是:3.51 1.252-= 所以根据轴对称性质可得,m 的取值范围是1<m≤1.25【点睛】考核知识点:轴对称,勾股定理.数形结合分析问题,理解轴对称关系是关键.29.(1)1532x +;(2)详见解析;(3)12【解析】【分析】(1)根据分式的加法,设所求分式为A ,然后进行通分求解即可;(2)根据题意首先利用倒数关系,将x ,y 进行消元,然后通过分式的加法化简即可得解;(3)根据1阶分式的要求对两者相加进行分式加法化简,通过通分化简即可得解.【详解】(1)依题意,所求分式为A ,即:10+532x A x =+, ∴1015101015532323232x x x A x x x x+=-=-=++++; (2)∵正数,x y 互为倒数∴1xy =,即1x y= ∴33223332212222222(1)211111x y y y y y x y y x y y y y y y y ++=+=+==+++++++ ∴分式22x x y +与22y y x +互为“2阶分式”; (3)由题意得222142a b a b a b+=++,等式两边同乘22(4)(2)a b a b ++ 化简得: 2222(2)2(4)(2)(4)a a b b a b a b a b +++=++即:32232848ab b a b b +=+∴22420a b ab -=,即2(21)0ab ab -= ∴12ab =或0 ∵,a b 为正数 ∴12ab =. 【点睛】 本题主要考查了分式的加减,熟练掌握分式的通分约分运算知识是解决此类问题的关键.30.(1)D (-7,3);(2)88-3t -<<;(3)①-2;②存在,P(6,0),P(12,0),P(-,0),,0)【解析】【分析】(1)当t=-3时,过点D 作DM ⊥x 轴于点M ,证明△ABO ≌△BDM ,得出DM=BO 和MB=OA ,从而得出点D 坐标.(2)设出AB 解析式y=kx+4,分别求出点G ,H 在线段AB 上的时点B 的坐标; (3)①假设△ABE 与△ACE 的面积相等,利用等底同高求出t 值;②根据等腰三角形的性质,分BP=BC 、CP=CB 、PC=PB 三种情况讨论.【详解】(1)当t=-3时,过点D 作DM ⊥x 轴于点M,∵△ABD 为等腰直角三角形,AB=BD ,∠ABD=90°∴∠ABO+∠DBM=180°-90°=90°又∵DM ⊥x 轴于点M∴∠DMB=90°∴∠DBM+∠MDB=90°∴∠MDB=∠ABO在△ABO 和△BDM 中ABO BDM AB BDDMB BOA ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABO ≌△BDM∴DM=BO=3,MB=OA=4∴MO=MB+BO=4+3=7∴D (-7,3)(2)∵A (0,4),B (t,0),设直线AB 的解析式为y=kx+4当点G (-2,3)在直线AB 上时3=-2k+4,12k = 此时AB 的解析式142y x =+ 当y=0时,1042x =+,x=-8 此时B (-8,0)当点H (-2,1)在直线AB 上时1=-2k+4,32k 此时AB 的解析式243y x =+ 当y=0时,3042x =+,x=83- 此时B (83-,0)∵点G, H 位于直线AB 的异侧,∴由图像可知直线AB 与线段MN 相交,且点M ,N 不在直线AB 上∴88-3t -<< (3)①t=-2时,△ABE 与△ACE 的面积相等.如图,过点B 做x 轴垂线,构造直角三角形ARB 和直角三角形BQC ,∵∠RAB+∠ABR=90°,∠ABR+∠BCQ=90°∴∠ABR=∠BCQ ,在△ARB 和△BQC 中,=R Q ABR BCQ AB BC ∠=∠⎧⎪∠∠⎨⎪=⎩,∴△ARB ≌△BQC (AAS )∴AR=BQ,BR=QC=4,若△ABE 与△ACE 的面积相等,则BE=EC ,∴BO=CN=2,∴B (-2,0)②P(6,0),P(12,0),5,0),5,0) 由②可得C (2,-2)当BP=BC时,BC=2242=25,∴BP=25∴P(-25-2,0)或P(25-2,0)当CP=CB时,BP=8,∴P(6,0)当PC=PB时,如图,过E作BC的垂线,交x轴于点P,过C作x轴垂线于点S,设BP=m=PC,则PS=4-m,在△PSC中,PS2+SC2=PC2,即22+(4- m)2= m 2,解得m=52,∴OP=52-2=12,∴P(12,0).综上:P(6,0),P(12,0),P(-25-2,0),P(25-2,0).【点睛】本题是一道综合性较强的题,难点在于等腰三角形的存在性问题,同时根据图像数形结合来得出t的取值范围.31.(1)132)x=﹣12.【解析】【分析】(1)首先计算0次幂、绝对值、开方,然后从左向右依次计算,求出算式的值是多少即可;(2)根据立方根的含义和求法,求出x的值是多少即可.【详解】(1) 01)|2|+=1+22=1(2)∵8(x +1)3=1,∴(x +1)3=18, ∴x +1=12, 解得:x =﹣12. 【点睛】本题考查实数的混合运算和开立方的方法解方程,解决此类题目的关键是熟练掌握乘方、二次根式、绝对值等考点的运算.。

