第4章 李雅普诺夫稳定性分析

合集下载

李雅普诺夫稳定性分析

李雅普诺夫稳定性分析

⑥ V(x)函数只表示了平衡状态附近的某领域内的局部 运动稳定状况。不能提供域外的运动信息。 ⑦ V(x)的构造需要较多技巧,可通过计算机来完成, 人力难以估测。因此,此方法常用于难以判定的复 杂问题。例如高阶时变非线性系统。
李雅普诺夫稳定性在线性系统中的应用
线性系统中的应用

线性连续定常系统稳定性分析 线性离散定常系统稳定性分析 线性连续时变系统稳定性分析 线性离散时变系统稳定性分析

V ( x) 0,V ( x) 0,V ( x) 0
李雅普诺夫函数讨论
⑤ V ( x) 0 V ( x) 0 V ( x) 0


能量的趋近速度是负的,所以能量最 终为0,趋向于原点,系统是渐进稳 定的。 能量最终为可能0,趋向于原点,也 有可能停止在ε内的某处。 能量是递增的,因此是不稳定的。

李雅普诺夫稳定性

上述定理的标量函数V(X,t)称为李亚普诺夫函数. 李亚普诺夫稳定性定理是判定系统稳定的充分条件, 但非必要条件。 一般李亚普诺夫函数对某个系统来说不止一个,即不 唯一。
状态 系统 能量函数
寻找的

系统 稳定
李雅普诺夫稳定性

示例有一个非线性状态方程,Xe=0为一个平衡状态
是否就一定不稳定呢?是否标量函数不合适呢?需要另外判断。 从李雅普诺夫第一方 法来看,解特征方程
s 1 1 2 sI A 1 s 1 s 2s 2 0


李雅普诺夫函数讨论
李雅普诺夫第二方法关键在于寻找一个满足条件的李 雅普诺夫函数。 ① V(x)是满足稳定性盘踞条件的一个正定标量函数,具 有连续一阶偏导。 ② 对于一个给定系统,如果V(x)能找到,那么通常是非 唯一的,但是不影响结论一致性。 ③ V(x)最简形式是二次型,但未必都是。 ④ 如果V(x)是标准二次型,V(x)可表示为从原点到x的 距离。V (x) 表征了系统相对原点运动的速度。

第四章(稳定性与李雅普诺夫方法)

第四章(稳定性与李雅普诺夫方法)

1、构造Liaponov 函数没有确定的方法,要求一定的技巧,一般 用于非线性系统或时变系统; 2、必须是稳定性判据的标量函数,且有一阶连续偏导; 3、非唯一但不影响结论的正确性; 4、最简单的形式为二次型。
§4.4 Liaponov 方法在系统中的应用
一、线性定常连续系统渐近稳定判据 1、判据 的平衡状态xe =0 大范围渐进稳定充要条件是: 对于任意给定的正定实对称矩阵Q,存在正定的实对称矩阵P,满足 Liaponov方程: T
1、 Liyaponov意义下的稳定
0, ( , t 0 ) 0, s.t. if || x 0 x e || ( , t 0 ) || (t , x 0 , t 0 ) x e || then其解 (t 0 t )
称平衡状态xe为 Liyaponov意义下的稳定,简称稳定。
V (x) x T Px [ x1
x2
如果 pij =
p ji ,则称P
为实对称阵。例如
1 1 0 P 1 1 0 0 0 1
P为实对称阵,存在正交阵T,使当
V ( x) x Px x T PTx x T
T T T T 1
X T X
___
2 1 2 2 1 2 2 1 2 2 2 1 2
2
1
2
[例4-3]
判别下列各函数的符号性质.
(1)设 x x1
x2
x3
T
标量函数为
2 V ( x) ( x1 x2 )2 x3
因为有V(0)=0,而且对非零x,例如 x 所以V(x)为半正定(或非负定)的. (2)设
a a 0
设V(x)为由n维矢量x所定义的标量函数,x∈Ω,且x=0处,恒有 V(x)=0。对所有在域Ω中的任何非零矢量x,如果成立 ①V(x)>0,则称V(x)为正定的.例如,V (x) x 2x V ( x) ( x x ) ②V(x)≥0,则称V(x)为半正定(或非负定)的.例如, ③V(x)<0,则称V(x)为负定的.例如,V (x) (x 2x ) ④V(x)≤0,则称V(x)为半负定的.例如,V ( x) ( x x ) ⑤V(x)>0或V(x)<0,则称V(x)为不定的.例如, V ( x) x x

