自动控制原理线性系统的稳定性分析

合集下载

控制系统的稳定性分析

控制系统的稳定性分析

自动控制原理
其中系数 b1 , b2 , b3 等;根据
下列公式计算:
b1
a1a 2 a 0a 3 a1
b2
a1a 4 a 0a 5 a1
b3
a1a 6 a 0a 7 a1
同样的方法可以计算c;d;e等各行的系数
自动控制原理
注意:
在展开的阵列中;为简化其后的数值计算;可用一个正整数去除 或乘某一个整行;并不影响稳定性结论; 劳斯判据还说明:方程式5 4中;其正实部特征根数;等于劳斯阵列中第一列的系数改变的次数;
自动控制原理
从乃氏图上看;Gjw不包围1;j0点
G ( jw ) 1
稳定
G ( jw )
G ( jw )
不稳定
自动控制原理
2 若开环系统不稳定;有p个零点在右半平面;q的零点在原点;npq个 零点在左半平面 则
argD K(jw)(n2pq)2
如果闭环是稳定的;则
argDb(jw)n 2

a r g 1 G (jw ) n ( n 2 p q ) p q
F是新引进的函数;其分母是系统开环特征多项式;分子是闭环特征多 项式;
对于非单位反馈系统;开环传递函数为
GsG' sHsM DK Kss
自动控制原理
2 乃奎斯特队稳定判据 1 若开环是稳定的;则根据米哈依洛夫定理
argDk
jwn
2
如果闭环系统稳定;有
于是
argDb
jwn
2
arg1G (jw )0o
0
0
a n1 0
0
an2 an
自动控制原理
系统稳定的充要条件是:主行列式
式 1,2, n1 ;均大于零;即

《自动控制原理》第五章:系统稳定性

《自动控制原理》第五章:系统稳定性

5.2 稳定的条件
当σi和λi均为负数,即特征根的 σi和λi均为负数, 均为负数 实部为负数,系统是稳定的; 实部为负数,系统是稳定的; 或极点均在左平面。 或极点均在左平面。
5.3 代数稳定性判据
定常线性系统稳定的充要条件 定常线性系统稳定的充要条件是特征方程的根具有负 充要条件是特征方程的根具有负 实部。因此,判别其稳定性,要解系统特征方程的根。为 实部。因此,判别其稳定性,要解系统特征方程的根。 避开对特征方程的直接求解,可讨论特征根的分布, 避开对特征方程的直接求解,可讨论特征根的分布,看其 是否全部具有负实部,并以此来判别系统的稳定性,这样 是否全部具有负实部,并以此来判别系统的稳定性, 也就产生了一系列稳定性判据。 也就产生了一系列稳定性判据。 其中最主要是E.J.Routh(1877 )h和Hurwitz( 其中最主要是E.J.Routh(1877年)h和Hurwitz(1895 E.J.Routh(1877年 年)分别提出的代数判据。 分别提出的代数判据 代数判据。
习题讲解: 习题讲解:
µ
G1
Q21
G1
h2
k1 k1 G1 ( s ) = , G1 ( s ) = (T1s + 1) (T1s + 1) k1k 2 G0 ( s ) = (T1s + 1)(T2 s + 1)
kp
G0 ( s ) G(s) = 1 + G0 ( s ) K p
5.4 Nyquist稳定性判据 Nyquist稳定性判据
系统稳定的条件? 系统稳定的条件?
5.2 稳定的条件
d n y (t ) d ( n −1) y (t ) dy (t ) 线性系统微分方程: 线性系统微分方程: n a + an −1 + L + a1 + a0 y (t ) n ( n −1) dt dt dt d m x(t ) d ( m −1) x(t ) dx(t ) = bm + bm−1 + L + b1 + b0 x(t ) m ( m −1) dt dt dt d n y (t ) d ( n −1) y (t ) dy (t ) + a( n −1) + L + a1 + a0 y (t ) = 0 齐次微分方程: 齐次微分方程: an n ( n −1) dt dt dt an s n + an −1s n −1 + L + a1s + a0 = 0 设系统k 设系统k个实根

自动控制原理实验四-线性定常控制系统的稳定分析

自动控制原理实验四-线性定常控制系统的稳定分析

实验四线性定常控制系统的稳定分析
一、实验目的
(1)深刻理解反馈对系统稳定性的作用和影响;
(2)深刻理解系统类型对系统稳定性的影响的规律;
(3)深刻理解零点对系统稳定性无影响;
(4)理解系统参数对系统稳定性的影响。