江苏省常州市苏科版八年级数学上册期末真题试卷(一)解析版

江苏省常州市苏科版八年级数学上册期末真题试卷(一)解析版

江苏省常州市苏科版八年级数学上册期末真题试卷(一)解析版一、选择题1.如图,在四边形ABCD 中,AB ∥DC ,AD=BC=5,DC=7,AB=13,点P 从点A 出发以3个单位/s 的速度沿AD→DC 向终点C 运动,同时点Q 从点B 出发,以1个单位/s 的速度沿BA 向终点A 运动.当四边形PQBC 为平行四边形时,运动时间为( )A .4sB .3sC .2sD .1s 2.4的平方根是( )A .2B .2±C .2D .2±3.如图,在平面直角坐标系中,点,A C 在x 轴上,点C 的坐标为(1,0),2AC -=.将Rt ABC ∆先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(1,2)-B .(4,2)-C .(3,2)D .(2,2)4.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( ) A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)5.在下列分解因式的过程中,分解因式正确的是( ) A .-xz +yz =-z(x +y) B .3a 2b -2ab 2+ab =ab(3a -2b) C .6xy 2-8y 3=2y 2(3x -4y) D .x 2+3x -4=(x +2)(x -2)+3x6.某种产品的原料提价,因而厂家决定对产品提价,现有三种方案: 方案(一):第一次提价%p ,第二次提价%q ; 方案(二):第一次提价%q ,第二次提价%p ; 方案(三):第一、二次提价均为2%p q+; 其中p ,q 是不相等的正数. 有以下说法:①方案(一)、方案(二)提价一样;②方案(一)的提价也有可能高于方案(二)的提价; ③三种方案中,以方案(三)的提价最多;④方案(三)的提价也有可能会低于方案(一)或方案(二)的提价. 其中正确的有( ) A .②③ B .①③ C .①④ D .②④ 7.如果等腰三角形两边长是5cm 和2cm ,那么它的周长是( ) A .7cm B .9cm C .9cm 或12cm D .12cm 8.下列各数中,无理数的是( )A .0B .1.01001C .πD .49.如图, Rt ABC 中,90,B ED ∠=︒垂直平分,AC ED 交AC 于点D ,交BC 于点E .已知ABC 的周长为24,ABE 的周长为14,则AC 的长( )A .10B .14C .24D .1510.如图:若△ABE ≌△ACD ,且AB =6,AE =2,则EC 的长为( )A .2B .3C .4D .6二、填空题11.如图,在ABC ∆中,90ACB ∠=︒,点D 为AB 中点,若4AB =,则CD =_______________.12.如图,在平面直角坐标系中,长方形OABC 的顶点O 在坐标原点,顶点A 、C 分别在x 、y 轴的正半轴上:OA =3,OC =4,D 为OC 边的中点,E 是OA 边上的一个动点,当△BDE 的周长最小时,E 点坐标为_____.13.已知点(,5)A m -和点(2,)B n 关于x 轴对称,则m n +的值为______. 14.点A (3,-2)关于x 轴对称的点的坐标是________. 15.如图,直线l 1:y =﹣12x +m 与x 轴交于点A ,直线l 2:y =2x +n 与y 轴交于点B ,与直线l 1交于点P (2,2),则△PAB 的面积为_____.16.如果2x -有意义,那么x 可以取的最小整数为______. 17.等腰三角形的顶角为76°,则底角等于__________.18.在平面直角坐标系中,已知一次函数y=-2x+1的图象经过P 1(x 1 , y 1)、P 2(x 2 , y 2)两点,若x 1>x 2 , 则y 1________y 2(填“>”或“<”).19.将一次函数y =2x +2的图象向下平移2个单位长度,得到相应的函数表达式为____. 20.如图,在△ABC 中,AB =5,AC =13,BC 边上的中线AD =6,则△ABD 的面积是______.三、解答题21.直角三角形ABC 中,90ABC ∠=︒,点D 为AC 的中点,点E 为CB 延长线上一点,且BE CD =,连接DE . (1)如图1,求证2C E ∠=∠(2)如图2,若6AB =、5BE =,ABC ∆的角平分线CG 交BD 于点F ,求BCF ∆的面积.22.如图,ABC ∆的三个顶点都在格点上.(1)直接写出点B 的坐标;(2)画出ABC ∆关于x 轴对称的111A B C ∆, (3)直接写出点1A 的坐标 23.(问题背景)如图,在平面直角坐标系xOy 中,点A 的坐标是(0,1),点C 是x 轴上的一个动点.当点C 在x 轴上移动时,始终保持ACP ∆是等腰直角三角形,且90CAP ∠=︒(点A 、C 、P 按逆时针方向排列);当点C 移动到点O 时,得到等腰直角三角形AOB (此时点P 与点B 重合). (初步探究)(1)写出点B 的坐标______.(2)点C 在x 轴上移动过程中,当等腰直角三角形ACP 的顶点P 在第四象限时,连接BP . 求证:AOC ABP ∆∆≌; (深入探究)(3)当点C 在x 轴上移动时,点P 也随之运动.经过探究发现,点P 的横坐标总保持不变,请直接写出点P 的横坐标:______. (拓展延伸)(4)点C 在x 轴上移动过程中,当POB ∆为等腰三角形时,直接写出此时点C 的坐标.备用图24.如图,点B、E、C、F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.求证:AC=DF.25.客运公司规定旅客可免费携带一定质量的行李,当行李质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数,这个函数的图象如图所示.(1)求y关于x的函数表达式;(2)求旅客最多可免费携带行李的质量.四、压轴题26.直角三角形ABC中,∠ACB=90°,直线l过点C.(1)当AC=BC时,如图①,分别过点A、B作AD⊥l于点D,BE⊥l于点E.求证:△ACD≌△CBE.(2)当AC=8,BC=6时,如图②,点B与点F关于直线l对称,连接BF,CF,动点M从点A出发,以每秒1个单位长度的速度沿AC边向终点C运动,同时动点N从点F出发,以每秒3个单位的速度沿F →C →B →C →F 向终点F 运动,点M 、N 到达相应的终点时停止运动,过点M 作MD ⊥l 于点D ,过点N 作NE ⊥l 于点E ,设运动时间为t 秒. ①CM = ,当N 在F →C 路径上时,CN = .(用含t 的代数式表示) ②直接写出当△MDC 与△CEN 全等时t 的值.27.如图①,在ABC ∆中,12AB =cm ,20BC =cm ,过点C 作射线//CD AB .点M 从点B 出发,以3 cm/s 的速度沿BC 匀速移动;点N 从点C 出发,以a cm/s 的速度沿CD 匀速移动.点M 、N 同时出发,当点M 到达点C 时,点M 、N 同时停止移动.连接AM 、MN ,设移动时间为t (s).(1)点M 、N 从移动开始到停止,所用时间为 s ; (2)当ABM ∆与MCN ∆全等时,①若点M 、N 的移动速度相同,求t 的值;②若点M 、N 的移动速度不同,求a 的值;(3)如图②,当点M 、N 开始移动时,点P 同时从点A 出发,以2 cm/s 的速度沿AB 向点B 匀速移动,到达点B 后立刻以原速度沿BA 返回.当点M 到达点C 时,点M 、N 、P 同时停止移动.在移动的过程中,是否存在PBM ∆与MCN ∆全等的情形?若存在,求出t 的值;若不存在,说明理由.28.ABC 是等边三角形,作直线AP ,点C 关于直线AP 的对称点为D ,连接AD ,直线BD 交直线AP 于点E ,连接CE .(1)如图①,求证:CE AE BE+=;(提示:在BE上截取BF DE=,连接AF.)(2)如图②、图③,请直接写出线段CE,AE,BE之间的数量关系,不需要证明;(3)在(1)、(2)的条件下,若26BD AE==,则CE=__________.29.已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求ABFACFSS的值.30.如图,在平面直角坐标系中,直线AB经过点A332)和B3,0),且与y轴交于点D,直线OC与AB交于点C,且点C3.(1)求直线AB的解析式;(2)连接OA,试判断△AOD的形状;(3)动点P从点C出发沿线段CO以每秒1个单位长度的速度向终点O运动,运动时间为t 秒,同时动点Q从点O出发沿y轴的正半轴以相同的速度运动,当点Q到达点D时,P,Q同时停止运动.设PQ与OA交于点M,当t为何值时,△OPM为等腰三角形?求出所有满足条件的t值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】【详解】解:设运动时间为t秒,则CP=12-3t,BQ=t,根据题意得到12-3t=t,解得:t=3,故选B.【点睛】本题考查一元一次方程及平行四边形的判定,难度不大.2.D解析:D【解析】【分析】根据平方根的定义直接作答.【详解】解:4的平方根是2故选:D【点睛】本题考查平方根的定义,掌握一个正数有两个平方根,它们互为相反数是本题的解题关键. 3.D解析:D【解析】【分析】先求出A点绕点C顺时针旋转90°后所得到的的坐标A',再求出A'向右平移3个单位长度后得到的坐标A'',A''即为变换后点A的对应点坐标.【详解】将Rt ABC∆先绕点C顺时针旋转90°,得到点坐标为A'(-1,2),再向右平移3个单位长度,则A'点的纵坐标不变,横坐标加上3个单位长度,故变换后点A的对应点坐标是A''(2,2).【点睛】本题考察点的坐标的变换及平移.4.C解析:C【解析】【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣45<0,不符合题意;B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点(2,2)代入y=kx﹣1得到:k=32>0,符合题意;D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,故选C.【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.5.C解析:C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】-xz+yz=-z(x-y),故此选项错误;3a2b-2ab2+ab=ab(3a-2b+1),故此选项错误;6xy2-8y3=2y2(3x-4y)故此选项正确;x2+3x-4=(x+2)(x-2)+3x,此选项没把一个多项式转化成几个整式积的形式,此选项错误.故选:C.【点睛】因式分解的意义.6.B解析:B 【解析】 【分析】根据提价方案求出提价后三种方案的价格,得到方案(一)、方案(二)、方案(三)提价情况,进行对比即可得解. 【详解】∵方案(一):(1%)(1%)1%%%%p q p q p q ++=+++ 方案(二):(1%)(1%)1%%%%q p q p q p ++=+++ ∴方案(一)、方案(二)提价一样 ∴①对,②错; ∵方案(三):2(1%)(1%)1%%(%)222p q p q p q p q +++++=+++ ∴可知:21%%(%)(1%%%%)2p q p q p q p q ++++-+++2(%)%%2p q p q +=-2(%)2p q -= ∵p ,q 是不相等的正数 ∴2(%)02p q -> ∴方案(三)提价最多 ∴③对,④错 ∴①③对 故选:B. 【点睛】本题主要考查了销售问题中的增长率问题,熟练掌握增长率的相关知识及整式的乘法化简是解决本题的关键.7.D解析:D 【解析】 【分析】因为题中没有说明已知两边哪个是底,哪个是腰,所以要分情况进行讨论. 【详解】解:当三边是2cm ,2cm ,5cm 时,不符合三角形的三边关系; 当三角形的三边是5cm ,5cm ,2cm 时,符合三角形的三边关系, 此时周长是5+5+2=12cm . 故选:D . 【点睛】考查了等腰三角形的性质,此类题注意分情况讨论,还要看是否符合三角形的三边关系.8.C解析:C【解析】【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【详解】解:A.0是整数,属于有理数;B.1.01001是有限小数,属于有理数;C.π是无理数;,是整数,属于有理数.2故选:C.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有ππ的数.9.A解析:A【解析】【分析】首先依据线段垂直平分线的性质得到AE=CE;接下来,依据AE=CE可将△ABE的周长为:14转化为AB+BC=14,求解即可.【详解】∵DE是AC的垂直平分线,∴AE=CE,∴△ABE的周长为:AB+BE+AE=AB+BE+CE=AB+BC∵ABC的周长为24,ABE的周长为14∴AB+BC=14∴AC=24-14=10故选:A【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键. 10.C解析:C【解析】【分析】根据全等三角形的对应边相等解答即可.【详解】解:∵△ABE≌△ACF,∴AC=AB=6,∴EC=AC﹣AE=6-2=4,故选:C.【点睛】本题考查的知识点是全等三角形的性质,熟记性质内容是解此题的关键.二、填空题11.【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半即可求出CD.【详解】∵D是AB的中点,∴CDAB=2.故答案为:2.【点睛】本题主要是运用了直角三角形的性质:直角三角形斜解析:2【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半即可求出CD.【详解】∵D是AB的中点,∴CD12AB=2.故答案为:2.【点睛】本题主要是运用了直角三角形的性质:直角三角形斜边上的中线等于斜边的一半.12.(1,0)【解析】【分析】本题是典型的“将军饮马”问题,只需作D关于x轴的对称点D′,连接D′B 交x轴于点E,如图,则此时△BDE的周长最小,易得点B和D′坐标,故可利用待定系数法求出直线BD解析:(1,0)【解析】【分析】本题是典型的“将军饮马”问题,只需作D关于x轴的对称点D′,连接D′B交x轴于点E,如图,则此时△BDE的周长最小,易得点B和D′坐标,故可利用待定系数法求出直线BD'的解析式,然后求直线BD'与x轴的交点即得答案.【详解】解:如图,作D关于x轴的对称点D′,连接D′B交x轴于点E,连接DE,则DE= D′E,此时△BDE的周长最小,∵D为CO的中点,∴CD=OD=2,∵D和D′关于x轴对称,∴D′(0,﹣2),由题意知:点B(3,4),∴设直线BD'的解析式为y=kx+b,把B(3,4),D′(0,﹣2)代入解析式,得:342k bb+=⎧⎨=-⎩,解得,22kb=⎧⎨=-⎩,∴直线BD'的解析式为y=2x﹣2,当y=0时,x=1,故E点坐标为(1,0).故答案为:(1,0).【点睛】本题考查的是利用待定系数法求直线的解析式和两线段之和最小问题,属于常考题型,熟练掌握求解的方法是解题关键.13.7【解析】【分析】根据关于x轴对称的点的坐标特征,即横坐标相同,纵坐标相反,列式分别求出m,n即可解决.【详解】解:∵和点关于轴对称,∴m=2,-5+n=0,∴m=2,n=5,∴m+解析:7【解析】【分析】根据关于x 轴对称的点的坐标特征,即横坐标相同,纵坐标相反,列式分别求出m ,n 即可解决.【详解】解:∵(,5)A m 和点(2,)B n 关于x 轴对称,∴m=2,-5+n=0,∴m=2,n=5,∴m+n=7.故答案为7.【点睛】本题考查了点的坐标特征,解决本题的关键是熟练掌握关于x 轴对称的点的坐标特征,要与关于y 轴对称的点的坐标特征相区别.14.(3,2)【解析】试题分析:点A (3,﹣2)关于x 轴对称的点的坐标是(3,2).故答案为(3,2).考点:关于x 轴、y 轴对称的点的坐标.解析:(3,2)【解析】试题分析:点A (3,﹣2)关于x 轴对称的点的坐标是(3,2).故答案为(3,2). 考点:关于x 轴、y 轴对称的点的坐标.15.【解析】【分析】把点P (2,2)分别代入y =﹣x+m 和y =2x+n ,求得m =3,n =﹣2,解方程得到A (6,0),B (0,﹣2),根据三角形的面积公式即可得到结论.【详解】解:把点P (2,解析:【解析】【分析】把点P (2,2)分别代入y =﹣12x+m 和y =2x+n ,求得m =3,n =﹣2,解方程得到A (6,0),B (0,﹣2),根据三角形的面积公式即可得到结论.【详解】解:把点P (2,2)分别代入y =﹣12x+m 和y =2x+n , 得,m =3,n =﹣2,∴直线l 1:y =﹣12x+3,直线l 2:y =2x ﹣2,对于y=﹣12x+3,令y=0,得,x=6,对于y=2x﹣2,令x=0,得,y=﹣2,∴A(6,0),B(0,﹣2),∵直线l1:y=﹣12x+3与y轴的交点为(0,3),∴△PAB的面积=12×5×6﹣12×5×2=10,故答案为:10.【点睛】本题考查了两直线相交与平行问题,三角形的面积的计算,正确的识别图形是解题的关键.16.2【解析】【分析】根据被开方数大于等于0列式求解即可.【详解】根据题意得,x-2≥0,解得x≥2,∴x可以取的最小整数为2.故填:2.【点睛】本题考查了二次根式有意义的条件,根据解析:2【解析】【分析】根据被开方数大于等于0列式求解即可.【详解】根据题意得,x-2≥0,解得x≥2,∴x可以取的最小整数为2.故填:2.【点睛】本题考查了二次根式有意义的条件,根据被开方数大于等于列式求解即可,比较简单.17.52°【解析】【分析】根据等腰三角形的性质,以及三角形内角和定理,进行计算即可. 【详解】解:∵等腰三角形的顶角为76°,∴底角为:,故答案为:52°.【点睛】本题考查了等腰三角形性解析:52°【解析】【分析】根据等腰三角形的性质,以及三角形内角和定理,进行计算即可.【详解】解:∵等腰三角形的顶角为76°,∴底角为:11=104=52 22⨯︒︒⨯︒︒(180-76),故答案为:52°.【点睛】本题考查了等腰三角形性质,以及三角形内角和定理,解题的关键是掌握等腰三角形等边对等角计算角度.18.<【解析】【分析】根据一次函数的性质,当k<0时,y随x的增大而减小进行判断即可.【详解】解:∵一次函数y=-2x+1中k=-2<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2解析:<【解析】【分析】根据一次函数的性质,当k<0时,y随x的增大而减小进行判断即可.