系统的稳定性和判定[罗斯阵列]
信号与系统-罗斯判据

第六章第3讲
见罗斯判据
10
例
3
1Ω 1F 2H
如图所示电路,试求:
U (s) (1) 系统函数 H(s) = 0 US (s)
1Ω
+ uS (t) −
+
+
2Ω
+ −
u1
−
解:用节点法列方程:
Ku1
u0 (t)
−
1 1 1 KU1 =US (1+ + )U1 − 2 1+1/ s + 2s 1+1/ s + 2s U0 KU1 2K(2s2 + s +1) 3 s − Ks = = 2 ( + 2 )U1 =US ∴ H(s) = US US 6s + (5− 2K)s +3 2 2s + s +1
§4 系统的稳定性
系统稳定的充分必要条件 冲激响应必须是绝对可积的,即
∫
∞
0
| h(t) | dt < ∞
要使系统稳定,H(s)的极点必须全部在S 要使系统稳定,H(s)的极点必须全部在S左半平面, 或者是系统的特征方程的根的实部全部为负。 罗斯判据 设线性系统的特征方程为:
D(s) = ansn + an−1sn−1 +L + a1s + a0 = 0 L
1 5
40 − 6 34 = 5 5 25 68 K 6− 34 5
8 6 K
K 0
要使系统属临界稳定时罗斯阵的 s1 0 某一行为0 某一行为0,即 K=204/25。 K=204/25。 辅助多项式:Q(s) = 34 s2 + 204 5 25 s0 K 其导数为: Q′(s) = 68 s : 5 从罗斯阵可知:系统没有正实部根,有共轭虚根,其根为
系统稳定性分析—劳斯稳定判据

© BIP
例题4:s6 s5 6s4 5s3 9s2 4s 4 0
S6 1
6
S5 1
5
9
4
辅助方程
4
0
S4 1
5
4
S3
0 4
0 10
0 0
S2 2.5
4
0
0 s4 5s2 4 0
0 0 4s3 10s 0 0
S1 3.6
0
0
0
S0 4
0
0
0
某一行全为零,说明存在对称于原点的根,系统不稳定
No.15
© BIP
图7 K=15时系统的单位阶跃响应曲线
No.16
© BIP
图8 K=20时系统的单位阶跃响应曲线
No.17
© BIP
例题2:液位控制系统的稳定性分析。
进水
阀门
进水阀门的 传递函数K3
减速器
+ 电位器
-
连杆
执行电机和 减速器的传
递函数
K2/S(TS+1)
电动机
放大器
控制对象水箱的
系统稳定性分析之 ——劳斯判据
一、系统稳定的重要性
图1“舞动的格蒂”—首座塔科马大桥
No.2
© BIP
二、系统稳定性的基本概念和条件
1、定义:如果线性控制系统在初始扰动的作 用下,使被控量产生偏差,当扰动消失后,该 偏差随着时间的推移逐渐减小并趋于零,即系 统趋于原来的工作状态,则称该系统为渐进稳 定。反之,如果在初始扰动的作用下,系统的 偏差随着时间的推移而发散,系统无法趋于原 来的工作状态,则称系统不稳定。
传递函数K4/S
劳斯判据判定稳定性

劳斯判据即Routh-Hurwitz判据一、系统稳定的必要条件判据是判别系统特征根分布的一个代数判据。
要使系统稳定,即系统全部特征根均具有负实部,就必须满足以下两个条件:1)特征方程的各项系数都不等于零。
2)特征方程的各项系数的符号都相同。
此即系统稳定的必要条件。
按习惯,一般取最高阶次项的系数为正,上述两个条件可以归结为一个必要条件,即系统特征方程的各项系数全大于零,且不能为零。
二、系统稳定的充要条件系统稳定的充要条件是表的第一列元素全部大于零,且不能等于零。
运用判据还可以判定一个不稳定系统所包含的具有正实部的特征根的个数为表第一列元素中符号改变的次数。
运用判据的关键在于建立表。
建立表的方法请参阅相关的例题或教材。
运用判据判定系统的稳定性,需要知道系统闭环传递函数或系统的特征方程。
在应用判据还应注意以下两种特殊的情况:1.如果在表中任意一行的第一个元素为0,而其后各元不全为0,则在计算下一行的第一个元时,该元将趋于无穷大。