04第四章-李雅普诺夫稳定性理论

04第四章-李雅普诺夫稳定性理论
平衡状态— —又称一致李氏稳定。
几何意义:
当t t0时,系统受扰动,平衡状态受破坏,产生对应初始状态 x0,当t t0后, 运动状态x(t)会发生变化。
若无论多么小球域S( ),总存在一个球域S( ),当
x0 S( )时, x(t)轨线不会超出S( ),则平衡点xe为
Lyapunov意义下稳定。 实际上,工程中的李氏 稳定是临界不稳定
说明:
J P1AP A~J 考察eJt即可看出 e At的有界性
例:
0 0 J1 0 -1
李氏稳定
0 1 J2 0 0
不稳定
0 0 J3 0 0
李氏稳定
0 0 A J1 0 -1
e At
1
0
0
e-t
x(t)
e At x0
1 0
0 e-t
x10
x20
x10
e-t x20
f1
xn

x x xe ,
A
f xT
f 2
xe
x1
f2 x2
f2
xn
xe
f
n
fn
fn
x1 x2 xn

.
x
x
( xe常数)
判定法:
.
x Ax
(1) A的所有特征值均有负实部,则xe是渐近稳定的, 与R(x)无关. (2) A的特征值至少有一个有正实部,则xe是不稳定的, 与R(x)无关. (3) A的特征值至少有一个实部为0,则xe的稳定性 与R( x)有关, 不能由A来决定.
P为实对称矩阵 , pij p ji
第二节 李雅普诺夫间接法
李氏间接法利用系统矩阵A的特征值 1, 2,, n 或者说系统极点来判断系统稳定性。

第4章 李雅普诺夫稳定性分析

第4章 李雅普诺夫稳定性分析

这表明, 当且仅当‖eAt‖≤ k <∞ 时,对任给的一个实数ε > 0,都对应存在和初始时 刻无关的一个实数 δ(ε)= ε /k,使得由满足不等式 ||x0 — xe|| ≤ δ(ε) (4-391) 的任一初态x0出发的受扰运动都满足不等式 xt; x0 ,0 xe e At x0 xe k , t 0 (4 392)

S ( ) x0

xe

xe

xe
x1
x1
x1
(a) 李雅普诺夫意义下的稳定性
(b) 渐近稳定性
(c) 不稳定性
4.2 李雅普诺夫第一法(间接法)
间 接 法:利用状态方程解的特性来判断系统稳定性的方法。 适应范围:线性定常系统、线性时变系统、非线性函数可线性化的系统。
定理4-9 对于线性定常系统
f ( x, t ) x
(4 382)
式中,x为n维状态向量,且显含时间变量t;f(x,t)为线性或非线性、定常或 时变的n维函数,其展开式为
i x
f
i
( x1 , x2 ,...,xn , t ); i 1,2,...,n
(4 383)
假定方程的解为x(t;x0,t0),式中x0和t0分别为初始状态向量和初始时刻, 则初始条件x0必满足 x(t0 ;x0,t0) = x0 。 1 平衡状态 李雅普诺夫关于稳定性的研究均针对平衡状态而言。对于所有t,满足
t e
i
Hale Waihona Puke i t j i tˆ ) A , i ji i ( A i
(4 394)
2)结论2)证明
由式(4-390)可知,当且仅当‖eAt‖ 对一切 t≥0为有界,且当t→0时 ‖eAt‖ →0,零平衡状态 xe= 0 为渐近稳定。如上所证,当且仅当 A 的所有特征 值均具有负或零实部时,‖eÂt‖有界。又根据式(4-393)和式(4-394)可知 当且 t j t 0 t→0时‖eAt‖→0,这就等价于A的特征值均具 仅当t→∞时 t e ,可保证 有负实部。结论2)证毕。