二、实验原理及内容:
1.单位反馈对系统稳定性的影响
(1) 已知开环系统结构图如图4-1所示。

R (S
其中W(S)分别为:(a )1()0.11W s s =+和(b )1()0.2
W s s =- (2)闭环系统单位负反馈形式为:
图4-2 闭环系统
其中W(S)同(1)。

通过观察两组W (S )在开环和闭环两种形式下系统的零、极点分布和单位阶跃响应曲。

自动控制原理实验报告--控制系统的稳定性和稳态误差

自动控制原理实验报告--控制系统的稳定性和稳态误差

本科实验报告课程名称:自动控制原理实验项目:控制系统的稳定性和稳态误差实验地点:多学科楼机房专业班级:学号:学生姓名:指导教师:2012 年5 月15 日一、实验目的和要求:1.学会利用MATLAB 对控制系统的稳定性进行分析; 2.学会利用MATLAB 计算系统的稳态误差。

二、实验内容和原理:1.利用MATLAB 描述系统数学模型如果系统的的数学模型可用如下的传递函数表示nn n m m m a s a s b s b s b s U s Y s G ++++++==-- 11110)()()( 则在MATLAB 下,传递函数可以方便的由其分子和分母多项式系数所构成的两个向量惟一确定出来。

即num=[b 0,b 1 ,…, b m ]; den=[1,a 1,a 2 ,…,a n ]例2-1 若系统的传递函数为5234)(23+++=s s s s G 试利用MA TLAB 表示。

当传递函数的分子或分母由若干个多项式乘积表示时,它可由MA TLAB 提供的多项式乘法运算函数conv( )来处理,以获得分子和分母多项式向量,此函数的调用格式为 p=conv(p1,p2)其中,p1和p2分别为由两个多项式系数构成的向量,而p 为p1和p2多项式的乘积多项式系数向量。

conv( )函数的调用是允许多级嵌套的。

例2-2 若系统的传递函数为)523)(1()66(4)(232++++++=s s s s s s s s G试利用MA TLAB 求出其用分子和分母多项式表示的传递函数。

2.利用MATLAB 分析系统的稳定性在分析控制系统时,首先遇到的问题就是系统的稳定性。

判断一个线性系统稳定性的一种最有效的方法是直接求出系统所有的极点,然后根据极点的分布情况来确定系统的稳定性。

对线性系统来说,如果一个连续系统的所有极点都位于左半s 平面,则该系统是稳定的。

MATLAB 中根据特征多项式求特征根的函数为roots( ),其调用格式为r=roots(p) 其中,p 为特征多项式的系数向量;r 为特征多项式的根。

自动控制原理-第3章

自动控制原理-第3章

响应曲线如图3-2所示。图中
为输出的稳态值。
第三章 线性系统的时域分析 法
图 3-2 动态性能指标
第三章 线性系统的时域分析 法
动态性能指标通常有以下几种:
延迟时间td: 指响应曲线第一次达到稳态值的一半所需的时间
上升时间tr: 若阶跃响应不超过稳态值, 上升时间指响应曲线从 稳态值的10%上升到90%所需的时间; 对于有振荡的系统, 上升时 间定义为响应从零第一次上升到稳态值所需的时间。上升时间越 短, 响应速度越快。
可由下式确定: (3.8)
振荡次数N: 在0≤t≤ts内, 阶跃响应曲线穿越稳态值c(∞)次 一半称为振荡次数。
上述动态性能指标中, 常用的指标有tr、ts和σp。上升时间tr 价系统的响应速度; σp评价系统的运行平稳性或阻尼程度; ts是同
时反映响应速度和阻尼程度的综合性指标。 应当指出, 除简单的一 、二阶系统外, 要精确给出这些指标的解析表达式是很困难的。
中可以看出, 随着阻尼比ζ的减小, 阶跃响应的振荡程度加剧。 ζ =0时是等幅振荡, ζ≥1时是无振荡的单调上升曲线, 其中临界阻尼 对应的过渡过程时间最短。 在欠阻尼的状态下, 当0.4<ζ<0.8时过
渡过程时间比临界阻尼时更短, 而且振荡也不严重。 因此在 控制工程中, 除了那些不允许产生超调和振荡的情况外, 通常都希
第三章 线性系统的时域分析法 4. 脉冲函数 脉冲函数(见图3-1(d))的时域表达式为
(3.4)
式中,h称为脉冲宽度, 脉冲的面积为1。若对脉冲的宽度取趋于 零的极限, 则有
(3.5) 及
(3.6)
称此函数为理想脉冲函数, 又称δ函数(见图3-1(e))。
第三章 线性系统的时域分析 法

