第五章李雅普诺夫稳定性分析

合集下载

第5章李雅普诺夫稳定性分析

第5章李雅普诺夫稳定性分析
3
第5章 李雅普诺夫稳定性分析
第五章 李雅普诺夫稳定性分析
5.1 李雅普诺夫意义下的稳定性 5.2 李雅普诺夫第一法(间接法) 5.3 李雅普诺夫第二法(直接法) 5.4 线性定常系统的李雅普诺夫稳定性分析
4
第5章 李雅普诺夫稳定性分析
5.1 李雅普诺夫意义下的稳定性
1.自治系统
没有外输入作用时的系统称为自治系统,可 用如下系统状态方程来描述:
如果时变函数V(x,t)有一个正定函数作为下限, 也就是说,存在一个正定函数W(x) ,使得
V ( x ,t) W ( x), V (0,t) 0, t t0
则称时变函数V(x,t)在域S(域S包含状态空间的 原点)内是正定的。
24
第5章 李雅普诺夫稳定性分析
3. 负定函数:如果-V(x)是正定函数,则标量函数 V(x)为负定函数。
则称平衡状态xe在李雅普诺夫意义下是稳定的。
在上述稳定的定义中,实数δ通常与ε和初始时
刻t0都有关,如果δ只依赖于ε ,而和t0的选取无关,
则称平衡状态是一致稳定的。
9
第5章 李雅普诺夫稳定性分析
5. 渐近稳定性
若系统的平衡状态xe不仅具有李雅普诺夫意 义下的稳定性,且有
lim
t
||
x(t;
x0 ,
(s)
则 m(s) 为矩阵A的最小多项式。
注:换言之,矩阵A的最小多项式就是(sI-A)-1
中所有元素的最小公分母。
17
第5章 李雅普诺夫稳定性分析
例5-1(补充):判断下述线性定常系统的稳定性
0 0 0
x 0 0
0
x
0 0 1
解:1)系统矩阵A为奇异矩阵,故系统存在无穷

5李雅普诺夫稳定性分析.ppt

5李雅普诺夫稳定性分析.ppt
本章主要讨论李雅普诺夫稳定性分析,首先介绍了稳定性的定义,即系统受到外界干扰后仍能自动恢复平衡态的能力。进而阐述了李雅普诺夫稳定性的基本定理,为分析系统状态稳定性提供了理论基础。针对线性系统,虽然经典控制理论中的劳斯-赫尔维茨判据和奈奎斯特判据等关系,未涉及系统内部状态的稳定性。因此,李雅普诺夫理论在解决复杂系统,如非线性或时变系统的稳定性问题时具有更广泛的应用。其中,李雅普诺夫第二法通过定义李雅普诺夫函数来分析判别稳定性,无需解方程即可直接判断,为稳定性分析提供了便捷途径。此外,本章还介绍了Matlab在李亚普诺夫稳定性问题中的计算与程序设计,为实际应用提供了有力支持。

第五章 李雅普诺夫稳定性分析4.8

第五章 李雅普诺夫稳定性分析4.8

二、非线性系统的稳定性
1、非线性系统线性化 设系统的状态方程为:x f ( x, t )
xe 为平衡状态;f ( x, t ) 为与 x 同维的矢量函数,并且对 x
具有连续的偏导数。
将非线性矢量函数 f ( x, t ) 在 xe 邻域内展开成泰勒级数:
f x ( x xe ) R x x
塞尔维斯特(Sylvester)定理: V x xT Px
为正定的充要条件是P的所有顺序主子行列式都
是正的。如果P的所有主子行列式为非负的(其 中有的为零),那么V(x)为半正定的。 如果V(x)是正定的(半正定的),则-V(x)将是负定 的 (半负定的)。
例5.2.3
证明下列二次型函数是正定的。
图5.1(a)、(b)、(c)分别表示平衡状态为稳定、 渐近稳定和不稳定时初始扰动所引起的典型轨迹。
5.2 李雅普诺夫稳定性理论
5.2.1 李雅普诺夫第一方法
(间接法,通过系统状态方程的解来判定系统的稳定性。)
一、线性系统的稳定性
内部稳定 (平衡状态xe=0渐进稳定) BIBO稳定 系统矩阵A的所有特征值 均具有负实部 传递函数的所有极点均位 于s的左半平面
一个因果系统,如果对于任意一个有界输入
u (t ) 1 , t (t0 , )
对应的输出均有界
y (t ) 2 , t (t0 , )
则称该系统为外部稳定。 线性定常连续系统,BIBO稳定的充分必要条件为 其传递函数矩阵G(s)的所有极点都具有负实部。
5.1 几个稳定性概念
p11 p 21 P p n1
于是有:
P 为权矩阵(常取对称矩阵)。 式中,x T 为 x 的转置,