【详解】解:∵一次函数y=-2x+1中k=-2<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为<.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.19.y=2x【解析】【分析】直接利用一次函数平移规律:左右平移,x左加右减;上下平移,b上加下减,得出答案.【详解】解:将函数y=2x+2的图象向下平移2个单位长度后,所得图象的函数关系式为y解析:y=2x【解析】【分析】直接利用一次函数平移规律:左右平移,x左加右减;上下平移,b上加下减,得出答案.【详解】解:将函数y=2x+2的图象向下平移2个单位长度后,所得图象的函数关系式为y=2x+2﹣2=2x.故答案为:y=2x.【点睛】本题考查的知识点是一次函数图象与几何变换,掌握一次函数图象平移的规律“左右平移,x左加右减;上下平移,b上加下减”是解此题的关键.20.15【解析】【分析】延长AD到点E,使DE=AD=6,连接CE,可证明△ABD≌△CED,所以CE=AB,再利用勾股定理的逆定理证明△CDE是直角三角形,即△ABD为直角三角形,进而可求出△A解析:15【解析】【分析】延长AD到点E,使DE=AD=6,连接CE,可证明△ABD≌△CED,所以CE=AB,再利用勾股定理的逆定理证明△CDE是直角三角形,即△ABD为直角三角形,进而可求出△ABD的面积.【详解】解:延长AD到点E,使DE=AD=6,连接CE,∵AD 是BC 边上的中线,∴BD =CD ,在△ABD 和△CED 中,BD CD ADB EDC AD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△CED (SAS ),∴CE =AB =5,∠BAD =∠E ,∵AE =2AD =12,CE =5,AC =13,∴CE 2+AE 2=AC 2,∴∠E =90°,∴∠BAD =90°,即△ABD 为直角三角形,∴△ABD 的面积=12AD •AB =15. 故答案为15.【点睛】本题考查了全等三角形的判定和性质、勾股定理的逆定理的运用,解题的关键是添加辅助线,构造全等三角形. 三、解答题21.(1)见解析(2)9613 【解析】【分析】(1)连接BD ,依题意得BD=CD ,所以∠C=∠CBD ,可证明∠CBD=2E ∠,进而可得结论; (2)过点F 作FM BC ⊥,FN AC ⊥,根据已知求出CD=5,AC=10,由勾股定理求出BC=8,求出S △BCD =12S △ABC ,再根据BCD BCF CDF S S S ∆∆∆=+,即111222CD FN BC FM =⋅+⋅可求出FM ,从而可得结论. 【详解】(1)连接BD点D 为AC 中点,且90ABC ∠=︒,12BD AC CD AD ∴===, CD BE =, BE BD ∴=,BDE E ∴∠=∠,又BD CD ∴=,C DBC ∴∠=∠,2C DBC BDE E E ∴∠=∠=∠+∠=∠,(2)过点F 作FM BC ⊥,FN AC ⊥.CG 平分ABC ∠,FM FN ∴=,5BE =,5,10CD AD BE AC ∴====,又6AB =∴在Rt ABC ∆中,222AB BC AC +=, 8BC ∴=BD 为ABC ∆中线,11111681222222BCD ABC S S AB BC ∆∆∴==⨯⨯=⨯⨯⨯=, 又BCD BCF CDF S S S ∆∆∆=+,111222CD FN BC FM ∴=⋅+⋅, 11581222FM FM ∴⨯⨯+⨯⨯=, 2413FM ∴=, 1124968221313BCF S BC FM ∆∴=⋅=⨯⨯=, 【点睛】此题考查了直角三角形的性质,角平分线的性质以及三角形中线的性质,熟练掌握这些性质是解题的关键.22.(1)(2,3)-;(2)画图见解析;(3)(1,1)-【解析】【分析】(1)根据平面直角坐标系中点与有序数对的对应关系解答即可;(2)ABC ∆各顶点关于x 轴对称的点A 1,B 1,C 1,然后用线段顺次连接即可;(3)根据平面直角坐标系中点与有序数对的对应关系解答即可.【详解】解:(1)点B 的坐标是(2,3)-;(2)如图,(3)点1A 的坐标是(1,1)-.【点睛】本题考查了作图-轴对称变换,熟练掌握网格结构准确找出对应点的位置是解题的关键.23.(1)(1,1);(2)证明见解析;(3)1;(4)(2,0)(2,0)(2,0)--.【解析】【分析】根据等腰直角三角形的性质,OA=AB ,题干中已知A 点坐标,即可求得OB 的长度,表示出B 点坐标即可.根据等腰直角三角形的性质得到90CAP OAB ︒∠=∠=,再根据等角的余角相等,得出角12∠=∠,最后利用三角形全等的判定方法进行判定即可.根据(2)的结论△ABP 也为直角三角形,且AB 垂直BP ,且AB=OB=1,即可得出P 点的横坐标.先根据题意,确定B 点、A 点坐标,设出P 点和C 点坐标,分情况进行讨论,当OP=OB 时,当OB=BP 时,当OP=BP 时,分别利用两点间距离公式求出点P 点的坐标,然后分别算出AP 的长,最后利用AP=AC 计算出A 点坐标即可.【详解】解:(1)∵点A 的坐标为(0,1)△OAB 是等腰直角三角形,且OA=AB ,OA⊥BA∴B 点坐标为(1,1).(2)证明:在等腰直角三角形ACP 中,AC AP =,90CAP ∠=︒在等腰直角三角形AOB中,AO AB=,90OAB∠=︒90CAP OAB︒∠=∠=CAP OAP OAB OAP∴∠-∠=∠-∠12∠∠∴=在AOC∆和ABP∆中2AC APAO AB=⎧⎪∠=∠⎨⎪=⎩()AOC ABP SAS∴∆∆≌(3)AOC ABP∆∆≌(已证)∴∠ABP=90°∴PB垂直AB,P点在过B点且垂直与AB的垂线上,∵点B的坐标为(1,1)∴P点的横坐标为1.(4)由题意和(1)可知()01(11)A B,,,,设P(1,y),C(x,0),当OB=OP()()221-1+12y-=解得:21y=或21y=+,则()2212113AP=++-=()2212113AP=+-+-=解得:2x=±所以C点坐标为(2,02,0)同理当OB=OP时,可得C点坐标为(-2,0)当BP=OP时,可得C点坐标为(-1,0)故答案为:(2,0)(2,0)(1,0)(2,0)---【点睛】本题考查了等腰三角形的性质,三角形全的的判定方法,计算两点间距离,动点问题,解决本题的关键是熟练掌握等腰三角形的性质,能够得到相等的线段和角,动点问题要注意分类进行讨论,根据情况确定答案.24.证明见解析【解析】试题分析:要证明AC =DF 成立,只需要利用AAS 证明△ABC ≌△DEF 即可.试题解析:证明:∵BF =EC (已知),∴BF +FC =EC +CF ,即BC =EF ,在△ABC 和△DEF 中,,∴△ABC ≌△DEF (AAS ),∴AC =DF考点:全等三角形的判定与性质.25.(1)()12105y x x =->(2)10kg 【解析】【分析】(1)根据(30,4)、(40,6)利用待定系数法,即可求出当行李的质量x 超过规定时,y 与x 之间的函数表达式;(2)令y =0,求出x 值,此题得解.【详解】解:(1)设y 与x 的函数表达式为y =kx +b , 由题意可得:304406k b k b +=⎧⎨+=⎩解得:152k b ⎧=⎪⎨⎪=-⎩∴125y x =-(x >10); (2)当y =0,12=05x -, ∴x =10, ∴旅客最多可免费携带行李的质量为10kg .【点睛】本题主要考查求一次函数解析式,熟练掌握利用待定系数法求解函数表达式是解题的关键.四、压轴题26.(1)证明见解析;(2)①CM =8t -,CN =63t -;②t =3.5或5或6.5.【解析】【分析】(1)根据垂直的定义得到∠DAC=∠ECB ,利用AAS 定理证明△ACD ≌△CBE ;(2)①由折叠的性质可得出答案;②动点N 沿F→C 路径运动,点N 沿C→B 路径运动,点N 沿B→C 路径运动,点N 沿C→F 路径运动四种情况,根据全等三角形的判定定理列式计算.【详解】(1)∵AD ⊥直线l ,BE ⊥直线l ,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB ,在△ACD 和△CBE 中,ADC CEB DAC ECB CA CB ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△CBE (AAS );(2)①由题意得,AM=t ,FN=3t ,则CM=8-t ,由折叠的性质可知,CF=CB=6,∴CN=6-3t ;故答案为:8-t ;6-3t ;②由折叠的性质可知,∠BCE=∠FCE ,∵∠MCD+∠CMD=90°,∠MCD+∠BCE=90°,∴∠NCE=∠CMD ,∴当CM=CN 时,△MDC 与△CEN 全等,当点N 沿F→C 路径运动时,8-t=6-3t ,解得,t=-1(不合题意),当点N 沿C→B 路径运动时,CN=3t-6,则8-t=3t-6,解得,t=3.5,当点N 沿B→C 路径运动时,由题意得,8-t=18-3t ,解得,t=5,当点N 沿C→F 路径运动时,由题意得,8-t=3t-18,解得,t=6.5,综上所述,当t=3.5秒或5秒或6.5秒时,△MDC 与△CEN 全等.【点睛】本题考查了折叠的性质,全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用分情况讨论思想是解题的关键.27.(1)203;(2)①t=83;②a=185;(3)t=6.4或t=103【解析】【分析】(1)根据时间=路程÷速度即可求得答案;(2)①由题意得:BM=CN=3t,则只可以是△CMN≌△BAM,AB=CM,由此列出方程求解即可;②由题意得:CN≠BM,则只可以是△CMN≌△BMA,AB=CN=12,CM=BM,进而可得3t=10,求解即可;(3)分情况讨论,当△CMN≌△BPM时,BP=CM,若此时P由A向B运动,则12-2t=20-3t,但t=8不符合实际,舍去,若此时P由B向A运动,则2t-12=20-3t,求得t=6.4;当△CMN≌△BMP时,则BP=CN,CM=BM,可得3t=10,t=103,再将t=103代入分别求得AP,BP的长及a的值验证即可.【详解】解:(1)20÷3=203,故答案为:203;(2)∵CD∥AB,∴∠B=∠DCB,∵△CNM与△ABM全等,∴△CMN≌△BAM或△CMN≌△BMA,①由题意得:BM=CN=3t,∴△CMN≌△BAM∴AB=CM,∴12=20-3t,解得:t=83;②由题意得:CN≠BM,∴△CMN≌△BMA,∴AB=CN=12,CM=BM,∴CM=BM=12 BC,∴3t=10,解得:t=10 3∵CN=at,∴103a=12解得:a=185;(3)存在∵CD∥AB,∴∠B=∠DCB,∵△CNM与△PBM全等,∴△CMN≌△BPM或△CMN≌△BMP,当△CMN≌△BPM时,则BP=CM,若此时P由A向B运动,则BP=12-2t,CM=20-3t,∵BP=CM,∴12-2t=20-3t,解得:t=8 (舍去)若此时P由B向A运动,则BP=2t-12,CM=20-3t,∵BP=CM,∴2t-12=20-3t,解得:t=6.4,当△CMN≌△BMP时,则BP=CN,CM=BM,∴CM=BM=12 BC∴3t=10,解得:t=10 3当t=103时,点P的路程为AP=2t=203,此时BP=AB-AP=12-203=163,则CN=BP=16 3即at=163,∵t=103,∴a=1.6符合题意综上所述,满足条件的t的值有:t=6.4或t=10 3【点睛】本题考查了全等三角形的判定及性质的综合运用,解决本题的关键就是用方程思想及分类讨论思想解决问题,把实际问题转化为方程是常用的手段.28.(1)见解析;(2)图②中,CE+BE=AE,图③中,AE+BE=CE;(3)1.5或4.5【解析】【分析】(1)在BE上截取BF DE=,连接AF,只要证明△AED≌△AFB,进而证出△AFE为等边三角形,得出CE+AE= BF+FE,即可解决问题;(2)图②中,CE+BE=AE,延长EB到F,使BF=CE,连接AF,只要证明△ACE≌△AFB,进而证出△AFE为等边三角形,得出CE+BE= BF+BE,即可解决问题;图③中,AE+BE=CE,在EC上截取CF=BE,连接AF,只要证明△AEB≌△AFC,进而证出△AFE为等边三角形,得出AE+BE =CF+EF,即可解决问题;(3)根据线段CE,AE,BE,BD之间的数量关系分别列式计算即可解决问题.【详解】(1)证明:在BE上截取BF DE=,连接AF,在等边△ABC中,AC=AB,∠BAC=60°由对称可知:AP是CD的垂直平分线,AC=AD,∠EAC=∠EAD,设∠EAC=∠DAE=x.∵AD=AC=AB,∴∠D=∠ABD=12(180°-∠BAC-2x)=60°-x,∴∠AEB=60-x+x=60°.∵AC=AB,AC=AD,∴AB=AD,∴∠ABF=∠ADE,∵BF DE,∴△ABF≌△ADE,∴AF=AE,BF=DE,∴△AFE为等边三角形,∴EF=AE,∵AP是CD的垂直平分线,∴CE=DE,∴CE=DE=BF,∴CE+AE= BF+FE =BE;(2)图②中,CE+BE=AE,延长EB到F,使BF=CE,连接AF在等边△ABC中,AC=AB,∠BAC=60°由对称可知:AP是CD的垂直平分线,AC=AD,∠EAC=∠EAD,∴AB =AD,CE=DE,∵AE =AE∴△ACE≌△ADE,∴∠ACE=∠ADE∵AB =AD,∴∠ABD=∠ADB∴∠ABF=∠ADE=∠ACE∵AB=AC,BF=CE,∴△ACE≌△ABF,∴AE=AF,∠BAF=∠CAE∵∠BAC=∠BAE+∠CAE =60°∴∠EAF=∠BAE+∠BAF =60°∴△AFE为等边三角形,∴AE=BE+BF= BE+CE ,即CE+BE=AE ;图③中,AE+BE=CE ,在EC 上截取CF=BE ,连接AF ,在等边△ABC 中,AC=AB ,∠BAC=60°由对称可知:AP 是CD 的垂直平分线,AC=AD ,∠EAC=∠EAD ,∴AB =AD ,CE=DE ,∵AE =AE∴△ACE ≌△ADE ,∴∠ACE=∠ADE∵AB =AD ,∴∠ABD=∠ADB∴∠ABD=∠ADE=∠ACE∵AB=AC ,BE=CF ,∴△ACF ≌△ABE ,∴AE=AF ,∠BAE=∠CAF∵∠BAC=∠BAF+∠CAF =60°∴∠EAF=∠BAF+∠BAE =60°∴△AFE 为等边三角形,∴EF=AE ,∴CE =EF+CF= AE + BE ,即AE+BE=CE ;(3)在(1)的条件下,若26BD AE ==,则AE=3,∵CE+AE=BE ,∴BE-CE=3,∵BD=BE+ED=BE+CE=6,在(2)的条件下,若26BD AE ==,则AE=3,因为图②中,CE+BE=AE ,而BD=BE-DE=BE-CE ,所以BD 不可能等于2AE ;图③中,若26BD AE ==,则AE=3,∵AE+BE=CE ,∴CE-BE=3,∵BD=BE+ED=BE+CE=6,∴CE=4.5.即CE=1.5或4.5.【点睛】本题考查几何变换,等边三角形的性质,线段垂直平分线的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.29.(1)①见解析;②见解析;(2)2【解析】【分析】(1)①只要证明∠2+∠BAF =∠1+∠BAF =60°即可解决问题;②只要证明△BFC ≌△ADB ,即可推出∠BFC =∠ADB =90°;(2)在BF 上截取BK =AF ,连接AK .只要证明△ABK ≌CAF ,可得S △ABK =S △AFC ,再证明AF =FK =BK ,可得S △ABK =S △AFK ,即可解决问题;(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE =∠2+∠BAF ,∠CFE =∠4+∠1,∴∠CFB =∠2+∠4+∠BAC ,∵∠BFE =∠BAC =2∠EFC ,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB =AC ,∴△ABK ≌CAF ,∴∠3=∠4,S △ABK =S △AFC ,∵∠1+∠3=∠2+∠3=∠CFE =∠AKB ,∠BAC =2∠CEF ,∴∠KAF =∠1+∠3=∠AKF ,∴AF =FK =BK ,∴S △ABK =S △AFK ,∴ABF AFCS 2S ∆∆=. 【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.30.(1)y 3+2;(2)△AOD 为直角三角形,理由见解析;(3)t =2323. 【解析】【分析】(1)将点A 、B 的坐标代入一次函数表达式:y =kx +b ,即可求解;(2)由点A 、O 、D 的坐标得:AD 2=1,AO 2=3,DO 2=4,故DO 2=OA 2+AD 2,即可求解; (3)点C 3,1),∠DBO =30°,则∠ODA =60°,则∠DOA =30°,故点C 31),则∠AOC =30°,∠DOC =60°,OQ =CP =t ,则OP =2﹣t .①当OP =OM 时,OQ =QH +OH 3(2﹣t )+12(2﹣t )=t ,即可求解;②当MO =MP 时,∠OQP =90°,故OQ =12O P ,即可求解;③当PO =PM 时,故这种情况不存在. 【详解】解:(1)将点A、B的坐标代入一次函数表达式:y=kx+b得:33=2023k bk b⎧+⎪⎨⎪=+⎩,解得:3 =32kb⎧⎪⎨⎪=⎩-,故直线AB的表达式为:y=﹣3x+2;(2)直线AB的表达式为:y=﹣3x+2,则点D(0,2),由点A、O、D的坐标得:AD2=1,AO2=3,DO2=4,故DO2=OA2+AD2,故△AOD为直角三角形;(3)直线AB的表达式为:y=﹣3x+2,故点C(3,1),则OC=2,则直线AB的倾斜角为30°,即∠DBO=30°,则∠ODA=60°,则∠DOA=30°故点C(3,1),则OC=2,则点C是AB的中点,故∠COB=∠DBO=30°,则∠AOC=30°,∠DOC=60°,OQ=CP=t,则OP=OC﹣PC=2﹣t,①当OP=OM时,如图1,则∠OMP=∠MPO=12(180°﹣∠AOC)=75°,故∠OQP=45°,过点P作PH⊥y轴于点H,则OH=12OP=12(2﹣t),由勾股定理得:PH=32(2﹣t)=QH,OQ=QH+OH=32(2﹣t)+12(2﹣t)=t,解得:t=23;②当MO=MP时,如图2,则∠MPO=∠MOP=30°,而∠QOP=60°,∴∠OQP=90°,故OQ=12OP,即t=12(2﹣t),解得:t=23;③当PO=PM时,则∠OMP=∠MOP=30°,而∠MOQ=30°,故这种情况不存在;综上,t=2323.【点睛】本题考查等腰三角形的性质、一次函数解析式、勾股定理、含30°的角的直角三角形的性质等知识点,还利用了方程和分类讨论的思想,综合性较强,难度较大,解题的关键是学会综合运用性质进行推理和计算.。

