5.4_非线性系统的李雅普诺夫稳定性分析解析
第六章李亚普诺夫稳定性分析

如图5-3李雅普诺夫意义下的稳定性示意图
2.古典理论稳定性定义(渐近稳定性)
设 xe 是系统 的一个孤立平衡状态,如果
(1) xe 是李雅普诺夫意义下稳定的;
(2)
则称此平衡状态是渐近稳定的。
2009-08
CAUC--空中交通管理学院
§6-1 李雅普诺夫稳定性定义
- 初始状态 - 平衡状态
图6-2 二维空间渐近稳定性的几何解释示意图
3.内部稳定性与外部稳定性的关系
1)若系统是内部稳定(渐近稳定)的,则一定是外部稳定( BIBO稳定)的。
2)若系统是外部稳定(BIBO稳定)的,且又是可控可观测的, 则系统是内部稳定(渐近稳定)的。此时内部稳定和外部稳定 是等价的。
2009-08
CAUC--空中交通管理学院
§6-1 李雅普诺夫稳定性定义
(外部稳定性也称为BIBO(Bounded Input Bounded Output )稳定性)
说明:
(1) 所谓有界是指如果一个函数 ,在时间区间[0,∞] 中,它的幅值不
会增至无穷,即存在一个实常数k ,使得对于所有的t∈ [0 ∞] ,恒有
|h(t)| ≤ k ≤ ∞成立。 (2) 所谓零状态响应,是指零初始状态时非零输入引起的响应。
若对所有t,状态x满足
,故有下式成立:
,则称该状态x为平衡状态,记为
(5-2)
由平衡状态在状态空间中所确定的点 ,称为平衡点。
2.平衡状态的求法
(1)线性定常系统
其平衡状态xe满足Ax=0
A非奇异,则存在唯一的一个平衡状态xe =0 。 (2)非线性系统
方程
的解可能有多个。
2009-08
CAUC--空中交通管理学院
第5章李雅普诺夫稳定性分析

第5章 李雅普诺夫稳定性分析
第五章 李雅普诺夫稳定性分析
5.1 李雅普诺夫意义下的稳定性 5.2 李雅普诺夫第一法(间接法) 5.3 李雅普诺夫第二法(直接法) 5.4 线性定常系统的李雅普诺夫稳定性分析
4
第5章 李雅普诺夫稳定性分析
5.1 李雅普诺夫意义下的稳定性
1.自治系统
没有外输入作用时的系统称为自治系统,可 用如下系统状态方程来描述:
如果时变函数V(x,t)有一个正定函数作为下限, 也就是说,存在一个正定函数W(x) ,使得
V ( x ,t) W ( x), V (0,t) 0, t t0
则称时变函数V(x,t)在域S(域S包含状态空间的 原点)内是正定的。
24
第5章 李雅普诺夫稳定性分析
3. 负定函数:如果-V(x)是正定函数,则标量函数 V(x)为负定函数。
则称平衡状态xe在李雅普诺夫意义下是稳定的。
在上述稳定的定义中,实数δ通常与ε和初始时
刻t0都有关,如果δ只依赖于ε ,而和t0的选取无关,
则称平衡状态是一致稳定的。
9
第5章 李雅普诺夫稳定性分析
5. 渐近稳定性
若系统的平衡状态xe不仅具有李雅普诺夫意 义下的稳定性,且有
lim
t
||
x(t;
x0 ,
(s)
则 m(s) 为矩阵A的最小多项式。
注:换言之,矩阵A的最小多项式就是(sI-A)-1
中所有元素的最小公分母。
17
第5章 李雅普诺夫稳定性分析
例5-1(补充):判断下述线性定常系统的稳定性
0 0 0
x 0 0
0
x
0 0 1
解:1)系统矩阵A为奇异矩阵,故系统存在无穷
李雅普诺夫稳定性分析

⑥ V(x)函数只表示了平衡状态附近的某领域内的局部 运动稳定状况。不能提供域外的运动信息。 ⑦ V(x)的构造需要较多技巧,可通过计算机来完成, 人力难以估测。因此,此方法常用于难以判定的复 杂问题。例如高阶时变非线性系统。
李雅普诺夫稳定性在线性系统中的应用
线性系统中的应用
线性连续定常系统稳定性分析 线性离散定常系统稳定性分析 线性连续时变系统稳定性分析 线性离散时变系统稳定性分析
V ( x) 0,V ( x) 0,V ( x) 0
李雅普诺夫函数讨论
⑤ V ( x) 0 V ( x) 0 V ( x) 0
能量的趋近速度是负的,所以能量最 终为0,趋向于原点,系统是渐进稳 定的。 能量最终为可能0,趋向于原点,也 有可能停止在ε内的某处。 能量是递增的,因此是不稳定的。
李雅普诺夫稳定性
上述定理的标量函数V(X,t)称为李亚普诺夫函数. 李亚普诺夫稳定性定理是判定系统稳定的充分条件, 但非必要条件。 一般李亚普诺夫函数对某个系统来说不止一个,即不 唯一。
状态 系统 能量函数
寻找的
?