现代控制第四章

现代控制第四章

试确定系统平衡状态,以及在平衡状态附近的稳定性。
x1 x2 0 x1 0 解: 1)找xe点 2 x2 a(1 x1 )x2 x1 0 x2 0 则xe 0 0
T
第四章 稳定性与李雅普诺夫方法
x1 x2 2) 线性化 x2 x1 ax2 0 1 则 A 1 a
第四章 稳定性与李雅普诺夫方法
4. 不稳定
如果对于某个实数ε 0和任一实数δ 0, 不管δ这个实数多么小,由S(δ)内出发的状态 轨线,至少有一个轨线超过S(ε),则称这种平 衡状态xe不稳定. 几何意义:(P160,fig.4 3)
练习:
第四章 稳定性与李雅普诺夫方法
图(a)、(b)、(c)分别表示平衡状态为稳定、 渐近稳定和不稳定时初始扰动所引起的典型轨迹。
第四章 稳定性与李雅普诺夫方法
2. 渐近稳定
如果平衡状态xe 是稳定的,而且当t无限增长时, 轨迹不仅不超出S(ε),而且最终收敛于xe,则称这 种平衡状态xe渐近稳定. 几何意义:(P160,fig.4 2)
第四章 稳定性与李雅普诺夫方法
3. 大范围渐近稳定
如果平衡状态xe 是稳定的,而且从状态空间中 所有初始状态出发的轨迹都具有渐近稳定性,则称 这种平衡状态xe大范围渐近稳定.
第四章 稳定性与李雅普诺夫方法
第四章
稳定性与李氏方法
§4-1 李雅普诺夫关于稳定性的定义
一. 平衡状态(xe )
设所研究系统的齐次状态方程为 X(t) f(x, t) 若对所有t,状态x满足X(t) 0,则称该状态x 为平衡状态,记为xe.故有下式成立: f(xe , 0 t)
第四章 稳定性与李雅普诺夫方法

第4章李雅普诺夫稳定性分析

第4章李雅普诺夫稳定性分析

第4章李雅普诺夫稳定性分析李雅普诺夫稳定性分析是数学分析中的一个重要概念,它用于判断非线性系统在其中一点附近的稳定性。

李雅普诺夫稳定性分析方法最初由俄国数学家李雅普诺夫提出,广泛应用于控制论、微分方程和动力系统等领域。

在进行李雅普诺夫稳定性分析时,首先需要确定非线性系统的平衡点。

平衡点是指系统在其中一时刻的状态不再发生变化,即各个状态变量的导数为零。

在平衡点附近,可以通过线性化的方法来近似非线性系统,即将非线性系统转化为线性系统进行分析。

接下来,利用李雅普诺夫稳定性定理可以判断线性化系统的稳定性。

根据定理的不同形式,可以分为不动点稳定性定理和周期解稳定性定理。

不动点稳定性定理是指当线性化系统的特征根都具有负的实部时,非线性系统在平衡点附近是稳定的;而当至少存在一个特征根具有正的实部时,非线性系统在平衡点附近是不稳定的。