于是表的计算无法继续。
为了克服这一困难,可以用一个很小的正数代替第一列等于0的元素,然后计算表的其余各元。
若上下各元符号不变,切第一列元素符号均为正,则系统特征根中存在共轭的虚根。
此时,系统为临界稳定系统。
2.如果在表中任意一行的所有元素均为0,表的计算无法继续。
此时,可以利用该行的上一行的元构成一个辅助多项式,并用多项式方程的导数的系数组成表的下一行。
这样,表中的其余各元就可以计算下去。
出现上述情况,一般是由于系统的特征根中,或存在两个符号相反的实根(系统自由响应发散,系统不稳定),或存在一对共轭复根(系统自由响应发散,系统不稳定),或存在一对共轭的纯虚根(即系统自由响应会维持某一频率的等幅振荡,此时,系统临界稳定),或是以上几种根的组合等。
这些特殊的使系统不稳定或临界稳定的特征根可以通过求解辅助多项式方程得到。
三、相对稳定性的检验对于稳定的系统,运用判据还可以检验系统的相对稳定性,采用以下方法:1)将s平面的虚轴向左移动某个数值,即令s=z-(((为正实数),代入系统特征方程,则得到关于z的特征方程。
3.5劳斯稳定性及稳定判据

3 代数稳定判据 1 劳斯稳定判据
线性定常系统的特征方程一般式为
ansn an1sn1 a1s a0 0
系统稳定的充要条件为:
1)特征方程的全部 系数为正值;
2)由特征方程系数组成 的劳斯表的第一n 3 s n4
s0 10 k
0
5k 0 2k 3 0 2k2 3k 2
0 k
解得K>0.5
[补充例题]某单位负反馈控制系统的开环传递函数为:
G(s)H(s)
s(s2
K 2s
a)
若系统以 2rad / s 的频率特性持续振荡,
试确定相应的K值和a值。
解得:K 8, a 4
s1 1 0 0 0 3
s0 8 0 0 0
辅助方程为:s4 6s2 8 0 , 求导得:4s3 12s 0 , 或 s3 3s 0 ,用1,3,0代
替全零行即可。
第一列除全零行外,其它系数都大于零,说明无S右半平面的根
由辅助方程求得: (s2 2)( s2 4) 0
得新的特征方程为:s5 3s4 3s3 3s2 3s 1 0
s5 1 3 3 s4 3 3 1 s3 3 4 0 s2 1 1 0
s1 7 0 0
s0 1 0 0
同样可知系统不稳定, 有两个位于S右半平面的根。
2)劳斯表某行系数全为零的情况。
表明特征方程具有大小相等而位置径向相反的根。至少要下述 几种情况之一出现,
0
0
0
0
0
0
0
0
0
0
[例3-5]:设闭环系统传递函数为
劳斯-霍尔维茨稳定性判据

第三章控制系统的时域分析法3.2 劳斯-霍尔维茨稳定性判据稳定性是控制系统最重要的问题,也是对系统最基本的要求。
控制系统在实际运行中,总会受到外界和内部一些因素的扰动,例如负载或能源的波动、环境条件的改变、系统参数的变化等。
如果系统不稳定,当它受到扰动时,系统中各物理量就会偏离其平衡工作点,并随时间推移而发散,即使扰动消失了,也不可能恢复原来的平衡状态。
因此,如何分析系统的稳定性并提出保证系统稳定的措施,是控制理论的基本任务之一。
常用的稳定性分析方法有:1. 劳斯-赫尔维茨(Routh-Hurwitz)判据:这是一种代数判据。
它是根据系统特征方程式来判断特征根在S平面的位置,来判断系统的稳定性.2. 根轨迹法:这是一种利用图解来系统特征根的方法。
它是以系统开环传递函数的某一参数为变量化出闭环系统的特征根在S平面的轨迹,从而全面了解闭环系统特征根随该参数的变化情况。
3. 奈魁斯特(Nyquist)判据:这是一种在复变函数理论基础上建立起来的方法。
它根据系统的开环频率特性确定闭环系统的稳定性,同样避免了求解闭环系统特征根的困难。
这一方法在工程上是得到了比较广泛的应用。
4. 李雅普诺夫方法上述几种方法主要适用于线性系统,而李雅普诺夫方法不仅适用于线性系统,也适用于非线性系统。