系统 稳定
李雅普诺夫稳定性
示例有一个非线性状态方程,Xe=0为一个平衡状态
是否就一定不稳定呢?是否标量函数不合适呢?需要另外判断。 从李雅普诺夫第一方 法来看,解特征方程
s 1 1 2 sI A 1 s 1 s 2s 2 0
李雅普诺夫函数讨论
李雅普诺夫第二方法关键在于寻找一个满足条件的李 雅普诺夫函数。 ① V(x)是满足稳定性盘踞条件的一个正定标量函数,具 有连续一阶偏导。 ② 对于一个给定系统,如果V(x)能找到,那么通常是非 唯一的,但是不影响结论一致性。 ③ V(x)最简形式是二次型,但未必都是。 ④ 如果V(x)是标准二次型,V(x)可表示为从原点到x的 距离。V (x) 表征了系统相对原点运动的速度。
稳定性与李雅谱诺夫方法

(3)
成立,则称 为系统的平衡状态。 对于一个任意系统,不一定都存在平衡状态,有时即使存在也未必是唯一的。
1.2
稳定性的几个定义
,有:
若用 那么
表示状态矢量
与平衡状态
的距离,用点集
表示以
为中心 为半径的超球体,
(4)
在n维状态空间中,有:
(5)
当 很小时,则称 为 的邻域。因此,若有 位于球 , 则意味着 域 内,便有: 同 理,若方程式(1)的解
为矩阵微分方程式的初始条件。
当选取正定矩阵
时,可由函
计算出
;再根据
是否具有连续、
对称、正定性来判别线性时变系统的稳定性。
证明
设李雅普诺夫函数取为:
式中,
为连续的正定对称矩阵。取V(x,t)对时间的全导数,得:
即 (5) 式中
由稳定性判据可知,当 一个正定对称矩阵,则 定的。
为正定对称矩阵时,若
也是
判别其稳定性的问题。例如高阶的非线性系统或时变系统。
4
4.1
李雅普诺夫方法在线性系统中的应用
线性定常连续系统渐近稳定判据
设线性定常连续系统为:
则平衡状态 证明书171页
为大范围渐阵A所有特征根均具有负实部等价于存在正定实对称矩阵P,使得ATP+PA<0
定理:线性连续定常系统
其平衡态xe=0大范围渐近稳定的充要条件为:任意给定正定实对称矩阵Q,若存在正定实对称矩阵P, 满足 则可取
Ax x
AT P PA Q
V ( x) xT Px
为系统的李雅谱诺夫函数。
运用时应注意: 1. 先选Q>0,之后代入李雅谱诺夫方程求取P,然后判定P的正定性,进而得出系统稳定与否的结论; 2. 通常选Q=I;
李雅普诺夫稳定性

x bx5
这时线性化方法不能用来判断它的稳定性。
李雅普诺夫理论基础
例:证明下面单摆的平衡状态 ( , 0) 是不稳定的。
MR2 b MgR sin 0
式中 R 为单摆长度,M 为单摆质量, b 为铰链的摩擦系数,
g 是重力常数。(系统的平衡点是什么?)