这个定理对于线性化系统为一阶系统或者线性化系统的特征根为复数的情况适用。

周期解稳定性定理是指当线性化系统的所有特征根满足一定条件时,非线性系统在周期解附近是稳定的。

这个定理对于封闭曲线解以及周期解的情况适用。

当线性化系统无法满足上述定理时,可以使用李雅普诺夫直接法来判断非线性系统的稳定性。

李雅普诺夫直接法是基于李雅普诺夫函数的概念,通过构造合适的李雅普诺夫函数来判断非线性系统的稳定性。

李雅普诺夫函数是满足以下条件的函数:1)李雅普诺夫函数的导数在其中一区域内是负定的,即导数的每个分量都小于或等于零;2)在平衡点附近,李雅普诺夫函数取得最小值。

通过构造合适的李雅普诺夫函数,并验证满足上述条件,就可以判断非线性系统的稳定性。

如果李雅普诺夫函数的导数在整个状态空间都是负定的,则非线性系统是全局稳定的;如果李雅普诺夫函数的导数在一些有限的状态空间内是负定的,则非线性系统是局部稳定的。

总之,李雅普诺夫稳定性分析是一种有力的工具,可以用于判断非线性系统的稳定性。

不过需要注意的是,李雅普诺夫稳定性分析方法仅适用于平衡点附近的稳定性分析,对于非线性系统的全局稳定性分析还需要其他的方法。

第4章 系统稳定性

第4章 系统稳定性
第4章 系统稳定性及其李雅普诺夫稳定 章 Chapter 4 System Stability & Lyapunov Stability
4.1 稳定性一般概念 4.1 Concept of the System Stability
对于一个实际的控制系统, 对于一个实际的控制系统,其工作的稳定性无疑是一个极其 重要的问题, 重要的问题,因为一个不稳定的系统在实际应用中是很难有效地 发挥作用的。从直观上看, 发挥作用的。从直观上看,系统的稳定性就是一个处于稳态的系 在某一干扰信号的作用下,其状态偏离了原有平衡位置, 统,在某一干扰信号的作用下,其状态偏离了原有平衡位置,如 果该系统是稳定的,那么当干扰取消后有限的时间内, 果该系统是稳定的,那么当干扰取消后有限的时间内,系统会在 自身作用下回到平衡状态;反之若系统不稳定, 自身作用下回到平衡状态;反之若系统不稳定,则系统永远不会 回到原来的平衡位置。 回到原来的平衡位置。
(4 − 2)
式中X(t)为n维状态向量,f(X,t)是状态向量 和显式时间 的n 为 维状态向量 维状态向量, 是状态向量X和显式时间 式中 是状态向量 和显式时间t的 维向量函数。 不一定是线性定常的。 维向量函数。 f(X,t)不一定是线性定常的。如果对于 ,状态 e总 不一定是线性定常的 如果对于t,状态X 满足: 满足:
4.3 李雅普诺夫第一法(间接法) 李雅普诺夫第一法(间接法) 4.3 First Method of the Lyapunov (Indirect Method)
李雅普诺夫第一法通过分析系统微分方程的显式解来分析系 统的稳定性,对线性定常系统, 统的稳定性,对线性定常系统,它可以直接通过系统的特征根情 况来分析。 况来分析。李雅普诺夫第一法的基本思路与经典控制论中的稳定 性判别思路基本一致。 性判别思路基本一致。 设线性定常系统的动态方程为: 设线性定常系统的动态方程为:

第四章稳定性与李雅普诺夫方法

第四章稳定性与李雅普诺夫方法

第四章稳定性与李雅普诺夫方法稳定性与李雅普诺夫方法是控制理论中的两个重要概念。

稳定性是控制系统分析中的基本问题之一,它描述了系统在受到干扰后能否回到平衡状态的能力。

李雅普诺夫方法是一种常用的稳定性分析方法,通过构造李雅普诺夫函数来判断系统的稳定性。

稳定性是控制系统设计中最基本的要求之一、一个稳定的系统能够在受到干扰后迅速恢复到平衡状态,而不会发生不可控制的震荡或不稳定的行为。

稳定性可以分为两种类型:渐近稳定性和有界稳定性。

渐近稳定性要求系统的状态能够收敛到一个稳定的平衡点,而有界稳定性要求系统的状态能够保持在一个有限范围内。

李雅普诺夫方法是一种通过构造李雅普诺夫函数来判断系统稳定性的方法。

李雅普诺夫函数是一个标量函数,它满足以下条件:1)对于任意非零的向量,李雅普诺夫函数的导数都是负的或零;2)当且仅当系统达到稳定时,李雅普诺夫函数的导数为零。

通过构造李雅普诺夫函数并分析其导数的符号,可以判断系统的稳定性。

在实际应用中,人们通常使用李雅普诺夫直接法、李雅普诺夫间接法和李雅普诺夫-克拉洛夫稳定性定理等方法来进行稳定性分析。

其中,李雅普诺夫直接法是最常用的方法之一,它通过选择一个合适的李雅普诺夫函数来判断系统的稳定性。

如果可以找到一个李雅普诺夫函数,使得该函数的导数对于所有非零的初始条件都是负的,则系统是渐近稳定的。

李雅普诺夫间接法是通过构造一个李雅普诺夫方程来判断系统的稳定性。

李雅普诺夫方程是一个微分方程,其中包含系统的状态向量和一个非负标量函数,满足一定的条件。

如果可以找到一个满足李雅普诺夫方程的解,并且该解是有界的,则系统是有界稳定的。

李雅普诺夫-克拉洛夫稳定性定理是李雅普诺夫方法的重要理论基础。

该定理表明,如果系统的李雅普诺夫函数存在并且连续可导,并且李雅普诺夫函数的导数满足一定的条件,则系统是渐近稳定的。

这个定理为李雅普诺夫方法的应用提供了重要的理论依据。

总之,稳定性与李雅普诺夫方法是控制理论中基础且重要的概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k
这从而由定义知,系统的每一个平衡状态均为李雅普诺夫意义下稳定。再引 入非奇异变换阵P,使得 Â = P-1AP 为矩阵 A 的约当规范型,则又有
e At ≤ P −1 ⋅ e At ⋅ P
ˆ
( 4 − 393)
因而‖eAt‖有界等价于‖eÂt‖ 有界。 但是,由 Â 为约当规范型可知 eÂt 每一元的形式为
(4 − 383)
假定方程的解为x(t;x0,t0),式中x0和t0分别为初始状态向量和初始时刻, 则初始条件x0必满足 x(t0 ;x0,t0) = x0 。 1 平衡状态 李雅普诺夫关于稳定性的研究均针对平衡状态而言。对于所有t,满足
& xe = f ( xe , t ) = 0
( 4 − 384 )
V ( x, t ) > W ( x), V (0, t ) = 0, t ≥ t0 ( 4 − 395)
则称时变函数V(x,t)在域 S (域 S 包含状态空间的原点)内是正定的。
⑵ 负定性 如果 – V(x) 是正定函数,则标量函数V(x)称为负定函数。 ⑶ 正半定性 如果标量函数V(x)除了原点及某些状态处等于零外,在域 S 内的所有状 态都是正定的,则V(x)称为正半定函数 ⑷ 负半定性 如果标量函数 –V(x) 是正半定函数,则V(x)称为负半定函数 ⑸ 不定性 如果在域 S 内,不论域 S 多么小,V(x)既可为正值,也可为负值,则标 量函数V(x)称为不定函数。
的状态xe称为平衡状态。平衡状态的各分量相对于时间不再发生变化。若已 & 知状态方程,令 x = 0 所求得的解x,便是平衡状态。 & 线性定常系统 x = Ax ,其平衡状态满足Axe = 0,当A为非奇异矩阵时,系 统只有唯一的零解,即只存在一个位于状态空间原点的平衡状态。若A为奇 异矩阵,则系统存在有无穷多个平衡状态。对于非线性系统,可能有一个或 多个平衡状态。
& x = Ax, x(0) = x0 , t ≥ 0 ( 4 − 388+ )