该方法是根据李雅普诺夫函数的特征来决定系统的稳定性。
一、稳定性的概念稳定性的概念可以通过图3-31所示的方法加以说明。
考虑置于水平面上的圆锥体,其底部朝下时,我们施加一个很小的外力(扰动),圆锥体会稍微产生倾斜,外作用力撤消后,经过若干次摆动,它仍会返回到原来的状态。
而当圆锥体尖部朝下放置时,由于只有一点能使圆锥体保持平衡,所以在受到任何极微小的外力(扰动)后,它就会倾倒,如果没有外力作用,就再也不能回到原来的状态。
因此,系统的稳定性定义为,系统在受到外作用力后,偏离了最初的工作点,而当外作用力消失后,系统能够返回到原来的工作点,则称系统是稳定的。
信号与系统-罗斯判据

• 系统稳定的充分必要条件 – 冲激响应必须是绝对可积的,0即| h(t) | dt 要使系统稳定,H(s)的极点必须全部在S左半平面,或者是系统的特 征方程的根的实部全部为负。
罗斯判据 设线性系统的特征方程为:
D(s) ansn an1sn1 a1s a0 0
1 1F 2H
(1) 系统函数
H (s) U0(s) US (s)
解:用节点法列方程:
1
uS (t)
2 u1
u0 (t) Ku1
(1
1 2
1 11/ s
2s
)U1
1 11/ s
2s
KU1
US
(
3 2
s Ks 2s2 s
1)U1
U
S
H (s) U0 US
KU1 US
2K (2s2 s 1) 6s2 (5 2K )s 3
第六章第3讲
3
根据罗斯判据确定系统为不稳定的情况:
• 罗斯阵第一列所有系数均不为零,但也 有不全为正数的情况:
– 特征根在右开半平面的数目等于罗斯阵第一 列系数符号改变的次数。s4 2s3 3s2 4s 5 0
罗斯阵–为例:s4线性系统1的特征方3程为: 5
s3
2
4
0
s2
(6-4)/2=1 (10-0)/2=5 0
6 25
s
4 25
6s2 4s 3
1 25
s
7 25
s2 1
1 25
(s
1 3
)
(s
1 3
)2
7 18
1 25
(s
18 7
7 18
1 3
)
第五节系统的稳定性和代数稳定判据
yδ (t ) = 0 , − p j 和 −ζ k ωk 应为负实数。 要使 lim t →∞
其单位脉冲响应函数为:
Yδ ( s ) = Φ ( s ) ⋅1 = ∑
j =1 n1
线性定常系统稳定的充要条件:
Aj +∑ Bk ( s + ζ k ωk ) + Ck ωk 1 − ζ k2 s 2 + 2ζ k ωk s + ωk2 k =1
Monday, October 14, 2013
2
定义1:对于线性定常系统,在零初始条件下,当t→∞时,系 统的单位脉冲响应为零,即
lim yδ (t ) = 0
t →∞
设系统或元件的微分方程为:
y ( n ) (t ) + an −1 y ( n −1) (t ) + ... + a0 y (t ) = bm x ( m ) (t ) + bm −1 x ( m −1) (t ) + ... + b0 x (t )
0≤ t < ∞ 0≤ t < ∞
式中:x(t)—输入,y(t)—输出 ai , (i = 0 ~ n − 1); b j , j = 0 ~ m ) 为常系数。将上式求拉氏变化,得
(sn + an−1sn−1 + ... + a1s + a0 )Y (s) = (bm sm + bm−1sm−1 + ... + b1s + b0 ) X (s)
k =1 k =1
Monday, October 14, 2013
t≥0
5
Monday, October 14, 2013
系统稳定性意义以及稳定性的几种定义
系统稳定性意义以及稳定性的几种定义一、引言:研究系统的稳定性之前,我们首先要对系统的概念有初步的认识。
在数字信号处理的理论中,人们把能加工、变换数字信号的实体称作系统。