第5章 “控制系统的李雅普诺夫稳定性分析”练习题

第5章 “控制系统的李雅普诺夫稳定性分析”练习题

第5章 “控制系统的李雅普诺夫稳定性分析”练习题及答案5.1 判断下列函数的正定性1) 2221231213()2322V x x x x x x x =++-+x 2) 222123121323()82822V x x x x x x x x x =++-+-x 3) 22131223()2V x x x x x x =+-+x解1) T T 211()130101V A -⎡⎤⎢⎥==-⎢⎥⎢⎥⎣⎦x x x x x , 因为顺序主子式2120,50,13->=>- 2111302011--=> 所以0>A ,()V x 为正定函数。

2) T T 841()421111V -⎡⎤⎢⎥==--⎢⎥⎢⎥-⎣⎦x x Ax x x , 因为主子式8481218,2,10,0,70,10,421111-->==>=>--841421164421680111---=++---<- 所以A 不定,()V x 为不定函数。

3) T T 1212110()1001V -⎡⎤⎢⎥==-⎢⎥⎢⎥⎣⎦x x Ax x x , 因为顺序主子式1110,10,1->=-<- 121211011001041--=--<所以A 为不定矩阵,()V x 为不定函数。

5.2 用李雅普诺夫第一方法判定下列系统在平衡状态的稳定性。

2211211222212212()()x x x x x x x x x x x x =-+++=--++解解方程组 22121122212212()0()0x x x x x x x x x x ⎧-+++=⎨--++=⎩只有一个实孤立平衡点(0,0)。

在(0,0)处将系统近似线性化,得**1111x x -⎡⎤=⎢⎥--⎣⎦,由于原系统为定常系统,且矩阵1111-⎡⎤⎢⎥--⎣⎦的特征根1s i =-±均具有负实部,于是根定理5.3可知系统在原点(0,0)附近一致渐近稳定。

第五章李雅普诺夫稳定性分析

第五章李雅普诺夫稳定性分析
即 x e = f (xe , t) = 0 。
从定义可知,平衡状态的各分量相对于时间不再发生变化。
线性定常系统:x = Ax
A非奇异:Axe = 0 xe = 0 是唯一零解 A奇异:Axe = 0 xe 有无穷多个解
非线性系统:x = f (x,t)
x = f (xe , t) = 0 xe 可能有一个也可能有多个平衡状态
5-2 李雅普诺夫稳定性的基本概念
一、 平衡状态
系统x = f (x,t) ,X为n 维状态向量,且显含时间变量t,x = f (x,t)为线性或
非线性、定常或时变的n
维向量函数,假定方程的解为
x(t;
x
0
,
t 0
)
,式中
x
0
和 t0 分别为初始状态和初始时刻。
定义:系统 x = f (x,t) 的平衡状态是使x = 0的那一类状态,并用 xe 表示,
1 2
Mx22

若用标量函数 V (x) 表示系统的能量。则
V
(x)
=
1 2
Kx12
+
1 2
Mx22
V (x) = Kx1x1 + Mx2x2
=
Kx1x2
+ Mx2 (−
K M
x1

f M
x2 )
= − fx22 0
结论:坐标原点处的平衡状态是渐近稳定的。
一、标量函数及其定号性
1.标量函数 V (x) 的符号和性质
+ ... +
a1
+
a0
=
0
如何判断系统的渐近稳定性?
5-4 李雅普诺夫第二方法
李雅普诺夫第二方法,建立在用能量观点分析稳定性的基础上: 若系统的某个平衡状态是渐近稳定的,则系统储存的能量将随时

