李雅普诺夫稳定性的基本定理

合集下载

11.1 李雅普诺夫关于稳定性的定义

11.1 李雅普诺夫关于稳定性的定义

等复杂系统的稳定性,这正是其优势所在。
11.1 Lyapunov 关于稳定性的定义
系统稳定性是动态系统一个重要的、可以用定量方法研究和 表示的定性指标。
它反映的是系统的一种本质特征。这种特征不随系 统变换而改变, 但可通过系统反馈和综合加以控制。 这也是控制理论和控制工程的精髓。 在经典控制理论中,讨论的是在有界输入下,是否产生 有界输出的输入输出稳定性问题。 从经典控制理论知道,线性系统的输入输出稳定性
要掌握好Lyapunov稳定性理论,重要的是深刻掌握和理 解Lyapunov稳定性定义的实质和意义。
在这里,空间想象力对理解Lyapunov稳定性的实质和意 义非常有帮助。
11.1.1 平衡态 equilibrium state
设我们所研究的系统的状态方程为 x’=f(x,t) 其中x为n维状态变量;
ቤተ መጻሕፍቲ ባይዱ
但这些经典控制理论中的稳定性判别方法仅限于讨论 SISO线性定常系统输入输出间动态关系,即
线性定常系统的有界输入有界输出(BIBO)稳定性
未研究系统的内部状态变化的稳定性,也不能推广到时变 系统和非线性系统等复杂系统。 再则,对于非线性系统或时变系统,虽然通过一些系统 转化方法,上述稳定判据尚能在某些特定系统和范围内
此外,庞加莱还在1895年证明了“庞加莱 回归定理” ,并开创了动力系统理论。
在Routh和Poincare等工作的影响下,1892年,俄国数学力 学家A.M. Lyapunov(李亚普诺夫,1857–1918) 发表了博士 论文“The General Problem of the Stability of Motion 论运动 稳定性的一般问题”,建立了关于运动稳定性研究的一般性 理论,总结和发展了系统的经典时域分析法。

第5章李雅普诺夫稳定性分析

第5章李雅普诺夫稳定性分析
3
第5章 李雅普诺夫稳定性分析
第五章 李雅普诺夫稳定性分析
5.1 李雅普诺夫意义下的稳定性 5.2 李雅普诺夫第一法(间接法) 5.3 李雅普诺夫第二法(直接法) 5.4 线性定常系统的李雅普诺夫稳定性分析
4
第5章 李雅普诺夫稳定性分析
5.1 李雅普诺夫意义下的稳定性
1.自治系统
没有外输入作用时的系统称为自治系统,可 用如下系统状态方程来描述:
如果时变函数V(x,t)有一个正定函数作为下限, 也就是说,存在一个正定函数W(x) ,使得
V ( x ,t) W ( x), V (0,t) 0, t t0
则称时变函数V(x,t)在域S(域S包含状态空间的 原点)内是正定的。
24
第5章 李雅普诺夫稳定性分析
3. 负定函数:如果-V(x)是正定函数,则标量函数 V(x)为负定函数。
则称平衡状态xe在李雅普诺夫意义下是稳定的。
在上述稳定的定义中,实数δ通常与ε和初始时
刻t0都有关,如果δ只依赖于ε ,而和t0的选取无关,
则称平衡状态是一致稳定的。
9
第5章 李雅普诺夫稳定性分析
5. 渐近稳定性
若系统的平衡状态xe不仅具有李雅普诺夫意 义下的稳定性,且有
lim
t
||
x(t;
x0 ,
(s)
则 m(s) 为矩阵A的最小多项式。
注:换言之,矩阵A的最小多项式就是(sI-A)-1
中所有元素的最小公分母。
17
第5章 李雅普诺夫稳定性分析
例5-1(补充):判断下述线性定常系统的稳定性
0 0 0
x 0 0
0
x
0 0 1
解:1)系统矩阵A为奇异矩阵,故系统存在无穷

李雅普诺夫稳定性理论

李雅普诺夫稳定性理论

x(t0 , x0 , t0 ) x0 初态

3.平衡状态:
xe f (xe , t) 0 xe 系统的平衡状态 a.线性系统 x Ax x Rn
A非奇异: Axe 0 xe 0
A奇异:
Axe 0 有无穷多个 xe
b.非线性系统
x f (xe ,t) 0 可能有多个 xe