由于处理数字信号的系统是在指定的时刻或时序对信号进行加工运算,所以这种系统被看作是离散时间的,也可以用基于时间的语言、表格、公式、波形等四种方法来描述。
从抽象的意义来说,系统和信号都可以看作是序列。
但是,系统是加工信号的机构,这点与信号是不同的。
人们研究系统还要设计系统,利用系统加工信号、服务人类,系统还需要其它方法进一步描述。
描述系统的方法还有符号、单位脉冲响应、差分方程和图形。
电路系统的稳定性是电路系统的一个重要问题,稳定是控制系统提出的基本要求,也保证电路工作的基本条件;不稳定系统不具备调节能力,也不能正常工作,稳定性是系统自身性之一,系统是否稳定与激励信号的情况无关。
对于线性系统来说可以用几点分布来判断,也可以用劳斯稳定性判据分析。
对于非线性系统的分析则比较复杂,劳斯稳定性判据和奈奎斯特稳定性判据受到一定的局限性。
二、稳定性定义:1、是指系统受到扰动作用偏离平衡状态后,当扰动消失,系统经过自身调节能否以一定的准确度恢复到原平衡状态的性能。
若当扰动消失后,系统能逐渐恢复到原来的平衡状态,则称系统是稳定的,否则称系统为不稳定。
稳定性又分为绝对稳定性和相对稳定性。
绝对稳定性。
如果控制系统没有受到任何扰动,同时也没有输入信号的作用,系统的输出量保持在某一状态上,则控制系统处于平衡状态。
(1)如果线性系统在初始条件的作用下,其输出量最终返回它的平衡状态,那么这种系统是稳定的。
(2)如果线性系统的输出量呈现持续不断的等幅振荡过程,则称其为临界稳定。
系统的稳定性常见判据
其中:
a n 1a n 2 a n a n 3 a n 1 a a an an 5 A2 n1 n 4 a n 1 a a an an 7 A3 n 1 n 6 a n 1 A1
B1 B2 B3 A1a n 3 a n 1 A2 A1 A1a n 5 a n 1 A3 A1 A1a n 7 a n 1 A4 A1
1
2
10.6
稳定
不稳定
三、Nyquist 稳定判据
7. 应用举例
例1
P=0
G( s) H ( s) K (T1 s 1)(T2 s 1)
不论K取任何正值,系统总是稳定的 开环为最小相位系统时,只有在三阶或
① 确定P ② 作G(j)H(j)的Nyquist图
③ 运用判据
三、Nyquist 稳定判据
例1
三、Nyquist 稳定判据
例2
G( s ) H ( s ) K (Ta s 1)(Tb s 1) (T12 s 2 2T1 s 1)(T2 s 1)(T3 s 1)
1 19 30 s4 1 11 0 s 3 1 ( 19) 1 11 30 30 0 (改变符号一次) s2 1 s 1 ( 30) 11 1 30 12 0 0 (改变符号一次) 0 30 s 30 0 0
第一列各元符号改变次数为2,因此 1. 系统不稳定 2. 系统有两个具有正实部的特征根
(开环极点易知,闭环极点难求)
稳定判据
二、Routh (劳斯)稳定判据
——代数判据(依据根与系数的关系判断根的分布)
1. 系统稳定的必要条件
设系统特征方程为: D( s) an s n an1 s n1 a1 s a0 0
系统的稳定性以及稳定性的几种定义
系统的稳定性以及稳定性的几种定义一、系统研究系统的稳定性之前,我们首先要对系统的概念有初步的认识。
在数字信号处理的理论中,人们把能加工、变换数字信号的实体称作系统。
由于处理数字信号的系统是在指定的时刻或时序对信号进行加工运算,所以这种系统被看作是离散时间的,也可以用基于时间的语言、表格、公式、波形等四种方法来描述。
从抽象的意义来说,系统和信号都可以看作是序列。
但是,系统是加工信号的机构,这点与信号是不同的。
人们研究系统还要设计系统,利用系统加工信号、服务人类,系统还需要其它方法进一步描述。
描述系统的方法还有符号、单位脉冲响应、差分方程和图形。