苏科版八年级(上)期末数学试卷(含答案)[1]

苏科版八年级(上)期末数学试卷(含答案)[1]

苏科版八年级(上)期末数学试卷(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(苏科版八年级(上)期末数学试卷(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为苏科版八年级(上)期末数学试卷(含答案)(word版可编辑修改)的全部内容。

八年级数学期末考试一、选择题(每小题2分,共16分)1。

点P ( 2,-3 )关于x 轴的对称点是( ▲ )A . (-2, 3 )B . (2,3)C .(-2, 3 )D .(2,-3 ) 2。

若2=a ,则a 的值为 ( ▲ )A.2B.2± C 。

4 D.±43.把0.697按四舍五入法精确到0.01的近似值是 ( ▲ )A. 0.6B. 0.7 C 。

0。

67 D. 0。

70 4。

一次函数y =2x +1的图像不经过( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限 5.若440-=m ,则估计m 的值所在的范围是 ( )A .1<m <2B .2<m <3C .3<m <4D .4<m <56。

若点A (-3,y 1),B(2,y 2),C (3,y 3)是函数2+-=x y 图像上的点,则( )A .321y y y >>B .321y y y <<C .231y y y <<D .132y y y >>7。

某电视台“走基层"栏目的一位记者乘汽车赴320km 外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y (单位:km )与时间x (单位:h )之间的关系如图所示,则下列结论正确的是( )A .汽车在高速公路上的行驶速度为100km/hB .乡村公路总长为90kmC .汽车在乡村公路上的行驶速度为60km/hD .该记者在出发后5h 到达采访地8。

【阶段检测】苏科版数学八年级上册 期末测试题 (1) 含答案

【阶段检测】苏科版数学八年级上册   期末测试题 (1)  含答案

苏科版数学 八年级上学期 期末测试题1、下列说法中,正确的个数是( )(1)轴对称图形只有一条对称轴,(2)轴对称图形的对称轴是一条线段,(3)两个图形成轴对称,这两个图形是全等图形,(4)全等的两个图形一定成轴对称,(5)轴对称图形是指一个图形,而轴对称是指两个图形而言。