Pij Pji
x x1 x2 xn T
李氏第二法稳定性定理
设 x f (x,t) 1)在 xe 满足 f (0,t) 0
2) xe 0 V (x, t)存在
定理1
若1)
V
(
x,
t
)
正定 xe
2)
V ( x, t )
负定
则 xe渐近稳定
3)若 x V (x)
eg. x1 x1
x2 x1 x2 x23
令 x1 0 x2 0

xe 1

0

0

0 xe3 1
0 xe2 1
5.2李雅普诺夫意义下的稳定
1.李氏意义下的稳定
如果对每个实数 0 都对应存在另一个
实数 ( ,t0 ) 0 满足 x0 xe (,t0)
则平衡状态 xe 是不稳定的
推论1 若 1)V (x,t)正定 2)V(x,t)正半定
3)x 0 V(x,t) 0 则 xe不稳定
推论2 若 1)V (x,t)正定 2)V(x,t)正半定
3)x 0 V(x,t) 0 则 xe 是李雅普
诺夫意义下的稳定
选取李氏函数的方法
1)构造一个二次型函数 V (x,t)

Lyapunov稳定性理论李雅普诺夫

Lyapunov稳定性理论李雅普诺夫
渐近稳定
A的所有特征值:
需 lim eAt 0. t
e1t
te1t e1t
1 t e2 1t 2 te1t
0 0
0
0
e1t
0 0
e2t 0
e3t
结论3:
不稳定
A有一个特征值:

的特征值有重根
e1t
te1t e1t
1 t 2e1t 2 te1t
0 0
0
0
e1t
0 0
e2t 0
稳定性: 控制系统本身处于平衡状态。受到扰动,产生偏差,
在扰动消失后,由偏差状态逐渐恢复到原来平衡状态的性能。
偏差逐渐变大,不能恢复到原来的平衡状态,则不稳定。 稳定性是动态系统的一个重要性能,保证系统的稳定性 通常是控制器设计的最基本要求。
1
经典控制理论对稳定性分析的局限性
(1)局限于描述线性定常系统
任给一个球域 ,若存在一个球域 ,使得从 出发的 轨迹不离开 ,则称系统的平衡状态是李雅普诺夫意义下稳定 的。
初始状态有界,随时间 推移,状态向量距平衡 点的距离可以维持在一 个确定的数值内,而到 达不了平衡状态。
任给一个球域 ,若存在一个球域 ,使得从 出发的 轨迹不离开 ,则称系统的平衡状态是李雅普诺夫意义下稳定 的。

与初始时刻
t
无关,则
0
称系统的平衡状态 是一致
稳定的。
时变系统 与 t0有关
定常系统

t
无关
0
李雅普诺夫意义下稳定
考虑系统(4.1),如果对任意的实数 ,都存在另一实
数 ,使当初始状态位于以平衡状态 为球心, 为半径的
闭球域
内,即

李雅普诺夫Lyapunov稳定性理论李雅普诺夫

李雅普诺夫Lyapunov稳定性理论李雅普诺夫

表示向量 x 到x e的距离 n2 x xe ( x1 x1e ) 2 ( x2 x2e ) 2 c
表示状态空间中,以 x e为圆心,半径为c的圆
n3
x xe ( x1 x1e ) 2 ( x2 x2e ) 2 ( x3 x3e ) 2 c
0
方程的解(运动或状态轨线)为: x(t; x 初始状态向量
, t0 )
初始时刻
x(t0 ; x 0 , t0 ) x 0
f (x, t ) x
平衡状态:各分量相对于时间不再发生变化
e f (x e , t ) 0 x
所有状态的变化速度为零,即是静止状态 线性定常系统:
x2
S ( )
xe
S ( )
x1
近,直至到达平衡状态后
停止运动。
3、大范围渐近稳定 当初始条件扩展到整个状态空间,且平衡状态均具 有渐近稳定性时,称此平衡状态是大范围渐近稳定的。 几何意义:
系统不管在什么样的初始状态下,经过足够长的时间总
能回到平衡状态附近并且向平衡状态靠拢。 大范围渐近稳定的必要条件是状态空间中只能有一个平 衡状态。
1
1
极点位于s左半平面,s=2的极点被对消掉了。系统是有 界输入有界输出稳定的。
(2)求系统的特征方程:
6 det(I A) ( 2)( 3) 0 1 1
求得:1 2,2 3
系统不是渐近稳定的。
例 : 用间接法判断下列系统的稳定性 x1 x2 x1 x1 x2 x1 x1 x2 1 ) , 2) , 3) x2 x1 x2 x1 x2 x2 x1 x2