中国学者钱学森认为:系统是由相互作用相互依赖的若干组成部分结合而成的,具有特定功能的有机整体,而且这个有机整体又是它从属的更大系统的组成部分。
二、系统的稳定性一个系统,若对任意的有界输入,其零状态响应也是有界的,则称该系统是有界输入有界输出(Bou nd In put Bou nd Output——BIBO) 稳定的系统,简称为稳定系统。
即,若系[ 统对所有的激励|f( • )| < Mf,其零状态响应|yzs( • )| < My(M为有限常数),则称该系统稳三、连续(时间)系统与离散(时间)系统连续系统:时间和各个组成部分的变量都具有连续变化形式的系统。
系统的激励和响应均为连续信号。
因果系统(causal system) 是指当且仅当输入信号激励系统时,才会出现输出(响应)的系统。
也就是说,因果系统的(响应)不会出现在输入信号激励系统的以前时刻。
即输入的响应不可能在此输入到达的时刻之前出现的系统;也就是说系统的输出仅与当前与过去的输入有关,而与将来的输入无关的系统。
判定方法对于连续时间系统:当该系统为线性移不变系统时,系统的冲激响应函数h(n),在n W n1的条件下,h(n)=0,则此系统为因果系统。
举例说明函数:1.y(t)=x(sin(t))不是因果系统,因为y(-n )=x(0),表明y(t)在一段时间内可能取决于未来的x(t)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6-6 系统的稳定性及其判定
所有工程实际系统的工作都应该具有稳定性,所以对系统稳定性的研究十分重要。
本节将介绍系统稳定性的意义及其判定方法。
一、系统稳定性的意义
若系统对有界激励f(t)产生的零状态响应也是有界的,即当时,若有(式中和均为有界的正实常数),则称系统为稳定系统或系统具有稳定性研究不同问题时,“稳定”的定义不尽相同。
这里的定义是“有界输入、有界输出”意义下的稳定。
,否则即为不稳定系统或系统具有不稳定性。
可以证明,系统具有稳定性的必要与充分条件,在时域中是系统的单位冲激响应h(t)绝对可积,即
<∞(6-36)
证明设激励f(t)为有界,即
式中,为有界的正实常数。
又因有
故有
(6 -37)
由此式看出,若满足
<∞
则一定有证毕
即也一定有界。
式中为有界的正实常数。
由式(6-36)还可看出,系统具有稳定性的必要条件是
(6-38)
式(6-36)和式(6-38)都说明了系统的稳定性描述的是系统本身的特性,它只取决于系统的结构与参数,与系统的激励和初始状态均无关。
若系统为因果系统,则式(6-36)和式(6-38)可写为
<∞( 6-39)
(6-40)
二、系统稳定性的判定
判断系统是否稳定,可以在时域中进行,也可以在s域中进行。
在时域中就是按式(6-36)和式(6-38)判断,已如上所述。
下面研究如何从s域中判断。
1.从H(s)的极点[即D(s)=0的根]分布来判定
若系统函数H(s)的所有极点均位于s平面的左半开平面,则系统是稳定的。
若H(s)在jω轴上有单阶极点分布,而其余的极点都位于s平面的左半开平面,则系统是临界稳定的。
若H(s)的极点中至少有一个极点位于s平面的右半开平面,则系统就是不稳定的;若在jω轴上有重阶极点分布,则系统也是不稳定的。
2.用罗斯准则判定
用上述方法判定系统的稳定与否,必须先要求出H(s)的极点值。
但当H(s)分母多项式D(s)的幂次较高时,此时要具体求得H(s)的极点就困难了。
所以必须寻求另外的方法。
其实,在判定系统的稳定性时,并不要求知道H(s)极点的具体数值,而是只需要知道H(s)极点的分布区域就可以了。
利用罗斯准则即可解决此问题。
罗斯判定准则的内容如下:
多项式D(s)的各项系数均为大于零的实常数;多项式中无缺项(即s的幂从n到0,一项也不缺)。
这是系统为稳定的必要条件。
若多项式D(s)各项的系数均为正实常数,则对于二阶系统肯定是稳定的;但若系统的阶数n>2时,系统是否稳定,还须排出如下的罗斯阵列。