自动控制原理课件:线性系统的稳定性和稳态特性分析

自动控制原理课件:线性系统的稳定性和稳态特性分析
设系统处于某一平衡状态,若此系统在干 扰作用下离开了原来的平衡状态,那么,在扰 动消失后,系统能否回到原来的平衡状态,这 就是系统的稳定性问题。
上述系统在干扰作用消失后,能够恢复到 原始的平衡状态,或者说系统的零输入响应具 有收敛性质,则系统为稳定的。
由此可得到线性系统稳定的充分必要条件: 系统特征方程的所有根(系统的所有闭环极点),均位于复数s平面的左半部.
系统给定误差传递函数为
Er (s) R(s)
1 1 G(s)
1
1 K (0.5s 1)
s(s 1)(3s 1)
Er
(s)
s(s
s(s 1)(3s 1) 1)(3s 1) K (0.5s
1)
R(s)
esr
lim
s0
sEr
(s)
lim s
s0
s(s 1)(3s 1)
1
s(s 1)(3s 1) K(0.5s 1) s
3.3 劳斯稳定判据 线性系统稳定与否,取决于特征根的实部是否均为负值(复数s平面
的左半部).但是求解高阶系统的特征方程是相当困难的.而劳斯判据,
避免解特征方程,只需对特征方程的系数进行代数运算,就可以判断系统
的稳定性,因此这种数据又称为代数稳定判据.
1.劳斯判据 将系统的特征方程写成如下标准形式
下面要讨论系统跟踪输入信号的精确度或抑制干扰信号的能 力.
这里讨论的稳态误差仅限于由系统结构、参数及输入信号的不 同而导致的稳态误差,不包含由于具体元件的灵敏性、温湿度影响所 带来的误差问题。
控制系统的输入包含给定输入和扰动量, 对应的控制系统的稳态误差也分为两类:
给定稳态误差
扰动稳态误差
Er (s) R(s) B(s) R(s) Er (s)Gc (s)Go (s)H(s)

自动控制原理控制系统的稳定性分析

自动控制原理控制系统的稳定性分析

Course 自动控制原理东南大学自动控制系Southeast University Dept. of Automatic Control Chap 4 控制系统的稳定性分析稳定性分析的意义稳定性是控制系统能够正常工作的首要条件。

稳定压倒一切。

只有稳定的情况下,性能分析和改进才有意义。

负反馈只是使系统稳定的一种手段,并不一定能够保证闭环系统的稳定。

例子:秋千东南大学自动控制系Southeast University Dept. of Automatic Control Chap 4 控制系统的稳定性分析4.1 稳定性stability的概念和定义d f b c a b c 平衡点单/多平衡点系统干扰,偏差稳定的物理意义东南大学自动控制系Southeast University Dept. of Automatic Control 稳定范围/区域a 4.1 稳定性的概念和定义若控制系统在任何足够小的初始偏差作用下,随着时间的推移,偏差会逐渐衰减并趋于零,具有恢复原平衡状态的性能,则称该系统是稳定stable的;否则,称该系统是不稳定unstable的。

可通过研究描述系统的微分或差分方程的解得到系统稳定性。

东南大学自动控制系Southeast University Dept. of Automatic Control 4.1 稳定性的概念和定义基于稳定性研究的问题是扰动作用去除后系统的运动情况与输入量和初始偏差无关。

稳定性是系统本身的“固有特性”,一个控制系统的稳定性取决于系统本身的结构和参数值。

线性系统稳定性分析只需考虑齐次系统情况即可。

东南大学自动控制系Southeast University Dept. of Automatic Control 4.1 稳定性的概念和定义李亚普诺夫Lyapunov 1892稳定性x t F x t t xc t F xc t t 0 x0 x t0 Lyapunov stability 0 0 if x0 xc then x t xc n Lyapunov asymptotic stability x xc xi xic 2 i 1 If in addition lim x t xc 0 t东南大学自动控制系Southeast University Dept. of Automatic Control 4.1 稳定性的概念和定义x2 x2 xc xc x1 x1东南大学自动控制系Southeast University Dept. of Automatic Control 4.1 稳定性的概念和定义x2 xc x1东南大学自动控制系Southeast University Dept. of Automatic Control 4.1 稳定性的概念和定义x x x t x 0e t x t 0 x 0 e t x 0 0 xx x t x 0et x1 x2 x2 x1 1 x1 0 x东南大学自动控制系Southeast University Dept. of Automatic Control Chap 4 控制系统的稳定性分析4.2 线性定常系统稳定的充分必要条件4.2.1 状态空间模型若讨论稳定性是基于状态空间模型的,则只关心是齐次状态方程的响应是否收敛到xe0-渐进稳定性连续线性定常系统渐近稳定的充分必要条件是:它的系数矩阵A的特征值全都具有负实部。