第五章 控制系统的李雅普诺夫稳定性分析汇总

第五章 控制系统的李雅普诺夫稳定性分析汇总
则状态方程的解为: x(t ) e At x(0) ( R1e1t ... Rnent ) x(0)
Re(i ) 0, (i 1, 2,..., n) lim x(t ) 0, 系统渐近稳定。
t
如果只有一个(或一对)特征值的实部等于0,其余特征值实 部均小于0,则系统仅仅可能是李亚普诺夫意义下的稳定性。
线性定常系统的特征值判据: 系统 x Ax 渐近稳定的充要条件是A的特征值均具有负实 部,即:Re( i ) 0 (i 1,2,, n) 证明:假定A有相异特征值 1 ,..., n 根据凯莱哈密顿定理:矩阵指数eAt为 e1t ,..., ent的线性组合
e At R1e1t ... Rn ent
x xe ( x1 xe1 ) 2 ... ( xn xen ) 2
2
2
2
由范数的定义可知,向量 ( x xe ) 的范数可写成
通常又将 x xe 称为 围之内时,则记为
x 与 xe 的距离。当向量 ( x xe ) 的范数限定在某一范
x xe
0
xe
与经典控制理论的区别: 1. 2. 3. 4. 5. 6. 平衡点/BIBO; 状态稳定/输出稳定; 经典控制的稳定大致对应于现代控制的渐进稳定; 即便输出稳定,状态可能不稳定; 李雅普诺夫意义下的稳定在经典中是不稳定的; 经典控制不需要一致性、全局性概念。
5.2 李雅普诺夫稳定性理论 一、李雅普诺夫第一方法 李雅普诺夫第一法的基本思想是利用状态方程解的性质来 判断系统的稳定性。通常又称为间接法。它适用于线性定常系 统以及线性时变系统和非线性系统可以线性化的情况。
意义:当系统运动到xe点时,系统状态各分量将维持平衡, 不再随时间变化。 平衡点:由系统状态在状态空间中所确定的点 求法:1、线性定常系统

第5章“控制系统的李雅普诺夫稳定性分析”练习题及答案.doc

第5章“控制系统的李雅普诺夫稳定性分析”练习题及答案.doc

第5章 “控制系统的李雅普诺夫稳定性分析”练习题及答案5.1 判断下列函数的正定性1) 2221231213()2322V x x x x x x x =++-+x 2) 222123121323()82822V x x x x x x x x x =++-+-x 3) 22131223()2V x x x x x x =+-+x解1) T T 211()130101V A -⎡⎤⎢⎥==-⎢⎥⎢⎥⎣⎦x x x x x , 因为顺序主子式2120,50,13->=>- 2111302011--=> 所以0>A ,()V x 为正定函数。

2) T T 841()421111V -⎡⎤⎢⎥==--⎢⎥⎢⎥-⎣⎦x x Ax x x , 因为主子式8481218,2,10,0,70,10,421111-->==>=>--841421164421680111---=++---<- 所以A 不定,()V x 为不定函数。

3) T T 1212110()1001V -⎡⎤⎢⎥==-⎢⎥⎢⎥⎣⎦x x Ax x x , 因为顺序主子式1110,10,1->=-<- 121211011001041--=--<所以A 为不定矩阵,()V x 为不定函数。

5.2 用李雅普诺夫第一方法判定下列系统在平衡状态的稳定性。

2211211222212212()()x x x x x x x x x x x x =-+++=--++解解方程组 22121122212212()0()0x x x x x x x x x x ⎧-+++=⎨--++=⎩只有一个实孤立平衡点(0,0)。

在(0,0)处将系统近似线性化,得**1111x x -⎡⎤=⎢⎥--⎣⎦,由于原系统为定常系统,且矩阵1111-⎡⎤⎢⎥--⎣⎦的特征根1s i =-±均具有负实部,于是根定理5.3可知系统在原点(0,0)附近一致渐近稳定。

