控制系统稳定性分析
控制工程基础:第五章 控制系统稳定性分析

时,系统闭环后稳定。
2
Nyquist 稳定性判据2
1、若开环传递函数在s右半平面无极点时,当从0变化
时,如果Nyquist曲线不包围临界点(-1, j0),则系统稳定。
如果Nyquist曲线包围临界点(-1, j0),则系统不稳定。
❖ 系统稳定性定义:
❖
控制系统处于某一平衡状态下受到扰动作用而偏离了 原来的平衡状态,在干扰消失后系统又能够回到原来的平衡 状态或者回到原平衡点附近,则称该系统是稳定的,否则, 该系统就是不稳定的。
❖
稳定性是系统的一种固有特性,它只取决于系统本身的 结构和参数,而与初始状态和外作用无关。
m
F
F
单摆系统稳定
p(s)
p(s) DK (s)
系统稳定的充要条件:特征方程的根全部具有负实部
(闭环极点均在s平面的左半平面)。
即系统稳定的充要条件为:F(s)的零点都位于s平面 的左半平面。
GB(s)
F(s)
Gk(s)
零点
极点
零点
极点
极点
零点
1、若开环极点均在s平面左半面,则根据米哈伊洛夫定理推论:
arg[
DK
两种特殊情况
1、劳斯阵列表某一行中的第一列元素等于零,但其余各项不 等于零或不全为零 处理方法:
用一个很小的正数 代替该行第一列的零,并据此计算出
阵列中的其余各项。然后令 0 ,按第一列系数进行
判别。
如果零上下两项的符号相同,则系统存在一对虚根,处于临 界稳定状态:如果零上下两项的符号不同,则表明有一个符 号变化,系统不稳定。
0
1
c1
1
b1
a1 b1
a3 110 (7)5 6.43
控制系统的稳定性分析

自动控制原理
其中系数 b1 , b2 , b3 等;根据
下列公式计算:
b1
a1a 2 a 0a 3 a1
b2
a1a 4 a 0a 5 a1
b3
a1a 6 a 0a 7 a1
同样的方法可以计算c;d;e等各行的系数
自动控制原理
注意:
在展开的阵列中;为简化其后的数值计算;可用一个正整数去除 或乘某一个整行;并不影响稳定性结论; 劳斯判据还说明:方程式5 4中;其正实部特征根数;等于劳斯阵列中第一列的系数改变的次数;
自动控制原理
从乃氏图上看;Gjw不包围1;j0点
G ( jw ) 1
稳定
G ( jw )
G ( jw )
不稳定
自动控制原理
2 若开环系统不稳定;有p个零点在右半平面;q的零点在原点;npq个 零点在左半平面 则
argD K(jw)(n2pq)2
如果闭环是稳定的;则
argDb(jw)n 2
故
a r g 1 G (jw ) n ( n 2 p q ) p q
F是新引进的函数;其分母是系统开环特征多项式;分子是闭环特征多 项式;
对于非单位反馈系统;开环传递函数为
GsG' sHsM DK Kss
自动控制原理
2 乃奎斯特队稳定判据 1 若开环是稳定的;则根据米哈依洛夫定理
argDk
jwn
2
如果闭环系统稳定;有
于是
argDb
jwn
2
arg1G (jw )0o
0
0
a n1 0
0
an2 an
自动控制原理
系统稳定的充要条件是:主行列式
式 1,2, n1 ;均大于零;即
第五章_控制系统的稳定性分析