在 的邻域内
sin sin cos ( ) h.o.t. ( ) h.o.t. 设 ~ ,那么系统在平衡点附近的线性化结果是
以速度 1 指数收敛于 x 0 。
例2:系统 x x2 , x(0) 1它的解为 x 1/(1 t),是个慢于任 何指数函数 et ( 0) 的函数。
3、局部与全部稳定性
定义:如果渐近(或指数)稳定对于任何初始状态都能 保持,那么就说平衡点是大范围渐近(或指数)稳定的, 也称为全局渐近(或指数)稳定的。
李雅普诺夫理论基础
§2.2 线性化和局部稳定性
李雅普诺夫线性化方法与非线性系统的局部稳定性有关。
Lyapunou线性化方法说明:在实际中使用线性控制方法基
本上是合理的。
对于自治非线性系统 x f (x) ,如果 f (x) 是连续可微的,那
么系统的动态特性可以写成( f (0) 0 ):
x
f x
李雅普诺夫理论基础
第二章 Lyapunov理论基础
稳定性是控制系统关心的首要问题。
稳定性的定性描述:如果一个系统在靠近其期望工作点的某 处开始运动,且该系统以后将永远保持在此点附近运动, 那么就把该系统描述为稳定的。
例如:单摆,飞行器 李雅普诺夫的著作《动态稳定性的一般问题》,并于1892
年首次发表。 1. 线性化方法:从非线性系统的线性逼近的稳定性质得出非
4 稳定性与李雅普诺夫分析

4.3 李雅普诺夫第二法
一、基本思想
李雅普诺夫第二法又称为直接法。
它是在用能量观点分析稳定性的基础上建立起来的。 若系统平衡态渐近稳定,则系统经激励后,其储存的能量将随着 时间推移而衰减。当趋于平衡态时,其能量达到最小值。 反之,若平衡态不稳定,则系统将不断地从外界吸收能量,其储 存的能量将越来越大。 基于这样的观点,只要能找出一个能合理描述动态系统的n维 状态的某种形式的能量正性函数,通过考察该函数随时间推移是
例:设系统的状态空间表达式为
1 0 1 x x u 0 1 1 y 1 0 x
4.2 李雅普诺夫第一法
解:由A的特征方程:
det(I A) ( 1)( 1) 0
可得特征值λ1=-1, λ2=+1 故系统的状态不是渐近稳定的.
性的最主要方法,并得到了进一步研究和发展。
– 本章将详细介绍李雅普诺夫稳定性的定义,李雅
普诺夫第一法和第二法的理论。
4.1
李雅普诺夫稳定性定义
一、 平衡状态
令u = 0,系统的状态方程为
f ( x, t ), x Rn x
x(t0) = x0
若对所有的t,状态x满足 x为平衡状态,记为xe。 f(xe,t)= 0
4.3 李雅普诺夫第二法
二、预备知识
1、二次型标量函数v(x)
设x1,x2,…xn为n个变量,定义二次型标量函数为:
v( x ) x Px x1
T
x2
p11 p xn 21 pn1
p12
p22 pn 2
p1n x1 x p2 n 2 pnn xn
4.1
李雅普诺夫稳定性分析

第六章 李雅普诺夫稳定性分析在反馈控制系统的分析设计中,系统的稳定性是首先需要考虑的问题之一。
因为它关系到系统是否能正常工作。
经典控制理论中已经建立了劳斯判据、Huiwitz 稳定判据、Nquist 判据、对数判据、根轨迹判据等来判断线性定常系统的稳定性,但不适用于非线性和时变系统。
分析非线性系统稳定性及自振的描述函数法,则要求系统的线性部分具有良好的滤除谐波的性能;而相平面法则只适合于一阶、二阶非线性系统。
1892年俄国学者李雅普诺夫(Lyapunov )提出的稳定性理论是确定系统稳定性的更一般的理论,它采用状态向量来描述,不仅适用于单变量、线性、定常系统,还适用于多变量、非线性、时变系统。
§6-1 外部稳定性和内部稳定性系统的数学模型有输入输出描述(即外部描述)和状态空间描述(即内部描述),相应的稳定性便分为外部稳定性和内部稳定性。
一、外部稳定性1、定义(外部稳定性):若系统对所有有界输入引起的零状态响应的输出是有界的,则称该系统是外部稳定的。