李雅普诺夫第二法

李雅普诺夫第二法

李雅普诺夫第二法李雅普诺夫第二法又称直接法,它是从能量观点进行稳定性分析的,它的基本思想是建立在这样一个物理事实基础之上,即:由经典力学理论可知,对于一个振动系统,如果系统的总能量随时间增长而连续减少,直到平衡状态为止,那么振动系统是稳定的。

1)渐进稳定的判据定理1设系统的状态方程为(,)x f x t =其中平衡状态为0e x =,满足(0,)0f t =,如果存在一个具有连续一阶偏导数的标量函数(,)v x t ,且满足以下条件:(1)(,)v x t 是正定的;(2)(,)vx t 是负定的。

则系统在原点处的平衡状态是一致渐进稳定的。

此外,如果当||||x →∞,有(,)v x t →∞,则在原点处的平衡状态是大范围一致渐进稳定的。

2)渐进稳定的判据定理1设系统的状态方程为(,)x f x t =其中平衡状态为(0,)0f t =,如果存在一个具有连续一阶偏导数的标量函数(,)v x t ,且满足以下条件:(1)(,)v x t 是正定的;(2)(,)vx t 是负定的。

(3)(,)v x t 在0x ≠时不恒等于零,则系统在原点处的平衡状态是大范围渐进稳定的。

3)李雅普诺夫意义下稳定的判别定理设系统的状态方程为=x f x t(,)其中平衡状态为(0,)0f t=,如果存在一个具有连续一阶偏导数的标量函数v x t,且满足以下条件:(,)(1)(,)v x t是正定的;(2)(,)是负定的。

v x t(3)则系统在原点处的平衡状态在李雅普诺夫意义下是一致稳定的。

4)不稳定的判别定理设系统的状态方程为=x f x t(,)其中平衡状态为(0,)0f t=,如果存在一个具有连续一阶偏导数的标量函数v x t,且满足以下条件:(,)(1)(,)v x t是正定的;(2)(,)是正定的。

v x t则系统在原点处的平衡状态是不稳定。

第四章李雅普诺夫稳定性理论


对概念的几点说明:
(5)线性系统渐近稳定等价于大范围渐近稳定。对非线 性系统,一般只考虑吸引区为有限定范围的渐近稳定。
第二节 李雅普诺夫间接法
思想:李氏间接法利用系统矩阵A的特征值 或者说系统极点来判断系统稳定性。
一、线性定常系统的稳定性
线性定常系统的稳定性判别定理:
(1)李氏稳定 A的约当标准形J中,实部为0的特征 值所对应的约当块的维数是一维的,其余特征值均 有负实部。 (2)渐近稳定 A的特征值均具有负实部。
,其中P为实对
称方阵,它的元素可以是定常的,可以是时变的,但
V(x)并不一定都是简单的二次型。
(4) V(x)函数只表示系统在平衡状态附近某邻域内局部运动的 稳定情况,但丝毫不能提供邻域外运动的任何信息。
(5) 由于V(x)构造需要技巧,因此Lyapunov第二法主要用 于那些使用别的方法无效或难以判断其稳定性的问题,如 高阶非线性系统或时变系统。
A奇异:
b. 非线性系统 例:

2. 孤立的平衡状态:在某一平衡状态的充分小的 邻域内不存在别的平衡状态。
说明: (1) 系统不一定都存在平衡点; (2) 但系统也可能有多个平衡点; (3) 平衡点多数在状态空间的原点,可通过适当
的坐标变换移到原点(针对孤立平衡点); (4) 稳定性问题都是相对于某个状态而言的,对
(3)不稳定 A的特征值中至少有一个有正实部。
说明:
(1)劳斯判据依然适用。 (2)状态稳定(内部的稳定)与BIBO稳定(输出稳定性)。
解释: 例1:
李氏稳定 不稳定 李氏稳定
李氏稳定 不稳定
例2:
求A的特征值: 得A特征值:
不稳定
二、非线性系统的稳定性 非线性系统的稳定性一般是局部的。用间接法判

5.1 李雅普诺夫稳定性的定义


从定义5-1可知,平衡态即指状态空间中状态变量的导数向量 为零向量的点(状态) 由于导数表示状态的运动变化方向, 因此平衡态就是指 能够保持平衡、维持现状不运动的状态, 如下图所示
平衡态
平衡态 平衡态
平衡态(3/4)
例5-1 对于非线性系统
′ x1 = − x1 3 ′ x2 = x1 + x2 − x2
李雅普诺夫稳定性的定义 李雅普诺夫稳定性的定义(1/2) 的定义
5.1 李雅普诺夫稳定性的定义
系统稳定性是动态系统一个重要的, 可以用定量方法研究和 表示的定性指标 它反映的是系统的一种本质特征, 这种特征不随系统线 性变换而改变, 但可通过系统反馈和综合加以控制 经典控制理论中, 线性系统的输入输出稳定性取决于其特征 方程的根, 与初始条件我们所研究的系统的状态方程为 x’ = f(x,t) 其中x为n维状态变量, f(x,t)为n维的关于状态变量向量x和时 间t的非线性向量函数 定义5-1 动态系统 x’ = f(x,t) 的平衡态是使 f(x,t) ≡ 0 的状态,并用xe来表示
平衡态(2/4)
其平衡态为下列代数方程组 − x1 = 0 3 x1 + x2 − x2 = 0 的解, 即下述状态空间中的三个状态为其孤立平衡态
0 x e,1 = 0
x e, 2
0 = 1
x e,3
0 = − 1
平衡态(4/4)
李雅普诺夫稳定性研究系统在 其平衡态附近(邻域)的运动变 化问题 若平衡态附近某充分小邻 域内所有状态的运动最后 都趋于该平衡态, 则称该 平衡态是渐近稳定的 若发散掉则称为不稳定的, 若能维持在平衡态附近某 不稳定 个邻域内运动变化则称为 平衡态 稳定的, 如上图所示

51李雅普诺夫稳定性的定义解析


本章简介(2/2)
? 最后介绍李亚普诺夫稳定性问题的Matlab计算与程序设 计。
目录
? 概述 ? 5.1 李雅普诺夫稳定性的定义 ? 5.2 李雅普诺夫稳定性的基本定理 ? 5.3 线性系统的稳定性分析 ? 5.4 非线性系统的稳定性分析 ? 5.5 Matlab问题 ? 本章小结
目录(1/1)
? 随着状态空间分析法引入动态系统研究和现代控制理论 的诞生,李雅普诺夫第二法又重新引起控制领域人们的 注意,成为近40年来研究系统稳定性的最主要方法,并得 到了进一步研究和发展。
? 本章将详细介绍李雅普诺夫稳定性的定义,李雅普诺夫 第一法和第二法的理论及应用。
概述(10/5)
? 本章需解决的问题:
? 这是一种较简捷的方法,与经典控制理论中判别稳 定性方法的思路是一致的。
? 该方法称为间接法,亦称为李雅普诺夫第一法。
? 第二类方法不是通过解方程或求系统特征值来判别稳 定性,而是通过定义一个叫做李雅普诺夫函数的标量函 数来分析判别稳定性。
? 由于不用解方程就能直接判别系统稳定性,所以第 二种方法称为直接法,亦称为李雅普诺夫第二法。
? 但这些稳定性判别方法仅限于讨论SISO线性定常系统 输入输出间动态关系,讨论的是
? 线性定常系统的有界输入有界输出(BIBO)稳定性,
未研究系统的内部状态变化的稳定性。也不能推广到时变 系统和非线性系统等复杂系统。
概述(4/5)
? 再则,对于非线性或时变系统,虽然通过一些系统转化 方法,上述稳定判据尚能在某些特定系统和范围内应用, 但是难以胜任一般系统。
Ch.5 李雅普诺夫稳定性 分析
本章简介
本章简介(1/2)
? 本章讨论李雅普诺夫稳定性分析。 ? 主要介绍 ? 李雅普诺夫稳定性的定义以及 ? 分析系统状态稳定性的李雅普诺夫理论和方法; ? 着重讨论 ? 李雅普诺夫第二法及其在线性系统和3类非线性系统 的应用、 ? 李雅普诺夫函数的构造、 ? 李亚普诺夫代数(或微分)方程的求解等。