A 1个B 2个C 3个D 4个2、轴对称图形的对称轴的条数( )A 只有一条B 2条C 3条D 至少一条3、下列图形中,不是轴对称图形的是( )A. 两条相交直线B. 线段C.有公共端点的两条相等线段D.有公共端点的两条不相等线段4、到三角形的三个顶点距离相等的点是( )A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三条边的垂直平分线的交点5、 在△ABC 中,AB=AC ,BC=5cm ,作AB 的垂直平分线交另一腰AC 于D ,连结BD ,如果△BCD 的周长是17cm ,则腰长为( )A 、12cmB 、6 cmC 、 7 cmD 、5 cm6、如图,⊿ABC 中,BC =10,边BC 的垂直平分线分别交AB 、AC 于点E 、F ,BE =7,⊿BCE 的周长为_____。

7、如图,A 、B 是公路边两个新建的居民小区,某镇需在公路边增加一个公共汽车站,这个公共汽车站建在什么位置,才能使两个小区到车站的路程一样,找出汽车站的位置并说明理由。

8、点Q 在∠AOB 的平分线上,QA ⊥OA 于A ,QB ⊥OB 于B ,则AQ =____ ,理由是_____________________________________。

9、如图,∠C=900,∠1=∠2,若BC=10,BD=6,则D到边AB的距离为_____。

10、如图,点P在∠AOB内,PM⊥OA于M,PN⊥OB于N,且PM=PN,连结OP,则OP是________________。

依据是_______________________________。

苏科版第一学期八年级数学期末试卷(含解析)

苏科版第一学期八年级数学期末试卷(含解析)

苏科版第一学期八年级数学期末试卷(含解析)一、选择题1.已知点(,21)P a a -在一、三象限的角平分线上,则a 的值为( )A .1-B .0C .1D .22.下列四组线段a 、b 、c ,不能组成直角三角形的是( )A .4,5,3a b c ===B . 1.5,2, 2.5a b c ===C .5,12,13a b c ===D .1,2,3a b c ===3.下列四组数,可作为直角三角形三边长的是 A .456cm cm cm 、、 B .123cm cm cm 、、 C .234cm cm cm 、、 D .123cm cm cm 、、 4.在平面直角坐标系中,点P (﹣3,2)在( )A .第一象限B .第二象限C .第三象限D .第四象限5.如图,在△ABC 中,AB="AC," AB +BC=8.将△ABC 折叠,使得点A 落在点B 处,折痕DF 分别与AB 、AC 交于点D 、F ,连接BF ,则△BCF 的周长是( )A .8B .16C .4D .106.下列图形中的五边形ABCDE 都是正五边形,则这些图形中的轴对称图形有( )A .1个B .2个C .3个D .4个7.已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是( ) A .a >bB .a =bC .a <bD .以上都不对8.在平面直角坐标系中,把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为( ) A .31y x =-+ B .32y x =-+ C .31y x =-- D .32y x =-- 9.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为( )A .1B .5C .7D .4910.已知A (a ,b ),B (c ,d )是一次函数y =kx ﹣3x +2图象上的不同两个点,m =(a ﹣c )(b ﹣d ),则当m <0时,k 的取值范围是( )A .k <3B .k >3C .k <2D .k >211.如图, Rt ABC 中,90,B ED ∠=︒垂直平分,AC ED 交AC 于点D ,交BC 于点E .已知ABC 的周长为24,ABE 的周长为14,则AC 的长( )A .10B .14C .24D .1512.点P(-2,3)关于x 轴的对称点的坐标为( ) A .(2,3)B .(-2,-3)C .(2,-3)D .(-3,2)13.下列各式成立的是( ) A .93=±B .235+=C .()233-=± D .()233-=14.如图,在R △ABC 中,∠ACB =90°,AC =6,BC =8,E 为AC 上一点,且AE =85,AD 平分∠BAC 交BC 于D .若P 是AD 上的动点,则PC +PE 的最小值等于( )A .185B .245C .4D .26515.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC二、填空题16.将一次函数y =2x 的图象向上平移1个单位,所得图象对应的函数表达式为__________.17.如图,直线I I :1y x =+与直线2I :y mx n =+相交于点(,2)P a ,则关于x 的不等式1x mx n +≥+的解集为______.18.2(5)-=_____.19.在平面直角坐标系中,已知一次函数312y x =-+的图像经过111(,)P x y ,222(,)P x y 两点,若12x x >,则1y ______________2y20.如图,在ABC 中,∠A =60°,D 是BC 边上的中点,DE ⊥BC ,∠ABC 的平分线BF 交DE 于ABC 内一点P ,连接PC ,若∠ACP =m °,∠ABP =n °,则m 、n 之间的关系为______.21.如图,在△ABC 中,PH 是AC 的垂直平分线,AH =3,△ABP 的周长为11,则△ABC 的周长为_____.22.化简20,0)3ba b a>≥结果是_______ . 23.3的平方根是_________.24.如图①,四边形ABCD 中,//,90BC AD A ∠=︒,点P 从A 点出发,沿折线AB BC CD →→运动,到点D 时停止,已知PAD △的面积s 与点P 运动的路程x 的函数图象如图②所示,则点P 从开始到停止运动的总路程为________.25.如图,将一张三角形纸片折叠,使得点A 、点C 都与点B 重合,折痕分别为DE 、FG ,此时测得∠EBG =36°,则∠ABC =_____°.三、解答题26.如图,∠AOB =90°,OA =12cm ,OB =8cm ,一机器人在点B 处看见一个小球从点A 出发沿着AO 方向匀速滚向点O ,机器人立即从点B 出发,沿BC 方向匀速前进拦截小球,恰好在点C 处截住了小球.如果小球滚动的速度与机器人行走的速度相等,并且它们的运动时间也相等.(1)请用直尺和圆规作出C 处的位置,不必叙述作图过程,保留作图痕迹; (2)求线段OC 的长.27.阅读下列材料,然后解答问题: 问题:分解因式:3245x x +-.解答:把1x =带入多项式3245x x +-,发现此多项式的值为0,由此确定多项式3245x x +-中有因式()1x -,于是可设()()322451x x x x mx n +-=-++,分别求出m ,n 的值.再代入()()322451x x x x mx n +-=-++,就容易分解多项式3245x x +-,这种分解因式的方法叫做“试根法”. (1)求上述式子中m ,n 的值;(2)请你用“试根法”分解因式:3299x x x +--. 28.(1)计算:()()21320192π+-+- (2)解方程:2416x =29.如图,△ABC 中,B C ∠=∠,点D 、E 在边BC 上,且AD AE =,求证:BE CD =30.小江利用计算器计算15×15,25×25,…,95×95,有如下发现:15×15=225=1×2×100+25,25×25=625=2×3×100+2535×35=1225=3×4×100+25,小江观察后猜测:如果用字母a代表一个正整数,则有如下规律:(a×10+5)2=a(a+1)×100+25.但这样的猜测是需要证明之后才能保证它的正确性.请给出证明.31.如图,函数483y x=-+的图像分别与 x轴、 y轴交于 A、 B两点,点 C在 y轴上,AC平分OAB∠.(1) 求点 A、 B的坐标;(2) 求ABC的面积;(3) 点 P在坐标平面内,且以A、 B、P为顶点的三角形是等腰直角三角形,请你直接写出点 P的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C 【解析】 【分析】根据第一、三象限的角平分线上的点的横坐标与纵坐标相等列出方程求解即可. 【详解】∵点P (a ,2a-1)在一、三象限的角平分线上, ∴a=2a-1, 解得a=1. 故选:C . 【点睛】本题考查了坐标与图形性质,熟记第一、三象限的角平分线上的点的横坐标与纵坐标相等是解题的关键.2.D解析:D 【解析】 【分析】根据勾股定理逆定理,即若三角形中两边到的平方和等于第三边的平方,那么这个三角形是直角三角形,对每项进行计算判断即可. 【详解】解:A.2222223491625,525,a b c +=+==+=,B.222221.52 2.254 6.25,2.5 6.25,a b c +=+==+=,C.22222251225144169,13169,a b c +=+==+=,222222123,39,.1D a b c +=+==+≠.【点睛】本题考查了勾股定理的逆定理,解决本题的关键是熟练掌握勾股定理逆定理,正确计算出每项的结果.3.D解析:D 【解析】 【分析】根据勾股定理的逆定理对四个选项进行逐一判断即可. 【详解】A 、∵52+42≠62,∴此组数据不能构成直角三角形,故本选项错误;B 、12+22≠32,∴此组数据不能构成直角三角形,故本选项错误;C 、∵22+32≠42,∴此组数据不能构成直角三角形,故本选项错误;D 、∵12+)2=)2,∴此组数据能构成直角三角形,故本选项正确. 故选:D . 【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4.B解析:B【解析】【分析】根据各象限的点的坐标的符号特征判断即可.【详解】∵-3<0,2>0,∴点P(﹣3,2)在第二象限,故选:B.【点睛】本题考查了各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),记住各象限内点的坐标的符号是解决的关键.5.A解析:A【解析】【分析】由将△ABC折叠,使得点A落在点B处,折痕DF分别与AB、AC交于点D、F,可得BF=AF,又由在△ABC中,AB=AC,AB+BC=8,易得△BCF的周长等于AB+BC,则可求得答案.【详解】解:由将△ABC折叠,使得点A落在点B处,折痕DF分别与AB、AC交于点D、F,可得BF=AF,又由在△ABC中,AB=AC,AB+BC=8,所以△BCF的周长等于BC+CF+BF=BC+CF+AF=AB+BC=8.故答案选A.【点睛】此题考查了折叠的性质.此题难度不大,解题的关键是掌握折叠前后图形的对应关系,注意等量代换,注意数形结合思想的应用.6.D解析:D【解析】分析:直接利用轴对称图形的性质画出对称轴得出答案.详解:如图所示:直线l即为各图形的对称轴.,故选:D.点睛:此题主要考查了轴对称图形,正确把握轴对称图形的定义是解题关键.7.A解析:A【解析】【分析】【详解】∵k=﹣2<0,∴y随x的增大而减小,∵1<2,∴a>b.故选A.8.D解析:D【解析】【分析】求直线平移后的解析式时要注意平移时k的值不变,只有b发生变化.上下平移时只需让b的值加减即可.【详解】y=-3x+4的k=-3,b=4,沿x轴向左平移2个单位后,新直线解析式为:y=-3(x+2)+4=-3x-2.故选:D.【点睛】本题考查了一次函数的平移变换,属于基础题,关键掌握将直线上下平移时k的值不变,只有b发生变化.9.B解析:B【解析】【分析】根据等腰三角形的性质可知BC上的中线AD同时是BC上的高线,根据勾股定理求出AB的长即可.【详解】∵等腰三角形ABC中,AB=AC,AD是BC上的中线,∴BD=CD=12BC=3,AD同时是BC上的高线,∴2222345BD AD+=+=.故它的腰长为5.故选:B.【点睛】本题考查了勾股定理及等腰三角形的性质.解题关键是得出中线AD同时是BC上的高线.10.A解析:A【解析】【分析】将点A,点B坐标代入解析式可求k−3=b da c--,即可求解.【详解】∵A(a,b),B(c,d)是一次函数y=kx﹣3x+2图象上的不同两个点,∴b=ka﹣3a+2,d=kc﹣3c+2,且a≠c,∴k﹣3=b da c --.∵m=(a﹣c)(b﹣d)<0,∴k<3.故选:A.【点睛】本题考查了一次函数图象与系数的关系,一次函数图象上点的坐标特征,求出k−3=b d a c --是关键,是一道基础题.11.A解析:A【解析】【分析】首先依据线段垂直平分线的性质得到AE=CE;接下来,依据AE=CE可将△ABE的周长为:14转化为AB+BC=14,求解即可.【详解】∵DE是AC的垂直平分线,∴AE=CE,∴△ABE的周长为:AB+BE+AE=AB+BE+CE=AB+BC∵ABC的周长为24,ABE的周长为14∴AB+BC=14∴AC=24-14=10故选:A【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键. 12.B解析:B【解析】【分析】根据平面直角坐标系中关于x轴对称的点,横坐标相同,纵坐标互为相反数解答.【详解】解:根据平面直角坐标系中对称点的规律可知,点P(-2,3)关于x轴的对称点坐标为(-2,-3).故选:B.【点睛】主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.13.D解析:D【解析】【分析】根据算术平方根的定义对A进行判断;根据二次根式的加减法对B进行判断;根据二次根式的性质对C、D进行判断.【详解】=,所以A选项错误;解:A3B B选项错误;=,所以C选项错误;C3D、(23=,所以D选项正确.故选D.【点睛】此题考查了算术平方根和二次根式的性质以及二次根式的加减,熟练掌握二次根式的性质是解题的关键.14.D解析:D【解析】【分析】如图,作点E关于AD的对称点E′,连接CE′交AD于P′,连接EP′,此时EP′+CP′的值最小,作CH⊥AB于H.求出CE′即可.【详解】如图,作点E关于AD的对称点E′,连接CE′交AD于P′,连接EP′,此时EP′+CP′的值最小,作CH⊥AB于H.∵∠ACB=90°,AC=6,BC=8,∴AB22AC BC+2268+,∴CH=AC BCAB⋅=245,∴AH22AC CH-=222465⎛⎫- ⎪⎝⎭185,∴AE=AE′=85,∴E′H=AH-AE′=2,∴P′C+P′E=CP′+P′E′=CE22CH E H'+222425⎛⎫+⎪⎝⎭=265,故选:D.【点睛】此题主要考查利用对称性以及勾股定理的运用,解题关键是做好辅助线,转换等量关系. 15.C解析:C【解析】试题分析:解:选项A、添加AB=DE可用AAS进行判定,故本选项错误;选项B、添加AC=DF可用AAS进行判定,故本选项错误;选项C、添加∠A=∠D不能判定△ABC≌△DEF,故本选项正确;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.故选C.考点:全等三角形的判定.二、填空题16.y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x 的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.解析:y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x 的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.17.x≥1.【解析】【分析】把点P 坐标代入y=x+1中,求得两直线交点坐标,然后根据图像求解.【详解】解:∵与直线:相交于点,∴把y=2代入y=x+1中,解得x=1,∴点P 的坐标为(1,2解析:x≥1.【解析】【分析】把点P 坐标代入y=x+1中,求得两直线交点坐标,然后根据图像求解.【详解】解:∵1y x =+与直线2I :y mx n =+相交于点(,2)P a ,∴把y=2代入y=x+1中,解得x=1,∴点P 的坐标为(1,2);由图可知,x≥1时,1x mx n +≥+.故答案为:x≥1.【点睛】本题考查了一次函数与一元一次不等式,待定系数法求一次函数解析式,联立两直线解析式求交点坐标的方法,求一次函数与一元一次不等式关键在于准确识图,确定出两函数图象的对应的函数值的大小.18.5【解析】根据二次根式的性质知:5.解析:5【解析】=5.19.<【解析】【分析】根据一次函数的性质,当k<0时,y随x的增大而减小即可判断.【详解】∵一次函数中k=<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【点睛解析:<【解析】【分析】根据一次函数的性质,当k<0时,y随x的增大而减小即可判断.【详解】∵一次函数312y x=-+中k=32-<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.20.m+3n=120【解析】【分析】根据线段垂直平分线的性质,可得∠PBC=∠PCB,结合角平分线的定义,可得∠PBC=∠PCB=∠ABP,最后根据三角形内角和定理,从而得到m、n之间的关系.【解析:m+3n=120【解析】【分析】根据线段垂直平分线的性质,可得∠PBC=∠PCB ,结合角平分线的定义,可得∠PBC=∠PCB=∠ABP ,最后根据三角形内角和定理,从而得到m 、n 之间的关系.【详解】解:∵点D 是BC 边的中点,DE ⊥BC ,∴PB=PC ,∴∠PBC=∠PCB ,∵BP 平分∠ABC ,∴∠PBC=∠ABP ,∴∠PBC=∠PCB=∠ABP=n°,∵∠A=60°,∠ACP=m°,180,A ABC ACB ∠+∠+∠=︒∴∠PBC+∠PCB+∠ABP=120°-m°,∴3∠ABP=120°-m°,∴3n°+m°=120°,故答案为:m+3n=120.【点睛】本题主要考查了三角形内角和定理以及线段垂直平分线的性质的运用,角平分线的定义,解题时注意:线段垂直平分线上任意一点,到线段两端点的距离相等;三角形内角和等于180°.21.17【解析】【分析】根据线段垂直平分线的性质得到,,根据三角形的周长公式计算,得到答案.【详解】解:是的垂直平分线,,,的周长为11,,的周长,故答案为:17.【点睛】本题考解析:17【解析】【分析】根据线段垂直平分线的性质得到PA PC =,26AC AH ==,根据三角形的周长公式计算,得到答案.解:PH是AC的垂直平分线,==,AC AH∴=,26PA PC∆的周长为11,ABP∴++=++=+=,AB BP PA AB BP BC AB BC11∴的周长17∆ABC=++=,AB BC AC故答案为:17.【点睛】本题考查了线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.22.【解析】【分析】首先将被开方数的分子和分母同时乘以3a,然后再依据二次根式的性质化简即可.【详解】解:原式=,故答案为:.【点睛】本题主要考查的是二次根式的性质与化简,熟练掌握相关知解析:3a【解析】【分析】首先将被开方数的分子和分母同时乘以3a,然后再依据二次根式的性质化简即可.【详解】解:原式=故答案为:.3a【点睛】本题主要考查的是二次根式的性质与化简,熟练掌握相关知识是解题的关键.23.【解析】试题解析:∵()2=3,∴3的平方根是.故答案为.解析:试题解析:∵(3±)2=3,∴3的平方根是3±.故答案为3±.24.11【解析】【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线CE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【解析:11【解析】【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线CE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【详解】解:作CE⊥AD于点E,如下图所示,由图象可知,点P从A到B运动的路程是3,当点P与点B重合时,△PAD的面积是212,由B到C运动的路程为3,∴321 222 AD AB AD⨯⨯==解得,AD=7,又∵BC//AD,∠A=90°,CE⊥AD,∴∠B=90°,∠CEA=90°,∴四边形ABCE是矩形,∴AE=BC=3,∴DE=AD-AE=7-3=4,∴2222345,CD CE DE=+=+=∴点P从开始到停止运动的总路程为: AB+BC+CD=3+3+5=11.【点睛】本题考查了根据函数图象获取信息,解题的关键是明确题意,能从函数图象中找到准确的信息,利用数形结合的思想解答问题.25.【解析】【分析】根据折叠的性质得到∠ABE=∠A,∠CBG=∠C,根据三角形的内角和定理,得到∠A+∠C=180°﹣∠ABC,列方程即可得到结论.【详解】∵把一张三角形纸片折叠,使点A、点解析:【解析】【分析】根据折叠的性质得到∠ABE=∠A,∠CBG=∠C,根据三角形的内角和定理,得到∠A+∠C =180°﹣∠ABC,列方程即可得到结论.【详解】∵把一张三角形纸片折叠,使点A、点C都与点B重合,∴∠ABE=∠A,∠CBG=∠C,∵∠A+∠C=180°﹣∠ABC,∵∠ABC=∠ABE+∠CBG+∠EBG,∴∠ABC=∠A+∠C+36°=180°﹣∠ABC+36°,∴∠ABC=108°,故答案为:108.【点睛】本题主要考查三角形的内角和定理与图形折叠的性质,根据角的和差关系,列出关于∠ABC的方程,是解题的关键.三、解答题26.(1)详见解析;(2)103cm.【解析】【分析】(1)作AB的垂直平分线,交OA于点C,则点C即为所求;(2)设BC=xcm,根据题意用x表示出AC和OC,根据勾股定理列出方程,解方程即可.【详解】解:(1)如图所示,作AB的垂直平分线,交OA于点C,则点C即为所求;(2)由作图可得:BC =AC ,设BC =xcm ,则AC =xcm ,OC =(12﹣x )cm ,由勾股定理得,BC 2=OB 2+OC 2,即x 2=82+(12﹣x )2,解得x =263. ∴OC =12﹣263=103答:线段OC 的长是103cm . 【点睛】本题考查的是勾股定理的应用和基本作图:线段的垂直平分线,掌握直角三角形中,两条直角边的平方和等于斜边的平方是解题的关键.27.(1)5m =,5n =;(2)()()()133x x x ++-【解析】【分析】(1)先找出一个x 的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论;(2)先找出x=-1时,得出多项式的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论.【详解】解:(1)把1x =带入多项式3245x x +-,发现此多项式的值为0,∴多项式3245x x +-中有因式()1x -,于是可设322451xx x x mx n , 得出:3232451x x x m x n m x n ,∴14m ,0n m,∴5m =,5n =, (2)把1x =-代入3299x x x +--,多项式的值为0,∴多项式3299x x x +--中有因式()1x +,于是可设322329911x x x x x mx n x m x n m x n ,∴11m +=,9n m,9n =- ∴0m =,9n =-,∴3229133991x x x x x x x x【点睛】此题是分解因式,主要考查了试根法分解因式的理解和掌握,解本题的关键是理解试根法分解因式.28.(12;(2)122,2x x ==-.【解析】【分析】(1)先化简绝对值、利用零指数幂法则计算、化简二次根式,最后计算加减法即可得到结果;(2)先变形为24x =,然后利用直接开平方法解方程即可.【详解】解:(1)()012019π-+-+112++=2(2)2416x =∴24x =∴122,2x x ==-【点睛】此题考查了实数的运算及一元二次方程的解法,熟练掌握运算法则及一元二次方程的解法是解本题的关键.29.见解析.【解析】【分析】根据等边对等角的性质可得∠ADC=∠AEB ,然后利用“角角边”证明△ABE 和△ACD 全等,然后根据全等三角形对应边相等即可证明.【详解】证明:∵AD=AE ,∴∠ADC=∠AEB (等边对等角),∵在△ABE 和△ACD 中, ABC ACB AEB ADC AE AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△ACD (AAS ),∴BE=CD (全等三角形的对应边相等).【点睛】本题考查了全等三角形的判定与性质及等腰三角形的性质,根据等边对等角的性质得到三角形全等的条件是解题的关键.30.见解析【解析】【分析】根据完全平方公式将左边展开,再将前两项分解因式即可得证.【详解】解:左边2(105)a =+210010025a a =++(1)10025a a =+⨯+=右边,2(105)(1)10025a a a ∴⨯+=+⨯+.【点睛】本题主要考查了完全平方公式的运用,解题的关键是掌握完全平方公式和因式分解的能力.31.(1)A (6,0),B (0,8);(2)15;(3)使△PAB 为等腰直角三角形的P 点坐标为(14,6)或(-2,-6)或(8,14)或(-8,2)或(-1,1)或(7,7).【解析】【分析】(1)在函数解析式中分别令y=0和x=0,解相应方程,可求得A 、B 的坐标;(2)过C 作CD ⊥AB 于点D ,由勾股定理可求得AB ,由角平分线的性质可得CO=CD ,再根据S △AOB =S △AOC +S △ABC ,可求得CO ,则可求得△ABC 的面积;(3)可设P (x ,y ),则可分别表示出AP 2、BP 2,分∠PAB=90°、∠PBA=90°和∠APB=90°三种情况,分别可得到关于x 、y 的方程组,可求得P 点坐标.【详解】解:(1)在483y x =-+中, 令y=0可得0=-43x+8,解得x=6, 令x=0,解得y=8,∴A (6,0),B (0,8);(2)如图,过点C 作CD ⊥AB 于点D ,∵AC 平分∠OAB ,∴CD=OC,由(1)可知OA=6,OB=8,∴AB=10,∵S△AOB=S△AOC+S△ABC,∴12×6×8=12×6×OC+12×10×OC,解得OC=3,∴S△ABC=12×10×3=15;(3)设P(x,y),则AP2=(x-6)2+y2,BP2=x2+(y-8)2,且AB2=100,∵△PAB为等腰直角三角形,∴有∠PAB=90°、∠PBA=90°和∠APB=90°三种情况,①当∠PAB=90°时,则有PA2=AB2且PA2+AB2=BP2,即222222(6)100(6)100(8)x yx y x y⎧-+=⎨-++=+-⎩,解得146xy=⎧⎨=⎩或26xy=-⎧⎨=-⎩,此时P点坐标为(14,6)或(-2,-6);②∠PBA=90°时,有PB2=AB2且PB2+AB2=PA2,即222222(8)100(8)100(6)x yx y x y⎧+-=⎨+-+=-+⎩,解得814xy=⎧⎨=⎩或82xy=-⎧⎨=⎩,此时P点坐标为(8,14)或(-8,2);③∠APB=90°时,则有PA2=PB2且PA2+PB2=AB2,即22222222(6)(8)(6)(8)100x y x yx y x y⎧-+=+-⎨-+++-=⎩,解得11xy=-⎧⎨=⎩或77xy=⎧⎨=⎩,此时P点坐标为(-1,1)或(7,7);综上可知使△PAB为等腰直角三角形的P点坐标为(14,6)或(-2,-6)或(8,14)或(-8,2)或(-1,1)或(7,7).【点睛】本题为一次函数的综合应用,涉及函数图象与坐标轴的交点、勾股定理、三角形的面积、角平分线的性质、等腰直角三角形的性质、分类讨论思想及方程思想等知识.在(1)中注意函数图象与坐标轴的交点的求法,在(2)中利用角平分线的性质和等积法求得OC的长是解题的关键,在(3)中用P点坐标分别表示出PA、PB的长,由等腰直角三角形的性质得到关于P点坐标的方程组是解题的关键.本题考查知识点较多,综合性较强,计算较大,难度较大.。