西工大、西交大自动控制原理 第五节 线性系统的稳定性分析9-10

西工大、西交大自动控制原理 第五节 线性系统的稳定性分析9-10

1.系统稳定性概念
线性控制系统的稳定性定义
设线性控制系统在初始扰动的影响 下,其过渡过程随着时间的推移逐渐衰 减并趋向于零,则称该系统渐进稳定(简 称稳定)。反之,若在初始扰动的影响下, 系统过渡过程随着时间的推移而发散, 则称系统为不稳定。
1.系统稳定性概念
线性控制系统的稳定性是系统自身的固有特性。 稳定与否和输入信号及初始偏差的大小无关。
若通过系统自身的调节作用, 使偏差最后 逐渐减小,系统又逐渐恢复到平衡状态, 那么, 这种系统便是稳定的。
1. 系统稳定性概念
c(t)
c(t)
扰动
O (a)
扰动
O t
t (b)
不稳定
稳定
1. 系统稳定性概念
大范围稳定: 不论扰动引起的初始偏差有多大,
当扰动取消后,系统都能够恢复到原有 的平衡状态。
试用Hurwitz判据判断系统的稳定性。
解:(1) 特征方程式的各项系数均大于0。 (2) 各阶Hurwitz行列式为:
D1 a1 1 0
D2
a1 a0
a3 1 a2 2
5 7 0
3
3、稳定判据(代数判据)
(1) Hurwitz稳定判据
a1 a3 a5 1 5 0 D3 a0 a2 a4 2 3 10 45 0
2线性系统稳定的充分必要条件
设线性系统在初始条件为零时,输入一个 理想单位脉冲信号 (t),这时系统的输出称为 脉冲过渡函数(或称脉冲响应)g (t)
若系统闭环传递函数为:
m
Φs
Cs Rs
M s N s
Kg
n1
s sj
s zi
i 1
s2 2ζ k ωk s ωk2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
sn s n 1 s
n 2
a0 a1
a2 a3
a4 a5

s n 3

s0

a 1a 2 a 0 a 3 a 1a 4 a 0 a 5 a 1a 6 a 0 a 7 c13 c 23 c 33 a1 a1 a1 c 13 a 3 a 1c 23 c 13 a 5 a 1c 33 c 13 a 7 a 1c 43 c 14 c 24 c 34 c 13 c 13 c 13

an


当劳斯表中第一列的所有数都大于零时,系统稳定;反之,
如果第一列出现小于零的数时,系统就不稳定。第一列各系数符 号的改变次数,代表特征方程的正实部根的个数。
例3.4 设系统特征方程为s4+2s3+3s2+4s+5=0; 试用劳斯稳定判据 判别系统稳定性。 解:列出劳斯表 s 4 5 1 3
s3
s2
2
4
s
1
0
s
2 4 1 5 6 1 1 5
1 3 1 5 2 4 2 0 1 5 2 2
0
0
注意两种特殊情况的处理: 1)某行的第一列项为 0 ,而其余各项不为0 或不全为 0 。用 因子(s+a)乘原特征方程(其中a为任意正数),或用很小的正 数代替零元素,然后对新特征方程应用劳斯判据。 2)当劳斯表中出现全零行时,用上一行的系数构成一个辅 助方程,对辅助方程求导,用所得方程的系数代替全零行。
有正有负一定不稳定! 缺项一定不稳定!
-s2-5s-6=0稳定吗?
系统稳定的充分条件: 劳斯表第一列元素不变号!
若变号系统不稳定!
变号的次数为特征根在s右半平面的个数!
劳斯表出现零行
设系统特征方程为:
s4+5s3+7s2+5s+6=0 劳 斯 表
s4 1 s3 5 1 s2 6 1 s1 0 2 s0 1 7 1 5 6 1 6
s1.2 j 0.586 j 0.766 s3.4 j 3.414 j1.848