《自动控制原理》第五章:系统稳定性

《自动控制原理》第五章:系统稳定性

5.2 稳定的条件
当σi和λi均为负数,即特征根的 σi和λi均为负数, 均为负数 实部为负数,系统是稳定的; 实部为负数,系统是稳定的; 或极点均在左平面。 或极点均在左平面。
5.3 代数稳定性判据
定常线性系统稳定的充要条件 定常线性系统稳定的充要条件是特征方程的根具有负 充要条件是特征方程的根具有负 实部。因此,判别其稳定性,要解系统特征方程的根。为 实部。因此,判别其稳定性,要解系统特征方程的根。 避开对特征方程的直接求解,可讨论特征根的分布, 避开对特征方程的直接求解,可讨论特征根的分布,看其 是否全部具有负实部,并以此来判别系统的稳定性,这样 是否全部具有负实部,并以此来判别系统的稳定性, 也就产生了一系列稳定性判据。 也就产生了一系列稳定性判据。 其中最主要是E.J.Routh(1877 )h和Hurwitz( 其中最主要是E.J.Routh(1877年)h和Hurwitz(1895 E.J.Routh(1877年 年)分别提出的代数判据。 分别提出的代数判据 代数判据。
习题讲解: 习题讲解:
µ
G1
Q21
G1
h2
k1 k1 G1 ( s ) = , G1 ( s ) = (T1s + 1) (T1s + 1) k1k 2 G0 ( s ) = (T1s + 1)(T2 s + 1)
kp
G0 ( s ) G(s) = 1 + G0 ( s ) K p
5.4 Nyquist稳定性判据 Nyquist稳定性判据
系统稳定的条件? 系统稳定的条件?
5.2 稳定的条件
d n y (t ) d ( n −1) y (t ) dy (t ) 线性系统微分方程: 线性系统微分方程: n a + an −1 + L + a1 + a0 y (t ) n ( n −1) dt dt dt d m x(t ) d ( m −1) x(t ) dx(t ) = bm + bm−1 + L + b1 + b0 x(t ) m ( m −1) dt dt dt d n y (t ) d ( n −1) y (t ) dy (t ) + a( n −1) + L + a1 + a0 y (t ) = 0 齐次微分方程: 齐次微分方程: an n ( n −1) dt dt dt an s n + an −1s n −1 + L + a1s + a0 = 0 设系统k 设系统k个实根
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 李雅普诺夫稳定性分析在反馈控制系统的分析设计中,系统的稳定性是首先需要考虑的问题之一。

因为它关系到系统是否能正常工作。

经典控制理论中已经建立了劳斯判据、Huiwitz 稳定判据、Nquist 判据、对数判据、根轨迹判据等来判断线性定常系统的稳定性,但不适用于非线性和时变系统。

分析非线性系统稳定性及自振的描述函数法,则要求系统的线性部分具有良好的滤除谐波的性能;而相平面法则只适合于一阶、二阶非线性系统。

1892年俄国学者李雅普诺夫(Lyapunov )提出的稳定性理论是确定系统稳定性的更一般的理论,它采用状态向量来描述,不仅适用于单变量、线性、定常系统,还适用于多变量、非线性、时变系统。

§6-1 外部稳定性和内部稳定性系统的数学模型有输入输出描述(即外部描述)和状态空间描述(即内部描述),相应的稳定性便分为外部稳定性和内部稳定性。

一、外部稳定性1、定义(外部稳定性):若系统对所有有界输入引起的零状态响应的输出是有界的,则称该系统是外部稳定的。

(外部稳定性也称为BIBO (Bounded Input Bounded Output )稳定性) 说明:(1)所谓有界是指如果一个函数)(t h ,在时间区间],0[∞中,它的幅值不会增至无穷,即存在一个实常数k ,使得对于所有的[]∞∈0t ,恒有∞<≤k t h )(成立。

(2)所谓零状态响应,是指零初始状态时非零输入引起的响应。

2、系统外部稳定性判据线性定常连续系统∑),,(C B A 的传递函数矩阵为Cxy Bu Ax x=+=BUA sI X BU X A sI CX Y BU AX sX 1)()(--==-=+=B A sIC s G 1)()(--=当且仅当)(s G 极点都在s 的左半平面内时,系统才是外部稳定(或BIBO 稳定)的。

【例6.1.1】已知受控系统状态空间表达式为u x x ⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=121160 , []x y 10= 试分析系统的外部稳定性。

解:系统为SISO 系统,传递函数为B A sIC s G 1)()(--=[]⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡+--=-12116101s s )3)(2(2+--=s s s31+=s 由于传递函数的极点位于s 左平面,故系统是外部稳定的。

二、内部稳定性对于线性定常系统 Bu Ax x+= , 00)(x t x =Cx y =如果外部输入0)(=t u ,初始条件0x 为任意,且由0x 引起的零输入响应为00),()(x t t t x φ=满足0),(lim 00=∞→x t t t φ则称系统是内部稳定的,或称为系统是渐近稳定的。