, c2
b1a5 a1b3 b1
, c3
b1a7 a1b4 b1
f1
e1d 2
e1
d1e2
这样可求得n+1行系数
14
这种过程需一直进行到第n行被算完为止,系数 的完整阵列呈现一个倒三角形。
注意:
为简化计算,可用一个正整数去除或乘某一整个 行,并不改变稳定性结论。
15
劳斯稳定判据
劳斯稳定判据是根据所列劳斯表第一列系数符 号的变化,去判别特征方程式根在S平面上的具体 分布,过程如下:
27
5.3.4劳斯-赫尔维茨稳定性判据的应用
判定控制系统的稳定性
[例5-7] 系统的特征方程为:s4 2s3 3s2 4s 5 0 ,判断系统的稳定性。
[解]:排列劳斯阵如下:
s4 1 3 5 s3 2 4 0
因阵第为一,a列i 不0全, (为i 正0,~所4)以,,且系劳统斯
不稳定。
8
0
3
j 2 , j2
S0
16
显然这个系统处于临界稳定状态。
22
5.3.2 劳斯判据的应用
稳定判据只回答特征方程式的根在S平面上的分布 情况,而不能确定根的具体数据。也即也不能保证系 统具备满意的动态性能。换句话说,劳斯判据不能表 明系统特征根在S平面上相对于虚轴的距离。但能判断 是否所有特征根都落在虚轴的左半平面.若用S=Z-1带 入特征方程中,求出的根的实部即为特征根距S=-1垂线 的距离.可判断稳定程度.
s2 1 5 0 由于劳斯阵第一列有两次符号变
2
如果系统不稳定,就会在任何微小的扰动作用下偏离原 来的平衡状态,并随时间的推移而发散。
因此,如何分析系统的稳定性并提出保证系统稳定的措施, 是自动控制理论的基本任务之一。
控制系统的稳定性分析

11
4.3 李雅普诺夫判稳第一方法
李氏第一法判稳思路: (间接法)
1、线性定常系统-特征值判断
2、非线性系统-首先线性化,然后用线性化
系统的特征值判断
12
二、线性定常系统
外部稳定性判据:
线性定常连续系统的传递函数是 W( s ) C ( sI - A)-1 B ,当且仅 当其极点都在s的左半平面时,系统才是输入输出稳定的。否 则系统是不稳定的(在此,虚轴上的临界稳定,对应等幅周 期振荡,控制工程上认为是不稳定的)。
Im
图解表示:
稳 定 区
内部稳定性判据:
临 界 稳 定
S平面 不 Re 稳 定 区
线性定常连续系统渐近稳定的充分必要条件为:A阵的所有特 征值全为负实数或具有负实部的共轭复根。等同于特征方程的 根全部位于s平面的左半部。
13
[例4-6] 设系统方程为: x & 0
- 2 6 + - x u, 1 1 1
y 0 1]x
试确定其外部稳定性、内部稳定性。
[解 ] (1)系统的传递函数为:
- 6 - 2 s ( s - 2) 1 -1 ] 0 1 W( s ) C ( sI A) B 1 s + 1 1 ( s - 2)( s + 3) ( s + 3)
6
二、状态向量范数
符号
称为向量的范数, x -
xe
为状态向量
端点至平衡状态向量端点的范数,其几何意义为 “状态偏差向量”的空间距离的尺度,其定义式 为: x - xe ( x1 - xe1 ) 2 + ( x2 - xe 2 ) 2 + L + ( xn - xen ) 2
控制系统的稳定性分析与稳定裕度设计

控制系统的稳定性分析与稳定裕度设计控制系统的稳定性是指系统在受到外界干扰或参数变化时,是否能保持输出的稳定性和可控性。
稳定性分析与稳定裕度设计是控制系统设计与优化中非常重要的环节。
本文将介绍控制系统的稳定性分析方法和稳定裕度设计的原则与方法。
一、稳定性分析方法在控制系统中,稳定性分析的目的是确定系统的稳定性边界,也就是确定系统参数的取值范围,使系统保持稳定。
常用的稳定性分析方法有两种:频域方法和时域方法。
1. 频域方法频域方法一般基于系统的传递函数进行分析,常用的工具有Bode图和Nyquist图。
Bode图可以直观地表示系统的幅频特性和相频特性,通过分析Bode图可以确定系统的相角裕度和幅值裕度,从而判断系统的稳定性。
Nyquist图则是通过绘制系统的频率响应曲线来判断系统的稳定性。
2. 时域方法时域方法主要根据系统的差分方程进行分析,常用的工具有阶跃响应和脉冲响应。
通过分析系统的阶跃响应曲线和脉冲响应曲线,可以得出系统的超调量、调节时间和稳态误差等指标,从而判断系统的稳定性。
二、稳定裕度设计原则与方法稳定裕度是指系统在满足稳定性的前提下,能够容忍一定幅度的参数变化或干扰。
稳定裕度设计可以提高系统的鲁棒性和可靠性,常用的稳定裕度设计原则和方法有以下几点:1. 相角裕度设计相角裕度是指系统在开环传递函数的相角曲线与-180度线之间的角度差。
通常情况下,相角裕度越大表示系统的稳定性越好。
为了增加相角裕度,可以通过增大系统的增益或者增加相位补偿器的相位裕度。
2. 幅值裕度设计幅值裕度是指系统在开环传递函数的幅度曲线与0dB线之间的距离。
幅值裕度越大表示系统对参数变化和干扰的鲁棒性越好。
为了增加幅值裕度,可以通过增大系统的增益或者增加幅值补偿器的增益。
3. 稳定裕度的频率特性设计系统的稳定裕度也与频率有关,不同频率下的稳定裕度可能存在差异。
因此,需要根据系统的工作频率范围来设计稳定裕度。
在系统的工作频率范围内,要保证系统的相角裕度和幅值裕度都能满足要求。
控制系统的稳定性分析