《现代控制理论》李雅普诺夫稳定性分析

向量和矩阵的范数
1、向量空间上的欧几里德范数(即向量长度)
其欧几里德范数定义为:
一般
一、向量和矩阵的范数
预备知识
矩阵范数
矩阵 的范数定义为:
【例】
Hale Waihona Puke , 则即:矩阵每个元素平方和开根号
预备知识
2、矩阵范数
1.二次型函数:由n个变量
组成的二次齐次多项式,称(n元)二次型函数
2.二次型函数的矩阵表示
则系统在原点处的平衡状态是不稳定的。
为唯一的平衡状态。
定理4:设系统状态方程为
李雅普诺夫主要的稳定性定理
例题
[例] 设系统状态方程为
试确定系统的稳定性。
解 xe=0
,
是该系统惟一的平衡状态。
由于当

,所以系统在原点处的平衡状态是
大范围渐近稳定的。
选取
李雅普诺夫主要的稳定性定理
例题
[例] 已知定常系统状态方程为
定义:若所有有界输入引起的零状态响应输出有界,则称系统为有界输入输出稳定。
李雅普诺夫第一方法—间接法
定理3:连续定常系统 传递函数为: 系统 BIBO 稳定的充要条件为:传递函数的所有极点均位于S左半平面。
【例】试分析系统渐近稳定和BIBO稳定。
李雅普诺夫主要的稳定性定理
讨论续
这是一个矛盾的结果,表明
也不是系统的
受扰运动解。综合以上分析可知,

时,显然有
根据定理9-12可判定系统的原点平衡状态是大范围渐近稳定的。
李雅普诺夫主要的稳定性定理
线性系统稳定性分析
一.线性定常系统李雅普诺夫稳定性分析
线性定常连续系统
系统状态方程为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