设
则罗斯阵列的排列规则如下(共有n+1行):
阵列中第1、第2行各元素的意义不言而喻,第3行及以后各行的元素按以下各式计算:
如法炮制地依次排列下去,共有(n+1)行,最后一行中将只留有一个不等于零的数字。
若所排出的数字阵列中第一列的(n+1)个数字全部是正号,则H(s)的极点即全部位于s 平面的左半开平面,系统就是稳定的;若第一列(n+1)个数字的符号不完全相同,则符号改变的次数即等于在s平面右半开平面上出现的H(s)极点的个数,因而系统就是不稳定的。
在排列罗斯阵列时,有时会出现如下的两种特殊情况:
(1) 阵列的第一列中出现数字为零的元素。
此时可用一个无穷小量ε(认为ε是正或负均可)来代替该零元素,这不影响所得结论的正确性。
(2) 阵列的某一行元素全部为零。
当D(s)=0的根中出现有共轭虚根时,就会出现此种情况。
此时可利用前一行的数字构成一个辅助的s多项式P(s),然后将P(s)对s 求导一次,再用该导数的系数组成新的一行,来代替全为零元素的行即可;而辅助多项式P(s)=0的根就是H(s)极点的一部分。
例6-22已知H(s)的分母D(s)=s4+2s3+3s2+2s+1。
试判断系统的稳定性。
解:因D(s)中无缺项且各项系数均为大于零的实常数,满足系统为稳定的必要条件,故进一步排出罗斯阵列如下:
可见阵列中的第一列数字符号无变化,故该H(s)所描述的系统是稳定的,即H(s)的极点全部位于s平面的左半开平面上。
例6-23已知。
试判断系统的稳定性。
解:因中无缺项且各项系数均为大于零的实常数,满足系统为稳定的必要条件,故进一步排出罗斯阵列如下:
可见阵列中的第一列数字符号有两次变化,即从+2变为-2,又从-2变为+21。
故H(s)的极点中有两个极点位于s平面的右半开平面上,故该系统是不稳定的。
例6-24已知。
试判断系统是否稳定。
解:因D(s)=s5+2s4+2s3+4s2+11s+10中的系数均为大于零的实常数且无缺项,满足系统为稳定的必要条件,故进一步排出罗斯阵列如下:
由于第3行的第一个元素为0,从而使第4行的第一个元素成为(-∞),使阵列无法继续排列下去。
对于此种情况,可用一个任意小的正数来代替第3行的第一个元素0,然后照上述方法继续排列下去。
在计算过程中可忽略含有,的项。
最后将发现,阵列第一列数字符号改变的次数将与ε无关。
按此种处理方法,继续完成上面的阵列:
可见阵列中第一列数字的符号有两次变化,即从变为,又从变为6。
故H(s)的极点中有两个极点位于s平面的右半开平面上,故系统是不稳定的。
例6-25已知。
试判断系统的稳定性。
解:因中无缺项且各项系数均为大于零的实常数,满足系统为稳定的必要条件,故进一步排出罗斯阵列如下:
可见第4行全为零元素。
处理此种情况的方法之一是:以前一行的元素值构建一个s的多项式P(s),即
将式(6-41)对s求一阶导数,即
现以此一阶导数的系数组成原阵列中全零行(行)的元素,然后再按原方法继续排列下去。
即
可见阵列中的第一列数字符号没有变化,故H(s)在s平面的右半开平面上无极点,因而系统肯定不是不稳定的。
但到底是稳定的还是临界稳定的,则还须进行下面的分析工作。
令
解之得两个纯虚数的极点:。
这说明系统是临界稳定的。
实际上,若将D(s)分解因式,即为
可见H(s)共有4个极点:,位于轴上;,位于s平面的左半开平面。
故该系统是临界稳定的。
例6-26 图6-38所示系统。
试分析反馈系数K对系统稳定性的影响。
图6-38
解:
解之得
欲使此系统稳定的必要条件是中的各项系数均为大于零的实常数,故应有K>-1。
但此条件并不是充分条件,还应进一步排出罗斯阵列如下:
可见,欲使该系统稳定,则必须有10K>0,即K>0。
若取K=0,则阵列中第三行的元素即全为0,此时系统即变为临界稳定(等幅振荡),其振荡频率可由辅助方程
求得为,即振荡角频率为=rad/s。