苏科版八年级上第一学期期末数学试卷

苏科版八年级上第一学期期末数学试卷

苏科版八年级上第一学期期末数学试卷 一、选择题 1.在平面直角坐标系中,把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为( )A .31y x =-+B .32y x =-+C .31y x =--D .32y x =-- 2.若点P 在y 轴负半轴上,则点P 的坐标有可能是( )A .()1,0-B .()0,2-C .()3,0D .()0,4 3.下列调查中适合采用普查的是( )A .了解“中国达人秀第六季”节目的收视率B .调查某学校某班学生喜欢上数学课的情况C .调查我市市民知晓“礼让行人”交通新规的情况D .调查我国目前“垃圾分类”推广情况4.下列志愿者标识中是中心对称图形的是( ).A .B .C .D .5.在平面直角坐标系中,下列各点位于第四象限的点是( )A .(2,3)-B .()4,5-C .(1,0)D .(8,1)-- 6.若分式12x x -+的值为0,则x 的值为( ) A .1 B .2- C .1- D .27.下列二次根式中属于最简二次根式的是( )A .8B .36C .a b (a >0,b >0)D .7 8.关于x 的分式方程7m 3x 1x 1+=--有增根,则增根为( ) A .x=1 B .x=-1 C .x=3 D .x=-39.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD 10.能表示一次函数y =mx +n 与正比例函数y =mnx (m ,n 是常数且m ≠0)的图象的是( )A .B .C .D . 11.一次函数112y x =-+的图像不经过的象限是:( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限12.如图,正方形OACB 的边长是2,反比例函数k y x=图像经过点C ,则k 的值是( )A .2B .2-C .4D .4- 13.某种鲸鱼的体重约为1.36×105kg ,关于这个近似数,下列说法正确的是( ) A .它精确到百位B .它精确到0.01C .它精确到千分位D .它精确到千位 14.如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的长为( )A .2.8B .2C .2.4D .3.515.已知点(,)P a b 在第四象限,且点P 到x 轴的距离为3,到y 轴的距离为6,则点P 的坐标是( )A .(3,6)-B .(6,3)-C .(3,6)-D .()3,3-或(6,6)-二、填空题16.已知点A (x 1,y 1)、B (x 2,y 2 )是函数y =﹣2x +1图象上的两个点,若x 1<x 2,则y 1﹣y 2_____0(填“>”、“<”或“=”).17.若点(1,35)P m m +-在x 轴上,则m 的值为________.18.3x -有意义的x 的取值范围是__________.19.阅读理解:对于任意正整数a ,b ,∵20a b ≥,∴0a ab b -≥,∴2a b ab +≥,只有当a b =时,等号成立;结论:在2a b ab +≥(a 、b 均为正实数)中,只有当a b =时,+a b 有最小值2ab .若1m ,1m m +-有最小值为__________.20.如图,△ABC 中,5BC =,AB 边的垂直平分线分别交AB 、BC 于点D 、E ,AC 边的垂直平分线分别交AC 、BC 于点F 、G ,则△AEG 周长为____.21.如图,长方形OABC 中,8OA =,6AB =,点D 在边BC 上,且3CD DB =,点E 是边OA 上一点,连接DE ,将四边形ABDE 沿DE 折叠,若点A 的对称点'A 恰好落在边OC 上,则OE 的长为____.22.若等腰三角形的顶角为100︒,则这个等腰三角形的底角的度数__________.23.如图,在ABC ∆和EDB ∆中,90C EBD ∠=∠=︒,点E 在AB 上.若ABC EDB ∆∆≌,4AC =,3BC =,则DE =______.24.如图,在△ABC 中,AB =5,AC =13,BC 边上的中线AD =6,则△ABD 的面积是______.25.对某班组织的一次考试成绩进行统计,已知80.5~90.5分这一组的频数是10,频率是0.2,那么该班级的人数是_____人.三、解答题26.在日历上,我们可以发现其中某些数满足一定的规律,如图是2012年8月份的日历.我们任意选择其中所示的方框部分,将每个方框部分中4个位置上的数交又相乘,再相减,例如:7×13-6×14=7,17×23-16×24=7,不难发现,结果都是7.①请你再选择一个类似的部分试一试,看看是否符合这个规律;②请你利用整式的运算对以上的规律加以证明.27.(1)求x 的值:225x =(2)计算:23(2)816--+28.如图,AC=DC ,BC=EC ,∠ACD=∠BCE .求证:∠A=∠D .29.如图所示,四边形OABC 是长方形,点D 在OC 边上,以AD 为折痕,将OAD △向上翻折,点O 恰好落在BC 边上的点E 处,已知长方形OABC 的周长16.()1若OA 长为x ,则B 点坐标可表示为 ;()2若A 点坐标为()5,0, 求点D 和点E 的坐标.30.(模型建立)(1)如图1,等腰直角三角形ABC 中,90ACB ∠=,CB CA =,直线ED 经过点C ,过A 作AD ED ⊥于点D ,过B 作BE ED ⊥于点E .求证:BEC CDA ∆≅∆; (模型应用)(2)已知直线1l :443y x =+与坐标轴交于点A 、B ,将直线1l 绕点A 逆时针旋转45至直线2l ,如图2,求直线2l 的函数表达式;(3)如图3,长方形ABCO ,O 为坐标原点,点B 的坐标为()8,6-,点A 、C 分别在坐标轴上,点P 是线段BC 上的动点,点D 是直线26y x =-+上的动点且在第四象限.若APD ∆是以点D 为直角顶点的等腰直角三角形,请直接..写出点D 的坐标.31.如图,已知直线y =kx +6经过点A (4,2),直线与x 轴,y 轴分别交于B 、C 两点.(1)求点B 的坐标;(2)求△OAC 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据左加右减,上加下减的平移规律解题.【详解】解:把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为3(2)4y x =-++,整理得:32y x =--,故选D.【点睛】本题考查了直线的平移变换,属于简单题,熟悉直线的平移规律是解题关键.2.B解析:B【分析】根据y轴上的点的坐标特点,横坐标为0,然后根据题意求解.【详解】解:∵y轴上的点的横坐标为0,又因为点P在y轴负半轴上,∴(0,-2)符合题意故选:B【点睛】本题考查坐标轴上的点的坐标特点,利用数形结合思想解题是本题的解题关键.3.B解析:B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、了解“中国达人秀第六季”节目的收视率适合采用抽样调查的方式;B、调查某学校某班学生喜欢上数学课的情况适合采用全面调查的方式;C、调查我市市民知晓“礼让行人”交通新规的情况适合采用抽样调查的方式;D、调查我国目前“垃圾分类”推广情况适合采用抽样调查的方式;故选:B.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.C解析:C【解析】【分析】根据中心对称图形的概念求解.【详解】解:A、不是中心对称图形,故选项错误;B、不是中心对称图形,故选项错误;C、是中心对称图形,故选项正确;D、不是中心对称图形,故选项错误.故选:C.【点睛】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图5.A解析:A【解析】【分析】根据平面直角坐标系中各象限内点的坐标特征对各选项分析判断即可得解.【详解】解:A.(2,-3)在第四象限,故本选项正确;B.(-4,5)在第二象限,故本选项错误;C.(1,0)在x轴正半轴上,故本选项错误;D.(-8,-1)在第三象限,故本选项错误.故选A.【点睛】本题考查了平面直角坐标系中象限内点的坐标特征,解决本题的关键是熟练掌握每个象限的坐标特征.6.A解析:A【解析】【分析】根据分式的值为0,分子等于0,分母不等于0列式计算即可得解.【详解】根据题意得,1-x=0且x+2≠0,解得x=1且x≠-2,所以x=1.故选:A.【点睛】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.7.D解析:D【解析】【分析】根据最简二次根式的定义即可求出答案.【详解】解:(A)原式=,故A不符合题意;(B)原式=6,故B不符合题意;(C)ab是分式,故C不符合题意;故选:D.本题考查最简二次根式,解题的关键是熟练运用最简二次根式的定义,本题属于基础题型.8.A解析:A【解析】当x=1时,分母为零,没有意义,所以是增根.故选A.9.D解析:D【解析】A.添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B.添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C.添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D.添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意.故选D.10.C解析:C【解析】【分析】对于各选项:先通过一次函数的性质确定m、n的符合,从而得到mn的符合,然后根据正比例函数的性质对正比例函数图象进行判断,从而可确定该选项是否正确.【详解】A、由一次函数图象得m>0,n>0,所以mn>0,则正比例函数图象过第一、三象限,所以A选项错误;B、由一次函数图象得m>0,n<0,所以mn<0,则正比例函数图象过第二、四象限,所以B选项错误;C、由一次函数图象得m<0,n>0,所以mn<0,则正比例函数图象过第二、四象限,所以C选项正确;D、由一次函数图象得m<0,n>0,所以mn<0,则正比例函数图象过第二、四象限,所以D选项错误.故选:C.【点睛】本题考查了正比例函数图象:正比例函数y=kx经过原点,当k>0,图象经过第一、三象限;当k<0,图象经过第二、四象限.也考查了一次函数的性质.11.C解析:C【解析】试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k <0,b <0,图像过二三四象限.这个一次函数的k=12-<0与b=1>0,因此不经过第三象限.答案为C考点:一次函数的图像 12.C解析:C【解析】【分析】根据正方形的性质,即可求出点C 的坐标,然后代入反比例函数解析式里即可.【详解】解:∵正方形OACB 的边长是2,∴点C 的坐标为(2,2)将点C 的坐标代入k y x=中,得 22k = 解得:4k =故选C .【点睛】此题考查的是求反比例函数的比例系数,掌握用待定系数法求反比例函数的比例系数是解决此题的关键.13.D解析:D【解析】【分析】根据近似数的精确度求解.【详解】解:1.36×105精确到千位.故选:D .【点睛】本题考查了近似数:经过四舍五入得到的数为近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位的说法.14.B解析:B【解析】【分析】延长BG 交CH 于点E ,根据正方形的性质证明△ABG ≌△CDH ≌△BCE ,可得GE=BE-BG=2,HE=CH-CE=2,∠HEG=90°,从而由勾股定理可得GH 的长.【详解】解:如图,延长BG交CH于点E,∵四边形ABCD是正方形,∴∠ABC=90°,AB=CD=10,∵AG=8,BG=6,∴AG2+BG2=AB2,∴∠AGB=90°,∴∠1+∠2=90°,又∵∠2+∠3=90°,∴∠1=∠3,同理:∠4=∠6,在△ABG和△CDH中,AB=CD=10AG=CH=8BG=DH=6∴△ABG≌△CDH(SSS),∴∠1=∠5,∠2=∠6,∴∠2=∠4,在△ABG和△BCE中,∵∠1=∠3,AB=BC,∠2=∠4,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE-BG=8-6=2,同理可得HE=2,在Rt△GHE中,2222=+=+=2222GH GE HE故选:B.【点睛】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为直角三角形且能够求出两条直角边的长是解题的关键.15.B解析:B【分析】根据第四象限的点的横坐标是正数,纵坐标是负数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度确定出点的横坐标与纵坐标,即可得解.【详解】∵点在第四象限且到x轴距离为3,到y轴距离为6,∴点的横坐标是6,纵坐标是-3,∴点的坐标为(6,-3).故选B.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.二、填空题16.>.【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x2,即可得出结论.【详解】∵一次函数y=﹣2x+1中,k=﹣2<0,∴y随着x的增大而减小.∵点A(x1,y解析:>.【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x2,即可得出结论.【详解】∵一次函数y=﹣2x+1中,k=﹣2<0,∴y随着x的增大而减小.∵点A(x1,y1)、B(x2,y2)是函数y=﹣2x+1图象上的两个点,且x1<x2,∴y1>y2.∴y1﹣y2>0,故答案为:>.【点睛】本题主要考查一次函数的性质,掌握一次函数的增减性,是解题的关键.17.【解析】根据x 轴上点的纵坐标为0列方程求解即可.【详解】∵点在x 轴上,∴3m −5=0,解得m =.故答案为:.【点睛】本题考查了点的坐标,熟记x 轴上点的纵坐标为0是解题的关 解析:53【解析】【分析】根据x 轴上点的纵坐标为0列方程求解即可.【详解】∵点(1,35)P m m +-在x 轴上,∴3m−5=0,解得m =53. 故答案为:53. 【点睛】 本题考查了点的坐标,熟记x 轴上点的纵坐标为0是解题的关键.18.【解析】【分析】根据以上信息可得到关于不等式x-3≥0,求解便能得到x 的取值范围.【详解】根据题意,得x-3≥0,解得x≥3.故答案为【点睛】考查二次根式有意义的条件:二次根式的解析:3x ≥【解析】【分析】根据以上信息可得到关于不等式x-3≥0,求解便能得到x 的取值范围.【详解】根据题意,得x-3≥0,解得x≥3.故答案为3x ≥【点睛】考查二次根式有意义的条件:二次根式的被开方数是非负数;19.3【解析】【分析】根据(、均为正实数),对代数式进行化简求最小值.【详解】解:由题中结论可得即:当时,有最小值为3,故答案为:3.【点睛】准确理解阅读内容,灵活运用题中结论,解析:3【解析】【分析】根据a b +≥(a 、b进行化简求最小值. 【详解】1=1111m m m111m=111m1211=31m m即:当1m 时,m m 3,故答案为:3.【点睛】准确理解阅读内容,灵活运用题中结论,求出代数式的最小值.20.【解析】【分析】根据线段垂直平分线的性质可得AE=BE,AG=GC,据此计算即可.【详解】解:∵ED,GF分别是AB,AC的垂直平分线,∴AE=BE,AG=GC,∴△AEG的周长为AE解析:【解析】【分析】根据线段垂直平分线的性质可得AE=BE,AG=GC,据此计算即可.【详解】解:∵ED,GF分别是AB,AC的垂直平分线,∴AE=BE,AG=GC,∴△AEG的周长为AE+AG+EG=BE+CG+EG=BC=5.故答案是:5.【点睛】此题主要考查线段的垂直平分线的性质,掌握性质是解题关键.线段的垂直平分线上的点到线段的两个端点的距离相等.21.【解析】【分析】根据矩形的性质得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根据折叠可知A′D=AD,A′E=AE,可证明Rt△A′CD≌Rt△DBA,解析:【解析】【分析】根据矩形的性质得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根据折叠可知A′D=AD,A′E=AE,可证明Rt△A′CD≌Rt△DBA,根据全等三角形的性质得到A′C=BD=2,A′O=4,然后在Rt△A′OE中根据勾股定理列出方程求解即可.【详解】解:如图,∵四边形OABC 是矩形,∴BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,∵CD=3DB ,∴CD=6,BD=2,∴CD=AB ,∵将四边形ABDE 沿DE 折叠,若点A 的对称点A′恰好落在边OC 上,∴A′D=AD ,A′E=AE ,在Rt △A′CD 与Rt △DBA 中,CD AB A D AD '=⎧⎨=⎩, ∴Rt △A′CD ≌Rt △DBA (HL ),∴A′C=BD=2,∴A′O=4,∵A′O 2+OE 2=A′E 2,∴42+OE 2=(8-OE )2,∴OE=3,故答案是:3.【点睛】本题考查了轴对称变换(折叠问题),矩形的性质,全等三角形的判定和性质,掌握相关性质是解题的关键.22.40°【解析】【分析】根据等腰三角形的性质和三角形的内角和定理计算即可.【详解】解:∵等腰三角形的顶角为∴这个等腰三角形的底角为(180°-100°)=40°故答案为:40°.【点睛解析:40°【解析】【分析】根据等腰三角形的性质和三角形的内角和定理计算即可.