1)
系统的每一平衡状态是在李雅普诺夫意义下稳定的充分必要条件是, A 的所有特征值均具有非正(负或零)实部,且具有零实部的特征值 为A 的最小多项式的单根。 系统的惟一平衡状态 xe = 0 是渐近稳定的充要条件是,A的所有特征 值均具有负实部。
2)
证明 1) 设 xe 为线性定常系统(4-388+)的平衡状态,则由性质 & xe = 0 和 Axe = 0 可知,对于所有 t≥0 均有(可通过等式两边求微分证明下式)
xe = e At xe (4 − 389) ( 4 − 390)
于是,考虑到 x(t; x0, 0) = eAtx0,有
x(t ; x0 ,0) − xe = e At ( x0 − xe ), ∀t ≥ 0εS (ε )源自x0δxeδ
xe
δ
xe
x1
x1
x1
(a) 李雅普诺夫意义下的稳定性
(b) 渐近稳定性
(c) 不稳定性
4.2 李雅普诺夫第一法 间接法 李雅普诺夫第一法(间接法 间接法)
间 接 法:利用状态方程解的特性来判断系统稳定性的方法。 适应范围:线性定常系统、线性时变系统、非线性函数可线性化的系统。 适应范围 定理4-9 对于线性定常系统 定理
t e
βi
α i t + jω i t
ˆ , α i + jωi = λi ( A) = λi ( A)
(4 − 394)
其中λi(·) 为 (·) 的特征值,βi 为特征值的重数。 可以看出,式(4-394)中,当 αi < 0 时对任何正整数 βi 此元在[0,∞)上为 有界,而 αi = 0 时只对 βi = 0 此元在[0,∞)上为有界。同时, eÂt 的每一个元 有界意味着‖eÂt‖有界。由此可见,当且仅当A的所有特征值均具有负或零 实部,且具有零实部的特征值为单根时, ‖eÂt‖为有界,也就是系统的每 一个平衡状态为李雅普诺夫意义下的稳定。结论1)证毕。
2 李雅普诺夫第二法主要定理 定理4-10 (大范围一致渐近稳定判别定理 考虑连续时间非线性时变自由 大范围一致渐近稳定判别定理) 定理 大范围一致渐近稳定判别定理 系统
& x = f (x, t ), t ≥ t0 ( 4 − 396)
其中f(0, t) = 0,即状态空间的原点为系统的平衡状态。如果存在一个对x和t 有连续一阶偏导数的标量函数V(x, t),V(0, t) = 0,且满足如下条件: 1) V(x, t)正定且有界,即存在两个连续的非减标量函数α(||x||)和 β(||x||),其 中 α(0)=0,β(0)=0,使对一切 t≥t0 和一切 x≠0 均有 β(||x||) ≥ V(x, t) ≥ α(||x||) > 0 (4-397) 2)V(x, t)对时间t的导数 V& ( x , t ) 负定且有界,即存在一个连续的非减标量函 数r(||x||),其中r(0) = 0,使对一切 t≥t0 和一切 x≠0 均有
5 不稳定性 如果对于某个实数 ε > 0和任一个实数 δ >0,不管这两个实数有多么小, 在S(δ) 内总存在着一个状态 x0,使得由这一状态出发的轨迹超出 S(ε),则平 衡状态 xe 就称为是不稳定的。
x2 x2 x2
S (δ )
ε
S (ε ) S (δ ) x0
ε
S (ε ) S (δ ) x0
2)结论2)证明 )结论 ) 由式(4-390)可知,当且仅当‖eAt‖ 对一切 t≥0为有界,且当t→0时 ‖eAt‖ →0,零平衡状态 xe= 0 为渐近稳定。如上所证,当且仅当 A 的所有 特征值均具有负或零实部时,‖eÂt‖有界。又根据式(4-393)和式(4-394)可知 β α t + jω t → 0 当且仅当t→∞时 t e ,可保证 t→0时‖eAt‖→0,这就等价于A的特征值均 具有负实部。结论2)证毕。