李雅普诺夫第一法(6/7)
由上述李雅普诺夫第一法的结论可知,该方法与经典控制理论 中稳定性判据的思路一致,需求解线性化状态方程或线性状态 方程的特征值,根据特征值在复平面的分布来分析稳定性。 值得指出的区别是: 经典控制理论讨论的是输出稳定性问题,而李雅普诺 夫方法讨论状态稳定性问题。 由于李雅普诺夫第一法需要求解线性化后系统的特征值, 因此该方法也仅能适用于非线性定常系统或线性定常系 统,而不能推广至时变系统。
矩阵正定性的判别方法(4列实对称矩阵P的定号性:
1 - 1 - 1 P 1 3 2 - 1 2 5
解 先对对称矩阵P作合同变换如下
矩阵正定性的判别方法(5/5)—例5-2
1 - 1 - 1 行:( 2) (1)( 2) 1 0 - 1 0 2 1 P 1 3 2 列:( 2) (1)( 2) - 1 2 5 - 1 1 5 1 0 0 行:( 3) (1) ( 3) 0 2 1 列:( 3) (1) ( 3) 0 1 4 1 0 0 行:( 3) ( 2 ) / 2( 3) 0 2 0 列:( 3) ( 2 ) / 2( 3) 0 0 7 / 2
因此,由定理3-3知,矩阵P为正定矩阵。
李雅普诺夫稳定性定理的直观意义(1/5)
2. 李雅普诺夫稳定性定理的直观意义
从平衡态的定义可知,平衡态是使得系统静止不动(导数为零, 即运动变化的趋势为零)的状态。 从能量的观点来说,静止不动即不存在运动变化所需要 的能量,即变化所需的能量为零。
通过分析状态变化所反映的能量变化关系可以分析出 状态的变迁或演变,可以分析出平衡态是否稳定或不稳 定。
下面通过一刚体运动的能量变化来简介李雅普诺夫稳 定性定理的直观意义。
李雅普诺夫稳定性定理的直观意义(2/5)
右图所示动力学系统的平衡态在 一定范围内为渐近稳定的平衡态。 对该平衡态的邻域,可定义其 能量(动能+势能)函数如下:
1 2 V m v m gh 2 1 mx2 m g( x cos ) 0 2
基于这样的观点,只要能找出一个能合理描述动态系统的 n维状态的某种形式的能量正性函数,通过考察该函数随 时间推移是否衰减,就可判断系统平衡态的稳定性。
李雅普诺夫第二法(3/3)
在给出李雅普诺夫稳定性定理之前,下面先介绍一些 数学预备知识,然后介绍一些
李雅普诺夫稳定性定理的直观意义,最后介绍
( x1 2x2 )2
( x1 2x2 )2
2 3x1
5) 不定函数
2 2 3x1 2x2
( x1 2x2 )2 ( x1 2x2 )2
二次型函数和对称矩阵的正定性(1/4)
(2) 二次型函数和对称矩阵的正定性 二次型函数是一类特殊形式函数。 设V(x)为关于n维变量向量x的实二次型函数,则其可以表 示为 V ( x ) a11 x12 a12 x1 x2 ... a1n x1 xn
李雅普诺夫第一法(1/7)
3.2.1 李雅普诺夫第一法
李雅普诺夫第一法又称间接法,它是研究动态系统的一次近似 数学模型(线性化模型)稳定性的方法。它的基本思路是:
首先,对于非线性系统,可先将非线性状态方程在平衡态 附近进行线性化, 即在平衡态求其一次Taylor展开式, 然后利用这一次展开式表示的线性化方程去分析系 统稳定性。 其次,解出线性化状态方程组或线性状态方程组的特征值, 然后根据全部特征值在复平面上的分布情况来判定系统 在零输入情况下的稳定性。
实函数的正定性(4/4)
下面是几个在由变量x1和x2组成的2维线性空间中的正定函数、 负定函数等的例子。
2 2 1) 正定函数 x1 2x2 2 2 2) 负定函数 x1 2x2 2 2x2 2 ( x1 2x2 )2 x2 2 ( x1 2x2 )2 5x1
3) 非负定函数 4) 非正定函数
2 a22 x2 ... a2 n x2 xn
...
2 ann xn
aij x i x j
i 1 j i
n
n
其中aij(i=1,2,…,n,j=i,…,n)为实常数。
二次型函数和对称矩阵的正定性(2/4)
由线性代数知识知,实二次型函数V(x)又可表示为 V(x)=xPx 其中P称为二次型函数V(x)的权矩阵,它为如下nn维实对称矩阵:
a11 a12 / 2 a / 2 a 22 P 12 ... ... a / 2 a / 2 2n 1n
... a1n / 2 ... a2 n / 2 ... ... ... a nn
二次型函数和对称矩阵的正定性(3/4)