t
(a)闭环极点分布图
(b)单位阶跃响应曲线
3.4 稳定性分析
3.4.1 线性系统的稳定性概念 系统工作在平衡状态,受到扰动偏离了平衡状态,扰动消失 之后,系统又恢复到平衡状态,称系统是稳定的。稳定性只由 结构、参数决定,与初始条件及外作用无关。 • 设初始条件为零时,作用一理想脉冲信号到一线性系统, g ( t ) 0,则系统稳定。 这相当于给系统加了一扰动信号。若 lim t • 线性系统稳定的充分必要条件:闭环系统特征方程的所有根 都具有负实部. j [ S 平面 ] 判别系统稳定性的基本方法: 稳定区域 (1) 劳斯—古尔维茨判据 不稳定区域 (2) 根轨迹法 0 (3) 奈奎斯特判据 (4) 李雅普诺夫第二方法
① 有大小相等符号相反的 特征根时会出现零行 ② 由零行的上一行构成 辅助方程:
s2+1=0
对其求导得零行系数: 2s1
继续计算劳斯表 ③ 解辅助方程得对称根 错啦!!! :
第一列全大于零,所以系统稳定
劳斯表出现零行 1 劳斯表何时会出现零行? 系统一定不稳定
2 出现零行怎么办? 3 如何求对称的根?
s1,2=±j
由综合除法可得另两 个根为s3,4= -2,-3
例3.5 设系统特征方程为s4+2s3+s2+2s+2=0;试用劳斯稳定判据 判断系统的稳定性。
解:列出劳斯表
s4 s3 s2 s1 s0
1 2 (取代0) 2-4/ 2
1 2 2
2 0
可见第一列元素的符号改变两次,故系统是不稳定的且在S 右半平面上有两个极点。
例3.6 设系统特征方程为s6+2s5+6s4+8s3+10s2+4s+4=0;试用 劳斯稳定判据判断系统的稳定性。
解:列出劳斯表 s6 s5 s4 s3 1 2 2 0 6 8 8 0 10 4 4 0 4 辅助多项式A(s)的系数
A(s) =2s4+8s2+4 dA(s)/ds=8s3+16s 以导数的系数取代全零行的各元素,继续列写劳斯表: s6 1 6 10 4 s5 2 8 4 s4 2 8 4 s3 8 16 dA(s)/ds的系数 s2 4 4 s1 8 s0 4 • 第一列元素全为正,系统并非不稳定; • 阵列出现全零行,系统不是稳定的; • 综合可见,系统是临界稳定的(存在有共轭纯虚根)。 解辅助方程可得共轭纯虚根:令s2=y, A(s) =2s4+8s2+4=2(y2+4y+2)=0 y 2 2 0.586,
( s 5)( s 1.5 s 2) 5(
' ( s)
2 2 s 2 1.5 s 2 ( s 0.75 j1.2)(s 07.5 j1.2) j
c(t) j1.2
s 1)( s 2 1.5 s 2) 5
p1 -5
p2
-0.75 0-j1.2 p3
3.3.5 高阶系统的时域分析
•特点:1) 高阶系统时间响应由简单函数组成。 2) 如果闭环极点都具有负实部,高阶系统是稳定的。 3) 时间响应的类型取决于闭环极点的性质和大小,形状与闭环 零点有关。 •分析方法:1) 可由系统主导极点估算高阶系统性能。 2) 忽略偶极子的影响。 10 10 例如: ( s ) 2
劳 斯 表
劳斯表特点
1 右移一位降两阶 2 行列式第一列不动 ε +8 7 2 ε 3 次对角线减主对角线 2 -8 (2 ε +8) - 7 ε 4 每两行个数相等 ε 7 5 分母总是上一行第一个元素 6 一行可同乘以或同除以某正数 7 第一列出现零元素时, 用正无穷小量ε代替。
劳斯判据
系统稳定的必要条件: 特征方程各项系数 均大于零!
6 0 5 6
第一列数据不同号, 系统不稳定性。
设系统特征方程为: 劳斯表特点及第一种特殊情况
s6+2s5+3s4+4s3+5s2+6s+7=0
s6 s5 s4 s3 s2 s1 s0
1 2 1 ε 0 3 4 2 -8 -8 5 6 7 7 7
(6-4)/2=1 (10-6)/2=2 (6-14)/1= -8
相关文档
最新文档