李雅普诺夫稳定性理论 李雅普诺夫理论在建立一系列关于稳定性概念的基础上,提出了判断 系统稳定性的两种方法: 间接法:利用线性系统微分方程的解来判断系统稳定性,又称之为李 雅普诺夫第一法; 直接法:首先利用经验和技巧来构造李雅普诺夫函数,进而利用李雅 普诺夫函数来判断系统稳定性,又称为李雅普诺夫第二法。 李雅普诺夫稳定性理论是确定系统稳定性的一般性理论,它采用状态向 量描述,在分析一些特定的非线性系统的稳定性时,有效地解决了用其它方 法所不能解决的问题。该理论比经典控制中的稳定性判据、以及以后可能接 触到的超稳定性理论的适应范围更广,因而得到广泛应用。
4.1 李雅普诺夫意义下的稳定性
设系统动态方程为
& x = f ( x, t )
(4 − 382)
式中,x为n维状态向量,且显含时间变量t;f(x,t)为线性或非线性、定常或 时变的n维函数,其展开式为
& xi =
f
i
( x1 , x2 ,..., xn , t ); i = 1,2,..., n
3 渐近稳定性 若系统的平衡状态xe不仅具有李雅普诺夫意义下的稳定性,且有 (4 − 388) lim x(t ; x0 , t 0 ) − xe = 0
t →∞
则称此平衡状态是渐近稳定的。这时,从S(δ)出发的轨迹不仅不会超出 S(ε),且当t→∞时收敛于xe,显见经典控制理论中的稳定性定义与渐近稳定 性对应。 若δ与t0无关,且上式的极限过程与t0无关,则称平衡状态是一致渐近 稳定的。 4 大范围(全局)渐近稳定性 大范围(全局) 当初始条件扩展至整个状态空间,且平衡状态均具有渐近稳定性时,称 此平衡状态是大范围渐近稳定的。此时,δ→∞,S(δ) →∞。当t→∞时,由状 态空间中任一点出发的轨迹都收敛于xe 。 对于严格线性的系统,如果它是渐近稳定的,必定是大范围渐近稳定, 这是因为线性系统的稳定性与初始条件的大小无关。而对于非线性系统来说, 其稳定性往往与初始条件大小密切相关,系统渐近稳定不一定是大范围渐近 稳定。
4.3 李雅普诺夫第二法(直接法) 李雅普诺夫第二法(直接法)
根据古典力学中的振动现象,若系统能量随时间推移而衰减,系统迟早 会达到平衡状态,但要找到实际系统的能量函数表达式并非易事。 李雅普诺夫提出,虚构一个能量函数,一般它与x1,x2,…,xn 及 t 有 关,记为V(x,t)。若不显含t,则记为V(x)。 V(x)是一个标量函数,考虑到能 & & 量总大于零,故为正定函数。能量衰减特性用 V (x, t ) 或 V (x ) 表示。李雅普诺 夫第二法利用V 和V& 的符号特征,直接对平衡状态稳定性作出判断,无需求 出系统状态方程的解,故称直接法。 直接法法解决了一些用其它稳定性判据难以解决的非线性系统的稳定性 问题,遗憾的是对一般非线性系统仍未找到构造李雅普诺夫函数的通用方法。 对于线性系统,通常用二次型函数 xTPx 作为李雅普诺夫函数。 1 标量函数定号性 ⑴ 正定性 标量函数V(x)对所有在域 S 中的非零状态 x 有V(x) > 0 且V(0) = 0,则在 域 S (域 S 包含状态空间的原点)内的标量函数V(x)称为是正定的。 如果时变函数 V(x,t)由一个定常的正定函数作为下限,即存在一个正 定函数 W(x),使得
这表明, 当且仅当‖eAt‖≤ k <∞ 时,对任给的一个实数ε > 0,都对应存在和初 始时刻无关的一个实数 δ(ε)= ε /k,使得由满足不等式 ||x0 — xe|| ≤ δ(ε) (4-391) 的任一初态x0出发的受扰运动都满足不等式 ε x(t ; x0 ,0) − xe ≤ e At ⋅ x0 − xe ≤ k ⋅ = ε , ∀t ≥ 0 (4 − 392)
i i i
由于所讨论的系统为线性定常系统,当其为稳定时必为一致稳定;当其 为渐近稳定时必为大范围一致渐近稳定。 例4-1 设系统的状态空间表达式如下,试分析该系统的状态稳定性。
相关文档
最新文档