二次型函数与一般函数一样,具有正定、负定、非负定、非 正定和不定等定号性概念。 二次型函数V(x)和它的对称权矩阵P是一一对应的。 因此,由二次型函数的正定性同样可定义对称矩阵P的正 定性。 定义3-8 设对称矩阵P为二次型函数V(x)的权矩阵,当V(x)分 别为正定、负定、非负定、非正定与不定时,则称对称矩阵P 相应为正定、负定、非负定、非正定与不定。 □
定理3-3 实对称矩阵P必定可经合同变换化成对角线矩阵,则 P为正定、负定、非负定与非正定的充分必要条件是的所有 对角线元素分别大于零、小于零、大于等于零与小于等于 零; P为不定的充分必要条件是的对角线元素有正有负。
矩阵正定性的判别方法(3/5)—矩阵定号性判定定理
定理3-3中的合同变换是指对对称矩阵的同样序号的行和列 同时作同样的初等变换。
矩阵正定性的判别方法(2/5)--塞尔维斯特定理
定理3-1(塞尔维斯特定理) (1) 实对称矩阵P为正定的充要条 件是P的各阶顺序主子式均大于零,即
Δ1 p11 0
Δ2
p11 p21
p12 p22
0
... Δn | P | 0
其中pij为实对称矩阵P的第i行第j列元素。
(2) 实对称矩阵P为负定的充要条件是P的各阶顺序主子式满足
李雅普诺夫第二法(2/3)
李雅普诺夫第二法又称为直接法。 它是在用能量观点分析稳定性的基础上建立起来的。
若系统平衡态渐近稳定,则系统经激励后,其储存的能 量将随着时间推移而衰减。当趋于平衡态时,其能量 达到最小值。 反之,若平衡态不稳定,则系统将不断地从外界吸收能 量,其储存的能量将越来越大。
参看课本P168
李雅普诺夫第二法(1/3)
3.2.2 李雅普诺夫第二法
由李雅普诺夫第一法的结论可知,该方法能解决部分弱非线性 系统的稳定性判定问题,但对强非线性系统的稳定性判定则无 能为力,而且该方法不易推广到时变系统。
下面我们讨论对所有动态系统的状态方程的稳定性分析 都适用的李雅普诺夫第二法。
实函数的正定性(2/4)—函数定号性定义
从定义可知,所谓正定函数,即指除零点外恒为正值的标量函 数。由正定函数的定义,我们相应地可定义 负定函数、 非负定(又称半正定或正半定)函数、 非正定函数(又称半负定或负半定)和
不定函数。
实函数的正定性(3/4)—函数定号性定义
定义3-6 设xRn,是Rn中包含原点的一个区域,若实函数V(x) 对任意n维非零向量x,都有V(x)<0;当且仅当x=0时,才有 V(x)=0,则称函数V(x)为区域上的负定函数。 若对任意n维非零向量x,都有V(x)≥0,且V(0)=0,则称函 数V(x)为区域上的非负定函数。 若对任意n维非零向量x,都有V(x)≤0,且V(0)=0,则称函 数V(x)为区域上的非正定函数。 若无论取多么小的原点的某个邻域,V(x)可为正值也可为 负值,则称函数V(x)为不定函数。
李雅普诺夫第一法(2/7)
下面将讨论李雅普诺夫第一法的结论以及在判定系统的状态稳 定性中的应用。
设所讨论的非线性动态系统的状态方程为 x’=f(x) 其中f(x)为与状态向量x同维的关于x的非线性向量函数,其各元 素对x有连续的偏导数。
参看课本P167
李雅普诺夫第一法(5/7)
李雅普诺夫第一法的基本结论是: 1. 若线性化系统的状态方程的系统矩阵A的所有特征值都 具有负实部,则原非线性系统的平衡态xe渐近稳定,而且系 统的稳定性与高阶项R(x)无关。 2. 若线性化系统的系统矩阵A的特征值中至少有一个具有 正实部,则原非线性系统的平衡态xe不稳定,而且该平衡态 的稳定性与高阶项R(x)无关。 3. 若线性化系统的系统矩阵A除有实部为零的特征值外,其 余特征值都具有负实部,则原非线性系统的平衡态xe的稳 定性由高阶项R(x)决定。
李雅普诺夫第一法(7/7)—例5-1
例3-1 某装置的动力学特性用下列常微分方程组来描述:
x2 x1 x K ( x 2 1) x K x 2 2 1 2 1 1
试确定系统在原点处的稳定性。
K1 , K 2 0
解 1: 由状态方程知,原点为该系统的平衡态。
李雅普诺夫稳定性定理
数学预备知识(1/1)
1. 数学预备知识
下面介绍在李雅普诺夫稳定性分析中需应用到的如下数学预 备知识: 函数的正定性 二次型函数和对称矩阵的正定性 矩阵正定性的判别方法
实函数的正定性(1/4)—函数定号性定义
(1) 实函数的正定性 实函数正定性问题亦称为函数定号性问题。 它主要讨论该函数的值在什么条件下恒为正,什么条件下 恒为负的。 下面先给出n维向量x的标量实函数V(x)的正定性定义。 定义3-5 设xRn,是Rn中包含原点的一个区域,若实函数V(x) 对任意n维非零向量x都有V(x)>0;当且仅当x=0时,才有 V(x)=0, 则称函数V(x)为区域上的正定函数。
f
x v h
相关文档
最新文档