说 明:线性定常系统的渐近稳定与经典控制理论中的稳定性一致。

【例6.1.2】已知受控系统状态空间表达式为u x x ⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=121160 , []x y 10= 试分析系统的内部稳定性。

解:该系统为线性定常系统,其特征方程为:0)3)(2(6)1(=+-=-+=-λλλλλA I于是系统的特征值为21=λ,32-=λ,故系统不是内部稳定(渐近稳定)的。

三、内部稳定性与外部稳定性的关系1、若系统是内部稳定(渐近稳定)的,则一定是外部稳定(BIBO 稳定)的。

2、若系统是外部稳定(BIBO 稳定)的,且又是可控可观测的,则系统是内部稳定(渐近稳定)的。

此时内部稳定和外部稳定是等价的。

§6-2 李雅普诺夫稳定性的基本概念一、自治系统没有外界输入作用的系统叫自治系统。

自治系统可用如下的显含时间t 的状态方程来描述),(t x f x = , 00)(x t x =,0t t ≥………………………… (6-1)其中x 为n 维状态向量。

),(t x f 为线性或非线性、定常或时变的n 维向量函数。

假定方程的解为),;(00t x t x ,式中0x 和0t 分别为初始状态向量和初始时刻,那么初始条件0x 必满足0000),;(x t x t x =。

如果系统为线性系统,则(6-1)方程中的),(t x f 为x 的线性向量函数,或按习惯表示为:x t A x)(= , 00)(x t x =,0t t ≥………………………… (6-2)二、平衡状态设控制系统的齐次状态方程为:),(t x f x = , 00)(x t x =,0t t ≥对于所有t ,如果存在某个状态e x ,满足:0),(==t x f xe e则称e x 为系统的一个平衡点或平衡状态。

平衡状态的各分量相对时间不再发生变化。

若已知系统状态方程,令0=x所求得的解x ,便是平衡状态。

在大多数情况下,0=e x (状态空间原点)为系统的一个平衡状态。

当然,系统也可以有非零平衡状态。

如果系统的平衡状态在状态空间中表现为彼此分隔的孤立点,则称其为孤立平衡状态。

对于孤立平衡状态,总是可以通过移动坐标系而将其转换为状态空间的原点,所以在下面的讨论中,假定原点即0=e x 为平衡状态。

所谓系统运动的稳定性,就是研究其平衡状态的稳定性,也即偏离平衡状态的受扰运动,能否只依靠系统内部的结构因素而返回到平衡状态,或者限制在平衡状态的附近。

线性定常系统Ax x= ,其平衡状态满足0=e Ax ,只要A 非奇异,系统只有唯一的零解,即存在一个位于状态空间原点的平衡状态;当A 为奇异矩阵时,0=e Ax 有无数解,也就是系统有无数个平衡状态。

对于非线性系统,0),(=t x f e 的解可能有多个,由系统状态方程决定。

三、李雅普诺夫意义下稳定设系统初始状态0x 位于以平衡状态e x 为球心、半径为δ的闭球域)(δS 内,即 ),(00t x x e εδ≤- 0t t =若能使系统方程的解),;(00t x t x 在∞→t 的过程中,都位于以e x 为球心、任意规定的半径为ε的闭球域)(εS 内,即ε≤-e x t x t x ),;(00 0t t ≥则称该e x 是稳定的,通常称e x 为李雅普诺夫意义下稳定的平衡状态。

以二维系统为例,上述定义的平面几何表示如图6-1所示。

式中•称为向量的范数,其几何意义是空间距离的尺度。

如e x x -0表示状态空间中0x 至e x 点之间的距离的尺度,其数学表达式为2021100)()(ne n e e x x x x x x -++-=-在上述稳定性的定义中,如果δ只依赖于ε而和初始时刻0t 的选取无关,则称平衡状态e x 是一致稳定的。

对于定常系统,e x 的稳定等价于一致稳定。

但对于时变系统,e x 的稳定并不意味着其为一致稳定。

要注意到,按李雅普诺夫意义下的稳定性定义,当系统作不衰减的振荡运动时,将在平面描绘出一条封闭曲线,但只要不超过)(εS ,则认为稳定,这同经典控制理论中线性定常系统稳定性的定义是有差异的。