【详解】解:∵等腰三角形的顶角为100∴这个等腰三角形的底角为12(180°-100°)=40°故答案为:40°.【点睛】此题考查的是等腰三角形的性质和三角形的内角和,掌握等边对等角和三角形的内角和定理是解决此题的关键.23.5【解析】【分析】先根据勾股定理求得AB的长度,再由全等三角形的性质可得DE的长度.【详解】解:在Rt△ACB中,∠C=90°,AC=4,BC=3,由勾股定理得:AB=5,∵△ABC≌解析:5【解析】【分析】先根据勾股定理求得AB的长度,再由全等三角形的性质可得DE的长度.【详解】解:在Rt△ACB中,∠C=90°,AC=4,BC=3,由勾股定理得:AB=5,∵△ABC≌△EDB,∴DE=AB=5.【点睛】本题考查勾股定理,全等三角形的性质.熟记全等三角形对应边相等是解决此题的关键. 24.15【解析】【分析】延长AD到点E,使DE=AD=6,连接CE,可证明△ABD≌△CED,所以CE=AB,再利用勾股定理的逆定理证明△CDE是直角三角形,即△ABD为直角三角形,进而可求出△A解析:15【解析】【分析】延长AD到点E,使DE=AD=6,连接CE,可证明△ABD≌△CED,所以CE=AB,再利用勾股定理的逆定理证明△CDE是直角三角形,即△ABD为直角三角形,进而可求出△ABD的面积.【详解】解:延长AD到点E,使DE=AD=6,连接CE,∵AD是BC边上的中线,∴BD=CD,在△ABD和△CED中,BD CDADB EDCAD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△CED(SAS),∴CE=AB=5,∠BAD=∠E,∵AE=2AD=12,CE=5,AC=13,∴CE2+AE2=AC2,∴∠E=90°,∴∠BAD=90°,即△ABD为直角三角形,∴△ABD的面积=12AD•AB=15.故答案为15.【点睛】本题考查了全等三角形的判定和性质、勾股定理的逆定理的运用,解题的关键是添加辅助线,构造全等三角形.25.50【解析】【分析】利用数据的总数=该组的频数÷该组的频率解答即可.【详解】解:该班级的人数为:10÷0.2=50.故答案为:50.【点睛】本题考查了频数与频率,熟练掌握数据的总数与【解析】【分析】利用数据的总数=该组的频数÷该组的频率解答即可.【详解】解:该班级的人数为:10÷0.2=50.故答案为:50.【点睛】本题考查了频数与频率,熟练掌握数据的总数与频数、频率的关系是解题的关键.三、解答题26.(1)见解析;(2)证明见解析.【解析】【分析】(1)直接利用已知数据求出即可;(2)利用数字之间的变化规律得出一般式,进而验证即可.【详解】(1)例如11×17-10×18=7;3×9-2×10=7;(2)设最小的一个数为x,其他三个分别为x+1,x+7,x+8,则:(x+1)(x+7)-x(x+8),=x2+8x+7-x2-8x,=7.【点睛】此题考查了数字的变化规律,整式的混合运算,由特殊到一般,利用日历表中数字的特点得出一般性结论解决问题.x=±;(2)427.(1)5【解析】【分析】(1)直接开平方,即可得到答案;(2)先根据二次根式的性质进行化简,然后合并同类项即可.【详解】x=,解:(1)225x=±;∴5=-+=;(22244【点睛】本题考查了二次根式的性质,立方根,以及直接开平方法解方程,解题的关键是熟练掌握二次根式的性质进行解题.28.证明见试题解析.试题分析:首先根据∠ACD=∠BCE 得出∠ACB=∠DCE ,结合已知条件利用SAS 判定△ABC 和△DEC 全等,从而得出答案.试题解析:∵∠ACD=∠BCE ∴∠ACB=∠DCE 又∵AC=DC BC=EC ∴△ABC ≌△DEC ∴∠A=∠D考点:三角形全等的证明29.()1(),8x x -;()25D 0,3⎛⎫ ⎪⎝⎭,()1,3E .【解析】【分析】(1)由周长16,以及OA 长为x ,可得AB 的长度,即可求出B 的坐标;(2)运用勾股定理得4BE =,可得()1,3E ,设OD x =,则DE x =,在DCE 中,运用勾股定理222,DE CD CE =+列出方程,求解方程即可.【详解】 ()1∵长方形OABC 的周长16,OA 长为x∴BC=OA=x ,AB=8-x∴B (),8x x -故答案为: (),8x x -()2∵A (5,0)∴OA=BC=5,∴AB=OC=3∴B(5,3)由折叠可知:AE=OA=5,DE=OD在ABE △中,90,3,5,ABE AB AE ∠=︒==由勾股定理得4BE =,∴CE=1故()1,3E设OD x =,则DE x =,在DCE 中,222,DE CD CE =+∴()22213x x =+- 解得53x =, 故5D 0,3⎛⎫⎪⎝⎭.【点睛】本题属于四边形综合题,主要考查了矩形的性质,折叠的性质,勾股定理,解答此题时注意坐标与图形的性质的运用以及方程思想的运用.30.(1)见解析;(2)y=−7x−21;(3)D(4,−2)或(203,223-).【解析】【分析】(1)根据△ABC为等腰直角三角形,AD⊥ED,BE⊥ED,可判定BEC CDA∆≅∆;(2)①过点B作BC⊥AB,交l2于C,过C作CD⊥y轴于D,根据△CBD≌△BAO,得出BD =AO=3,CD=OB=4,求得C(−4,7),最后运用待定系数法求直线l2的函数表达式;(3)根据△APD是以点D为直角顶点的等腰直角三角形,当点D是直线y=−2x+6上的动点且在第四象限时,分两种情况:当点D在矩形AOCB的内部时,当点D在矩形AOCB的外部时,设D(x,−2x+6),分别根据△ADE≌△DPF,得出AE=DF,据此列出方程进行求解即可.【详解】解:(1)证明:∵△ABC为等腰直角三角形,∴CB=CA,∠ACD+∠BCE=90°,又∵AD⊥ED,BE⊥ED,∴∠D=∠E=90°,∠EBC+∠BCE=90°,∴∠ACD=∠EBC,在△ACD与△CBE中,D EACD EBC CA CB∠∠⎧⎪∠∠⎨⎪⎩===,∴BEC CDA∆≅∆(AAS);(2)①如图2,过点B作BC⊥AB,交l2于C,过C作CD⊥y轴于D,∵∠BAC=45°,∴△ABC为等腰直角三角形,由(1)可知:△CBD≌△BAO,∴BD=AO,CD=OB,∵直线l1:y=43x+4中,若y=0,则x=−3;若x=0,则y=4,∴A(−3,0),B(0,4),∴BD=AO=3,CD=OB=4,∴OD=4+3=7,∴C(−4,7),设l2的解析式为y=kx+b,则7403k bk b=-+⎧⎨=-+⎩,解得:721 kb=-⎧⎨=-⎩,∴l2的解析式为:y=−7x−21;(3)D(4,−2)或(203,223-).理由:当点D是直线y=−2x+6上的动点且在第四象限时,分两种情况:当点D在矩形AOCB的内部时,如图,过D作x轴的平行线EF,交直线OA于E,交BC于F,设D(x,−2x+6),则OE=2x−6,AE=6−(2x−6)=12−2x,DF=EF−DE=8−x,由(1)可得,△ADE≌△DPF,则DF=AE,即:12−2x=8−x,解得x=4,∴−2x+6=−2,∴D(4,−2),此时,PF=ED=4,CP=6=CB,符合题意;当点D在矩形AOCB的外部时,如图,过D作x轴的平行线EF,交直线OA于E,交直线BC于F,设D(x,−2x+6),则OE=2x−6,AE=OE−OA=2x−6−6=2x−12,DF=EF−DE=8−x,同理可得:△ADE≌△DPF,则AE=DF,即:2x−12=8−x,解得x=203,∴−2x+6=223 -,∴D(203,223-),此时,ED=PF=203,AE=BF=43,BP=PF−BF=163<6,符合题意,综上所述,D点坐标为:(4,−2)或(203,223-)【点睛】本题属于一次函数综合题,主要考查了点的坐标、矩形的性质、待定系数法、等腰直角三角形的性质以及全等三角形等相关知识的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行计算,解题时注意分类思想的运用.31.(1)B(6,0);(2)12【解析】【分析】(1)根据待定系数法求得直线解析式,然后根据图象上点的坐标特征即可求得B的坐标;(2)令x=0,求得C的坐标,然后根据三角形面积公式即可求得.【详解】解:(1)∵直线y=kx+6经过点A(4,2),∴2=4k+6,解得k=﹣1∴直线为y=﹣x+6令y=0,则﹣x+6=0,解得x=6,∴B(6,0);(2)令x=0,则y=6,∴C(0,6),∴CO=6,∴△OAC的面积=162⨯×4=12.【点睛】本题考查的知识点是一次函数的图象上点的坐标特征,属于基础题目,易于掌握.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏科版初二数学上学期期末试卷(1) 一、选择题 1.如图,一次函数图象经过点A ,且与正比例函数y=-x 的图象交于点B ,则该一次函数的表达式为( )A .y=-x+2B .y=x+2C .y=x-2D .y=-x-22.下列四个图标中,是轴对称图形的是( )A .B .C .D .3.7的平方根是( )A .±7B .7C .-7D .±74.如图,在△ABC 中,AB="AC," AB +BC=8.将△ABC 折叠,使得点A 落在点B 处,折痕DF 分别与AB 、AC 交于点D 、F ,连接BF ,则△BCF 的周长是( )A .8B .16C .4D .105.下列各数中,是无理数的是( )A .38B .39C .4-D .227 6.在直角坐标系中,函数y kx =与12y x k =-的图像大数是( ) A . B .C .D . 7. 4的平方根是( )A .2B .±2C .16D .±168.如图,折叠Rt ABC ∆,使直角边AC 落在斜边AB 上,点C 落到点E 处,已知6cm AC =,8cm BC =,则CD 的长为( )cm.A .6B .5C .4D .3 9.下列四组数,可作为直角三角形三边长的是A .456cm cm cm 、、B .123cm cm cm 、、C .234cm cm cm 、、D .123cm cm cm 、、 10.甲、乙两地相距80km ,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20km/h ,并继续匀速行驶至乙地,汽车行驶的路程y (km )与时间x (h )之间的函数关系如图所示,该车到达乙地的时间是当天上午( )A .10:35B .10:40C .10:45D .10:50 11.如果等腰三角形两边长是5cm 和2cm ,那么它的周长是( ) A .7cmB .9cmC .9cm 或12cmD .12cm 12.若3n +3n +3n =19,则n =( ) A .﹣3B .﹣2C .﹣1D .0 13.点P (1,﹣2)关于y 轴对称的点的坐标是( )A .(1,2)B .(﹣1,2)C .(﹣1,﹣2)D .(﹣2,1) 14.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC15.如图,在△ABC 中,AC 的垂直平分线交AC 于点E ,交BC 于点D ,△ABD 的周长为16cm ,AC 为5cm ,则△ABC 的周长为( )A .24cmB .21cmC .20cmD .无法确定二、填空题16.点A (3,-2)关于x 轴对称的点的坐标是________.17.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=5,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则CD 的长是_____.18.对于分式23x a b a b x++-+,当1x =时,分式的值为零,则a b +=__________. 19.若点P (2−a ,2a+5)到两坐标轴的距离相等,则a 的值为____.20.一个等腰三角形的两边分别是4和9,则这个等腰三角形的周长是_________.21.16_______.22.化简:32|=__________.23.如图,点E ,F 在AC 上,AD=BC ,DF=BE ,要使△ADF ≌△CBE ,还需要添加的一个条件是________(添加一个即可)24.如图,在平面直角坐标系中,点A 、B 的坐标分别为()1,4、()3,4,若直线y kx =与线段AB 有公共点,则k 的取值范围为__________.25.如图,在坐标系中,一次函数21y x =-+与一次函数y x k =+的图像交于点(2,5)A -,则关于x 的不等式21x k x +>-+的解集是__________.三、解答题26.如图,正方形网格由边长为1的小正方形组成,ABC ∆的顶点都在格点上,平面直角坐标系的坐标轴落在网格线上,按要求完成作图:(1)作出ABC ∆关于y 轴对称的图形111A B C ∆,其中,点1A 的坐标为_______.(2)在x 轴上画出一点Q ,使得ACQ ∆的周长最小.27.(问题背景)如图,在平面直角坐标系xOy 中,点A 的坐标是(0,1),点C 是x 轴上的一个动点.当点C 在x 轴上移动时,始终保持ACP ∆是等腰直角三角形,且90CAP ∠=︒(点A 、C 、P 按逆时针方向排列);当点C 移动到点O 时,得到等腰直角三角形AOB (此时点P 与点B 重合). (初步探究)(1)写出点B 的坐标______.(2)点C 在x 轴上移动过程中,当等腰直角三角形ACP 的顶点P 在第四象限时,连接BP . 求证:AOC ABP ∆∆≌;(深入探究)(3)当点C 在x 轴上移动时,点P 也随之运动.经过探究发现,点P 的横坐标总保持不变,请直接写出点P 的横坐标:______.(拓展延伸)(4)点C 在x 轴上移动过程中,当POB ∆为等腰三角形时,直接写出此时点C 的坐标.备用图28.如图,AC=DC ,BC=EC ,∠ACD=∠BCE .求证:∠A=∠D .29.在如图所示的正方形网格中,每个小正方形的边长都是1,已知三角形ABC 的三个顶点的坐标分别为(3,6)A -,(1,2)B -,(5,4)C -(1)作出三角形ABC 关于y 轴对称的三角形111A B C(2)点1A 的坐标为 .(3)①利用网络画出线段AB 的垂直平分线L ;②P 为直线上L 上一动点,则PA PC +的最小值为 .30.解方程 3(1)8x -=-31.某商店准备购进,A B 两种商品,A 种商品毎件的进价比B 种商品每件的进价多20元,用3000元购进A 种商品和用1800元购进B 种商品的数量相同.商店将A 种商品每件的售价定为80元,B 种商品每件的售价定为45元.(1)A 种商品每件的进价和B 种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进,A B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?(3)端午节期间,商店开展优惠促销活动,决定对每件A 种商品售价优惠m(1020m <<)元,B 种商品售价不变,在(2)条件下,请设计出销售这40件商品获得总利润最大的进货方案.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】【详解】解:设一次函数的解析式y=kx+b (k≠0),∵一次函数图象经过点A ,且与正比例函数y=-x 的图象交于点B ,∴在直线y=-x 中,令x=-1,解得:y=1,则B 的坐标是(-1,1).把A (0,2),B (-1,1)的坐标代入一次函数的解析式y=kx+b得:2{1bk b=-+=,解得2{1bk==,该一次函数的表达式为y=x+2.故选B.2.B解析:B【解析】【分析】直接根据轴对称图形的概念分别解答得出答案.【详解】A、不是轴对称图形,不合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不合题意.故选:B.【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.D解析:D【解析】【分析】根据乘方运算,可得一个正数的平方根.【详解】)2=7,∴7.故选:D.【点睛】本题考查了平方根,利用了乘方运算求一个正数的平方根,注意一个正数有两个平方根.4.A解析:A【解析】【分析】由将△ABC折叠,使得点A落在点B处,折痕DF分别与AB、AC交于点D、F,可得BF=AF,又由在△ABC中,AB=AC,AB+BC=8,易得△BCF的周长等于AB+BC,则可求得答案.【详解】解:由将△ABC折叠,使得点A落在点B处,折痕DF分别与AB、AC交于点D、F,可得又由在△ABC 中,AB=AC ,AB+BC=8,所以△BCF 的周长等于BC+CF+BF=BC+CF+AF=AB+BC=8.故答案选A .【点睛】此题考查了折叠的性质.此题难度不大,解题的关键是掌握折叠前后图形的对应关系,注意等量代换,注意数形结合思想的应用.5.B解析:B【解析】【分析】根据无理数的定义结合算术平方根和立方根逐一判断即可得.【详解】2=,为有理数,故该选项错误;D.2-,为有理数,故该选项错误; D.227,为有理数,故该选项错误. 故选B.【点睛】 本题考查无理数的定义,立方根,算术平方根. 初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.B解析:B【解析】【分析】根据四个选项图像可以判断y kx = 过原点且k <0,12y x k =- ,-k >0 即可判断. 【详解】解:A .y kx = 与12y x k =-图像增减相反,得到k <0,所以12y x k =- 与y 轴交点大于0 故错误;B .y kx = 与12y x k =-图像增减相反,得到k <0,所以12y x k =- 与y 轴交点大于0 故正确;C .y kx = 与12y x k =-图像增减相反,12y x k =-为递增一次函数且不过原点,故错误;D .y kx =过原点,而图中两条直线都不过原点,故错误.