(外部稳定性也称为BIBO (Bounded Input Bounded Output )稳定性) 说明:(1)所谓有界是指如果一个函数)(t h ,在时间区间],0[∞中,它的幅值不会增至无穷,即存在一个实常数k ,使得对于所有的[]∞∈0t ,恒有∞<≤k t h )(成立。
(2)所谓零状态响应,是指零初始状态时非零输入引起的响应。
2、系统外部稳定性判据线性定常连续系统∑),,(C B A 的传递函数矩阵为Cxy Bu Ax x=+=BUA sI X BU X A sI CX Y BU AX sX 1)()(--==-=+=B A sIC s G 1)()(--=当且仅当)(s G 极点都在s 的左半平面内时,系统才是外部稳定(或BIBO 稳定)的。
【例6.1.1】已知受控系统状态空间表达式为u x x ⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=121160 , []x y 10= 试分析系统的外部稳定性。
李雅普洛夫稳定性分析

或任意正实数 0 ,都可以找到另一个正实数 ( , t0 ) 或球
域 S( ) ,当初始状态 x0 满足 x0 xe ( , t0 ) 时,对由此出发
的X的运动轨迹有
lim
t
x
xe
,
则称平衡状态
xe 在李雅普诺
夫意义下是稳定的。
如果 与初始时刻 t0 无关,则称平衡状态是一致稳定的。
2 )对于给定系统,如果存在李氏函数,它不是唯一的。用 第二法判稳时,找到一个李氏函数就可以。
3 )李氏函数最简单形式是二次型 V ( x) xT Px ,P是正定实对 称方阵。
4.2 标量函数V(x)的符号性质 标量函数V(x):
1)正定性:当且仅当x=0时,才有 V (x) 0 ;对任意 非零X,恒有 V (x) 0,则 V ( x) 为正定。
2、内部稳定性:指系统在零输入条件下通过其内部状态变 化所定义的内部稳定性。状态稳定。
外部稳定性只适用于线性系统,内部稳定性不但适用于 线性系统,而且也适用于非线性系统。对于同一个线性系统, 只有在满足一定的条件下两种定义才具有等价性。
不管哪一种稳定性,稳定性是系统本身的一种特性,只 和系统本身的结构和参数有关,与输入-输出无关。
2)平衡状态——状态空间中满足 X&e f ( X e ,t) 0 属性的一 个状态。
3)受扰运动——自治系统因初始扰动X0引起的一类状态运动。 用X0u(t)表示。其呈现为状态空间中从X0出发的一条轨线。
2 李亚普洛夫稳定性定义
2.1 系统的平衡状态 2.2 状态向量范数 2.3 李雅普诺夫意义下稳定性定义(4种)
对非线性系统 X f (X ,t)
当f (X,t)为与X 同维的矢量函数,且对X 具有连续偏导数,则可将
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
克拉索夫斯基法(3/7)
V ( x ) [ f ( x ) f ( x )] f ( x ) f ( x ) x f ( x ) f ( x ) x x x f ( x) J ( x) f ( x) f ( x) J ( x) f ( x) ˆ ( x) f ( x) f ( x) J
克拉索夫斯基法(6/7)
例4-12 试确定如下非线性系统的平衡态的稳定性:
3x1 x2 f ( x) x 3 x x x 2 1 2
(t ) f ( x ) x
克拉索夫斯基法(2/7)
定理5-11 非线性定常连续系统的平衡态xe=0为渐近稳定的充 分条件为
ˆ ( x ) J ( x) J ( x) J
为负定的矩阵函数,且
V ( x) x x f ( x) f ( x)
为该系统的一个李雅普诺夫函数。
由于 V ( x) f ( x) f ( x)为系统的一个李雅普诺夫函数,即
f ( x) f ( x) 正定。
ˆ (x)负定,则 V ( x, t ) f ( x ) J ˆ ( x) f ( x )必为负定。 因此,若 J
所以 , 由定理 5-4 知 , 该非线性系统的平衡态 xe=0 是渐近稳 定的。
0 1 ˆ J ( x) J ( x) J ( x) 1 14