四、渐近稳定0x - 初始状态e x - 平衡状态图6-1 二维空间李雅普诺夫意义下稳定性的几何解释示意图设e x 是系统),(t x f x= , 00)(x t x =,0t t ≥的一个孤立平衡状态,如果 (1)e x 是李雅普诺夫意义下稳定的; (2)0),;(lim00→-∞→e t x t x t x则称此平衡状态是渐近稳定的。

实际上,渐近稳定即为工程意义下的稳定,也就是经典控制理论中所讨论的稳定性。

当δ与0t 无关时,称平衡状态e x 是一致渐近稳定的。

五、大范围(全局)渐近稳定当初始条件扩展到整个状态空间,且具有渐近稳定性时,称此平衡状态e x 是大范围渐近稳定的。

对于严格线性系统,如果它是渐近稳定的,必具有大范围渐近稳定性,这是因为线性系统稳定性与初始条件的大小无关。

一般非线性系统的稳定性与初始条件的大小密切相关,其δ总是有限的,故通常只能在小范围内渐近稳定。

当δ与0t 无关时,称平衡状态e x 是大范围一致渐近稳定。

六、不稳定不管把域)(δS 取得多么小,也不管把域)(εS 取得如何的大,只要在)(δS 内存在一个非零初始状态0x ,使得有0x 出发的运动轨迹超出域)(εS 以外,则称平衡状态e x 是不稳定的。

线性系统的平衡状态不稳定,表征系统不稳定。

非线性系统的平衡状态不稳定,只说明存在局部发散的轨迹,至于是否趋于无穷远,要看)(εS 域外是否存在其它平衡状态,若存在,如有极限环,则系统仍是李雅普诺夫意义下稳定的。

下面介绍李雅普诺夫理论中判断系统稳定性的方法。

§6-3 李雅普诺夫稳定性判别方法0x - 初始状态e x - 平衡状态图6-2 二维空间渐近稳定性的几何解释示意图一、李雅普诺夫第一法(间接法)这是利用状态方程解的特性来判别系统稳定性的方法,它适用于线性定常、线性时变以及非线性函数可线性化的情况。

由于本章主要研究线性定常系统,所以在此仅介绍线性定常系统的特征值判据。

线性定常系统的特征值判据:对于线性定常系统Ax x= ,0)0(x x =,0≥t 有 (1)系统的平衡状态是在李雅普诺夫意义下稳定的充分必要条件是,A 的所有特征值均具有非正(负或零)实部,且具有零实部的特征值为A 的最小多项式的单根。

(2)系统的惟一平衡状态0=e x 是渐近稳定的充分必要条件是,A 的所有特征值均具有负实部。

二、李雅普诺夫第二法(直接法)根据古典力学中的振动现象,若系统能量(含动能与位能)随时间推移而衰减,系统迟早回到达平衡状态,但要找到实际系统的能量函数表达式并非易事。

李雅普诺夫提出,可虚构一个能量函数(后来被称为李雅普诺夫函数),一般它与n x x x ,,,21 及t 有关,记为),(t x V 。

若不显含t ,则记为)(x V 。

它是一个标量函数,考虑到能量函数总是大于零,故为正定函数。

能量衰减特性用),(t x V或)(x V 表示。

李雅普诺夫第二法利用V 及V的符号特征,直接对平衡状态稳定性作出判断,无需求出系统状态方程的解,故称直接法。

用此方法解决了一些用其它稳定性判据难以解决的非线性系统的稳定性问题,遗憾的是对一般非线性系统仍未形成构造李雅普诺夫函数的通用方法。

对于线性系统,通常用二次型函数Px x T 作为李雅普诺夫函数。

1、标量函数)(x V 符号性质的几个定义(1)正定性标量函数)(x V 在域s 中对所有非零状态(0≠x )有0)(>x V 且0)0(=V ,则称)(x V 在域s 内正定。

如2221)(x x x V +=是正定的。

0x - 初始状态图6-3 二维空间不稳定的几何解释示意图(2)负定性标量函数)(x V 在域s 中对所有非零状态(0≠x )有0)(<x V 且0)0(=V ,则称)(x V 在域s 内负定。

如)()(2221x x x V +-=是正定的。

相关文档
最新文档