故选 B此题主要考查了一次函数图像的性质,熟记k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小;常数项为0,函数过原点.7.B解析:B【解析】【分析】根据平方根的意义求解即可,正数a 有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.【详解】∵(±2)2=4,∴4的平方根是±2,即2±.故选B.【点睛】本题考查了平方根的意义,如果个一个数x 的平方等于a ,即x 2=a ,那么这个数x 叫做a 的平方根.8.D解析:D【解析】【分析】在Rt ABC ∆中,根据勾股定理可求得AB 的长度,依据折叠的性质AE=AC ,DE=CD ,因此可得BE 的长度,在Rt △BDE 中根据勾股定理即可求得CD 的长度.【详解】解:∵在Rt ABC ∆中,6cm AC =,8cm BC =,∴由勾股定理得,10AB cm ===.由折叠的性质知,AE=AC=6cm ,DE=CD ,∠AED=∠C=90°.∴BE=AB-AE=10-6=4cm ,在Rt △BDE 中,由勾股定理得,DE 2+BE 2=BD 2即CD 2+42=(8-CD)2,解得:CD=3cm .故选:D .【点睛】 本题考查折叠的性质,勾股定理.理解折叠的前后对应边相等,对应角相等,并能依此判断△BDE 是直角三角形,并计算(或用CD 表示)它的三边是解决此题的关键.9.D解析:D【解析】根据勾股定理的逆定理对四个选项进行逐一判断即可.【详解】A、∵52+42≠62,∴此组数据不能构成直角三角形,故本选项错误;B、12+22≠32,∴此组数据不能构成直角三角形,故本选项错误;C、∵22+32≠42,∴此组数据不能构成直角三角形,故本选项错误;D、∵12+)2=)2,∴此组数据能构成直角三角形,故本选项正确.故选:D.【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.10.B解析:B【解析】【分析】根据图象可知走前一半路程用了1小时,由此可得走前一半路程的速度为40km/h,从而可得走后一半路程的速度为60km/h,根据时间=路程÷速度即可求得答案.【详解】由图象知走前一半路程用的时间为1小时,所以走前一半路程时的速度为40km/h,因为匀速行驶了一半的路程后将速度提高了20km/h,所以以后的速度为20+40=60km/h,时间为4060×60=40分钟,故该车到达乙地的时间是当天上午10:40,故选B.【点睛】本题考查了函数的图象,读懂图象,从中找到必要的信息是解题的关键.11.D解析:D【解析】【分析】因为题中没有说明已知两边哪个是底,哪个是腰,所以要分情况进行讨论.【详解】解:当三边是2cm,2cm,5cm时,不符合三角形的三边关系;当三角形的三边是5cm,5cm,2cm时,符合三角形的三边关系,此时周长是5+5+2=12cm.故选:D.【点睛】考查了等腰三角形的性质,此类题注意分情况讨论,还要看是否符合三角形的三边关系.解析:A【解析】【分析】直接利用负整数指数幂的性质结合同底数幂的乘法运算法则将原式变形得出答案.【详解】 解:13339n n n ++=, 1233n +-∴=,则12n +=-,解得:3n =-.故选:A .【点睛】此题主要考查了负整数指数幂的性质以及同底数幂的乘法运算,正确掌握相关运算法则是解题关键.13.C解析:C【解析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P (1,﹣2)关于y 轴对称的点的坐标是(﹣1,﹣2),故选C .【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x 轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y 轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.14.C解析:C【解析】试题分析:解:选项A 、添加AB=DE 可用AAS 进行判定,故本选项错误;选项B 、添加AC=DF 可用AAS 进行判定,故本选项错误;选项C 、添加∠A=∠D 不能判定△ABC ≌△DEF ,故本选项正确;选项D 、添加BF=EC 可得出BC=EF ,然后可用ASA 进行判定,故本选项错误.故选C .考点:全等三角形的判定.15.B解析:B【解析】【分析】由垂直平分线可得AD =DC ,进而将求△ABC 的周长转换成△ABD 的周长再加上AC 的长度【详解】∵DE是AC的垂直平分线,∴AD=DC,∵△ABD的周长=AB+BD+AD=16,∴△ABC的周长为AB+BC+AC=AB+BD+AD+AC=16+5=21.故选:B.【点睛】考查线段的垂直平分线的性质,解题关键是由垂直平分线得AD=DC,进而将求△ABC的周长转换成△ABD的周长再加上AC的长度.二、填空题16.(3,2)【解析】试题分析:点A(3,﹣2)关于x轴对称的点的坐标是(3,2).故答案为(3,2).考点:关于x轴、y轴对称的点的坐标.解析:(3,2)【解析】试题分析:点A(3,﹣2)关于x轴对称的点的坐标是(3,2).故答案为(3,2).考点:关于x轴、y轴对称的点的坐标.17.【解析】分析:连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;详解:连接AD.∵PQ垂直平解析:8 5【解析】分析:连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;详解:连接AD.∵PQ 垂直平分线段AB ,∴DA=DB ,设DA=DB=x ,在Rt △ACD 中,∠C=90°,AD 2=AC 2+CD 2,∴x 2=32+(5﹣x )2, 解得x=175, ∴CD=BC ﹣DB=5﹣175=85, 故答案为85. 点睛:本题考查基本作图,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.18.-1且.【解析】【分析】根据分式的值为零的条件为0的条件可得且,则可求出的值.【详解】解:∵分式,当时,分式的值为零,∴且,∴,且故答案为:-1且.【点睛】此题主要考查了分式值为解析:-1且5233ab ,. 【解析】【分析】 根据分式的值为零的条件为0的条件可得10a b且230a b ,则可求出 a b 的值.【详解】解:∵分式23x a b a b x++-+,当1x =时,分式的值为零, ∴10a b 且230a b , ∴1a b +=-,且5233ab , 故答案为:-1且5233ab ,. 【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少. 19.a=-1或a=-7.【解析】【分析】由点P 到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a 的值即可.【详解】解:∵点P 到两坐标轴的距离相等,∴|2-a|=|2a+5|,∴2-解析:a=-1或a=-7.【解析】【分析】由点P 到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a 的值即可.【详解】解:∵点P 到两坐标轴的距离相等,∴|2-a|=|2a+5|,∴2-a=2a+5,2-a=-(2a+5)∴a=-1或a=-7.故答案是:a=-1或a=-7.【点睛】本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出|2-a|=|2a+5|,注意不要漏解.20.22【解析】【分析】等腰三角形两边的长为4cm 和9cm ,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】①当腰是4,底边是9时:不满足三角形的三边关系,因此舍去.②当解析:22【解析】【分析】等腰三角形两边的长为4cm和9cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】①当腰是4,底边是9时:不满足三角形的三边关系,因此舍去.②当底边是4,腰长是9时,能构成三角形,则其周长=4+9+9=22.故答案为22.【点睛】考查等腰三角形的性质以及三边关系,熟练掌握等腰三角形的性质是解题的关键.21.4【解析】【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【详解】解:原式==4.故答案为4.【点睛】此题主解析:4【解析】【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【详解】解:原式.故答案为4.【点睛】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.22.【解析】【分析】先判断两个实数的大小关系,再根据绝对值的代数意义化简,进而得出答案.【详解】解:∵,∴原式,故答案为:.【点睛】此题主要考查了绝对值的代数意义,正确判断实数的大小解析:2【解析】【分析】先判断两个实数的大小关系,再根据绝对值的代数意义化简,进而得出答案.【详解】<,2=-∴原式2)=-2故答案为:2.【点睛】此题主要考查了绝对值的代数意义,正确判断实数的大小是解题关键.23.∠D=∠B【解析】【分析】要判定△ADF≌△CBE,已经有AD=BC,DF=BE,还缺少第三组对应边相等或这两边组成的夹角相等,根据全等三角形的判定方法求解即可.【详解】∵AD=BC, D解析:∠D=∠B【解析】【分析】要判定△ADF≌△CBE,已经有AD=BC,DF=BE,还缺少第三组对应边相等或这两边组成的夹角相等,根据全等三角形的判定方法求解即可.【详解】∵AD=BC, DF=BE,∴只要添加∠D=∠B,根据“SAS”即可证明△ADF≌△CBE.故答案为∠D=∠B.【点睛】本题重点考查的是全等三角形的判定方法,熟练掌握全等三角形的知识是解答的关键,应该多加练习.三角形全等的判定定理有:边边边(SSS )、边角边(SAS )、角边角(ASA )、角角边(AAS ).24.【解析】【分析】由直线与线段AB 有公共点,可得出点B 在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.【详解】解:∵点A 、B 解析:443k ≤≤ 【解析】【分析】由直线y kx =与线段AB 有公共点,可得出点B 在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.【详解】解:∵点A 、B 的坐标分别为()1,4、()3,4,∴令y=4时, 解得:4x k= , ∵直线y=kx 与线段AB 有公共点,∴1≤4k≤3, 解得:443k ≤≤. 故答案为:443k ≤≤. 【点睛】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于k 的一元一次不等式是解题的关键.25.【解析】【分析】根据图像解答即可.【详解】由图像可知,关于的不等式的解集是.故答案为:.【点睛】本题主要考查一次函数和一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细解析:2x >-【解析】【分析】根据图像解答即可.【详解】由图像可知,关于x 的不等式21x k x +>-+的解集是2x >-.故答案为:2x >-.【点睛】本题主要考查一次函数和一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.函数y 1>y 2时x 的范围是函数y 1的图象在y 2的图象上边时对应的未知数的范围,反之亦然.三、解答题26.(1)见解析;(2)见解析.【解析】【分析】(1)分别找到三角形个顶点关于y 轴对称的对称点,再顺次连接即可,再根据直角坐标系即可得到1A 的坐标;(2)作点A 关于x 轴的对称点A’,再连接A’C ,与x 轴的交点即为所求.【详解】(1)作出ABC ∆关于y 轴对称的图形111A B C ∆如图所示.其中,点1A 的坐标为3,1().(2)如图,Q 点为所求.【点睛】此题主要考查坐标与图形,解题的关键是熟知轴对称的性质.27.(1)(1,1);(2)证明见解析;(3)1;(4)(2,0)(2,0)(2,0)---.【解析】【分析】根据等腰直角三角形的性质,OA=AB,题干中已知A点坐标,即可求得OB的长度,表示出B点坐标即可.根据等腰直角三角形的性质得到90CAP OAB︒∠=∠=,再根据等角的余角相等,得出角12∠=∠,最后利用三角形全等的判定方法进行判定即可.根据(2)的结论△ABP也为直角三角形,且AB垂直BP,且AB=OB=1,即可得出P点的横坐标.先根据题意,确定B点、A点坐标,设出P点和C点坐标,分情况进行讨论,当OP=OB 时,当OB=BP时,当OP=BP时,分别利用两点间距离公式求出点P点的坐标,然后分别算出AP的长,最后利用AP=AC计算出A点坐标即可.【详解】解:(1)∵点A的坐标为(0,1)△OAB是等腰直角三角形,且OA=AB,OA⊥BA∴B点坐标为(1,1).(2)证明:在等腰直角三角形ACP中,AC AP=,90CAP∠=︒在等腰直角三角形AOB中,AO AB=,90OAB∠=︒90CAP OAB︒∠=∠=CAP OAP OAB OAP∴∠-∠=∠-∠12∠∠∴=在AOC∆和ABP∆中2AC APAO AB=⎧⎪∠=∠⎨⎪=⎩()AOC ABP SAS∴∆∆≌(3)AOC ABP∆∆≌(已证)∴∠ABP=90°∴PB垂直AB,P点在过B点且垂直与AB的垂线上,∵点B的坐标为(1,1)∴P点的横坐标为1.(4)由题意和(1)可知()01(11)A B,,,,设P (1,y ),C (x ,0),当OB=OP解得:1y =或1y =+,则AP ==AP ==解得:x =所以C 点坐标为(0)同理当OB=OP 时,可得C 点坐标为(-2,0)当BP=OP 时,可得C 点坐标为(-1,0)故答案为:(2,0)(--【点睛】本题考查了等腰三角形的性质,三角形全的的判定方法,计算两点间距离,动点问题,解决本题的关键是熟练掌握等腰三角形的性质,能够得到相等的线段和角,动点问题要注意分类进行讨论,根据情况确定答案.28.证明见试题解析.【解析】试题分析:首先根据∠ACD=∠BCE 得出∠ACB=∠DCE ,结合已知条件利用SAS 判定△ABC 和△DEC 全等,从而得出答案.试题解析:∵∠ACD=∠BCE ∴∠ACB=∠DCE 又∵AC=DC BC=EC ∴△ABC ≌△DEC ∴∠A=∠D考点:三角形全等的证明29.(1)见解析(2)点1A 的坐标为(3,6);(3)①见解析.【解析】【分析】(1)首先确定A 、B 、C 三点关于y 轴的对称点位置A 1、B 1、C 1,再连接即可得到△ABC 关于y 轴对称的△A 1B 1C 1;(2)根据平面直角坐标系写出点1A 的坐标;(3)①根据垂直平分线的定义画图即可;②根据轴对称的性质以及两点之间线段最短得PA PC +的最小值为BC 的长,再由勾股定理求解即可.【详解】(1)如图所示:(2)点1A 的坐标为(3,6);(3)①如图所示:②PA PC +的最小值为BC 的长,即2224+=20【点睛】此题主要考查了作图--轴对称变换,以及三角形的面积,关键是掌握几何图形都可看作是由点组成,画一个图形的轴对称图形时,就是确定一些特殊的对称点.30.x=-1【解析】【分析】把(x-1)看作一个整体,利用立方根的定义解答即可.【详解】解:∵(x-1)3=-8,∴x-1=-2,∴x=-1.【点睛】本题考查了利用立方根的定义求未知数的值,熟记概念是解题的关键.31.(1A 种商品每件的进价是50元,B 种商品每件的进价是30元;(2)商店共有5种进货方案;(3)①当18a =时,获利最大,即买18件A 商品,22件B 商品,②当15m =时,150m -=,(2)问中所有进货方案获利相同,③当14a =时,获利最大,即买14件A 商品,26件B 商品.【解析】【分析】(1)设A 商品每件进价为x 元,B 商品每件的进价为(x-20)元,根据A 种商品毎件的进价比B 种商品每件的进价多20元,用3000元购进A 种商品和用1800元购进B 种商品的数量相同,列方程求解;(2)设购买A 种商品a 件,则购买B 商品(40a -)件,根据商店计划用不超过1560元的资金购进,A B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,列出不等式组即可(3)先设销售,A B 两种商品共获利y 元,然后分析求解新的进货方案【详解】(1)设A 种商品每件的进价是x 元,则B 种商品每件的进价是()20x -元, 由题意得:3000180020x x =-, 解得:50x =,经检验,50x =是原方程的解,且符合题意,502030-=,答:A 种商品每件的进价是50元,B 种商品每件的进价是30元;(2)设购买A 种商品a 件,则购买B 商品(40a -)件,由题意得:()5030401560402a a a a ⎧+-⎪⎨-≥⎪⎩, 解得:40183a ≤≤, ∵a 为正整数,∴a =14、15、16、17、18, ∴商店共有5种进货方案;(3)设销售,A B 两种商品共获利y 元,由题意得:()()()8050453040y m a a =--+--()15600m a =-+,①当1015m <<时,150m ->,y 随a 的增大而增大,∴当18a =时,获利最大,即买18件A 商品,22件B 商品,②当15m =时,150m -=,y 与a 的值无关,即(2)问中所有进货方案获利相同,③当1520m <<时,150m -<,y 随a 的增大而减小,∴当14a =时,获利最大,即买14件A 商品,26件B 商品.【点睛】此题考查一元一次不等式组的应用,分式方程的应用,解题关键在于根据题意列出方程。

相关文档
最新文档