不是负定矩阵 , 故由克拉索夫斯基定理判别不出该系统 为渐近稳定的。
可见,该定理仅是一个充分条件判别定理。
克拉索夫斯基法(5/7)
若 V(x)=f(x)f(x) 正定 , 为 Lyapunov 函数 , 则说明只有当 x=0 时,才有V(x)=0,即原点是唯一的平衡态。 因此,只有原点是系统的由该定理判别出的渐 近稳定的平衡态一定是大范围渐近稳定的。 由克拉索夫斯基定理可知 ,系统的平衡态xe=0是渐近稳定 的条件是J(x)+J(x)为负定矩阵函数。 由负定矩阵的性质知 , 此时雅可比矩阵 J(x) 的对角线 元素恒取负值 , 因此向量函数 f(x) 的第 i 个分量必须包 含变量xi, 否则 , 就不能应用克拉索夫斯基定理判别该 系统的渐近稳定性。 将克拉索夫斯基定理推广到线性定常连续系统可知 :对称 矩阵A+A负定,则系统的原点是大范围渐近稳定的。
非线性系统的李雅普诺夫稳定性分析(2/4)
本节主要研究Lyapunov方法在非线性系统中的应用。
由于非线性系统千差万别,没有统一的描述,目前也不存在 统一的动力学分析方法,因此对其进行稳定性分析是困难 的。 对于非线性系统,李雅普诺夫第二法虽然可应用于非线性 系统的稳定性判定,但其只是一个充分条件,并没有给出建 立李雅普诺夫函数的一般方法。 而只能针对具体的非线性系统进行具体分析。
非线性系统的李雅普诺夫稳定性分析(4/4)
由于非线性系统的Lyapunov稳定性具有局部的性质,因此在 寻找Lyapunov函数时,须通过将系统的坐标轴平移,将系统的 所讨论的平衡态移至原点。
在讨论稳定性时,通常还要确定该局部渐近稳定的平衡 态的范围。 下面分别讨论如下3种非线性系统稳定性分析方法。 克拉索夫斯基法 变量梯度法
更进一步 , 当 ||x||→∞ 时, 有||f(x)||→∞, 则该平衡态是大范围 渐近稳定的。 证明 当非线性系统的李雅普诺夫函数为
V ( x) x x f ( x) f ( x)
则其导数为
(t ) f ( x ) x
V ( x) x x f ( x) f ( x)
阿依捷尔曼法
克拉索夫斯基法(1/7)
5.4.1 克拉索夫斯基法
设非线性定常连续系统的状态方程为
(t ) f ( x ) x
对该系统有如下假设: 1) 所讨论的平衡态xe=0; 2) f(x)对状态变量x是连续可微的,即存在雅可比矩阵
J ( x) f ( x) / x
对上述非线性系统,有如下判别渐近稳定性的克拉索夫斯 基定理。
Ch.5 李雅普诺夫稳定性 分析
目录(1/1)
目 录
概述 5.1 李雅普诺夫稳定性的定义 5.2 李雅普诺夫稳定性的基本定理
5.3 线性系统的稳定性分析
5.4 非线性系统的稳定性分析 5.5 Matlab问题
本章小结
非线性系统的李雅普诺夫稳定性分析(1/4)
5.4 非线性系统的李雅普诺夫稳定性分析
克拉索夫斯基法(4/7)
在应用克拉索夫斯基定理时,还应注意下面几点。 克拉索夫斯基定理只是渐近稳定的一个充分条件,不是必 要条件。 如对于渐近稳定的线性定常连续系统
x1 0 1 x1 x 2 7 x 2 2
由于
非线性系统的李雅普诺夫稳定性分析(3/4)
对非线性系统的稳定性分析问题,目前切实可行的途径为:
针对各类非线性系统的特性,分门别类地构造适宜的 Lyapunov函数。如,
通过特殊函数来构造李雅普诺夫函数的克拉索夫斯 基法(也叫雅克比矩阵法)
针对特殊函数的变量梯度构造Lyapunov函数的变量 梯度法(也叫舒尔茨-吉布生法) 针对特殊非线性系统进行线性近似处理的阿依捷尔 曼法(也叫线性近似法)、鲁立叶法等。
在线性系统中,如果平衡态是渐近稳定的,则系统的平衡态是 唯一的,且系统在状态空间中是大范围渐近稳定的。 对非线性系统则不然。 非线性系统可能存在多个局部渐近稳定的平衡态(吸 引子),同时还存在不稳定的平衡态(孤立子),稳定性的 情况远比线性系统来得复杂。 与线性系统稳定性分析相比,由于非线性系统的多样 性和复杂性,所以非线性系统稳定性分析也要复杂得 多。