控制系统的稳定性分析简介控制系统的稳定性是指系统在受到干扰时,能够保持从初始状态返回到稳定的平衡状态的能力。
稳定性是控制系统设计和分析的重要指标之一,对于确保系统正常运行具有重要意义。
在本文档中,我们将探讨控制系统的稳定性分析方法。
稳定性概念在控制系统中,稳定性可以分为两种类型:绝对稳定和相对稳定。
1.绝对稳定:当系统在受到干扰后能够恢复到初始的平衡状态并保持在该状态时,我们称系统是绝对稳定的。
2.相对稳定:当系统在受到干扰后能够恢复到新的平衡状态并保持在该状态时,我们称系统是相对稳定的。
稳定性分析方法为了评估控制系统的稳定性,我们通常使用以下几种分析方法:1. 传递函数分析传递函数分析是一种常用的稳定性分析方法,它通过将控制系统转化为传递函数的形式,进行频域和时域的分析。
在频域分析中,我们可以使用频率响应函数(Bode图)来评估系统的稳定性。
Bode图由幅度曲线和相位曲线组成,通过分析这两个曲线可以判断系统是否稳定。
在时域分析中,我们可以使用单位斯蒂文斯响应函数来评估系统的稳定性。
单位斯蒂文斯响应函数是指控制系统对于单位阶跃输入的响应。
2. 决策稳定性分析决策稳定性分析方法是一种直观的稳定性评估方法,它通过观察控制系统的反馈回路来判断系统的稳定性。
如果控制系统的反馈回路中存在零点或极点位于右半平面,则系统将是不稳定的。
另外,如果控制系统的相位裕度和增益裕度分别小于零和一,则系统也将是不稳定的。
3. 根轨迹分析根轨迹分析是一种图形化的稳定性分析方法,它通过绘制系统传递函数的根轨迹来评估系统的稳定性。
根轨迹是表示系统极点随控制参数变化的轨迹图,它可以直观地显示系统的稳定性和响应特性。
如果根轨迹上的所有极点都位于左半平面,则系统是稳定的。
4. Nyquist稳定性判据Nyquist稳定性判据是一种基于频域分析的稳定性判据,它利用开放式系统的频率响应来评估系统的稳定性。
Nyquist稳定性判据通过绘制控制系统的开环频率响应曲线,并计算曲线绕原点的圈数来判断系统是否稳定。
控制系统中的稳定性分析

控制系统中的稳定性分析控制系统是现代工业生产中不可或缺的一部分,它可以通过传感器采集实时数据、通过控制器对数据进行处理,进而控制被控对象的运动或状态,达到控制目的。
在控制系统中,稳定性是最基本也是最重要的性能之一,而稳定性分析是控制系统的重要组成部分。
本文将围绕控制系统中的稳定性分析进行阐述。
一、稳定性的定义稳定性是指该系统在输入外部干扰或扰动的影响下,输出的运动状态是否始终保持在某一范围内,没有出现震荡或失稳的现象。
稳定性是控制系统的最基本的性能之一,是控制系统能否正常工作的基础。
二、控制系统中的稳定性类型根据控制系统的输出,控制系统的稳定性被分为两个主要类型:渐进稳定和瞬态稳定。
1. 渐进稳定渐进稳定是指控制系统在受到外界扰动后输出逐渐趋于稳定的情况。
在控制系统中,一个标准的渐进稳定系统应该满足以下三个条件:(1)系统输出必须有界;(2)当外界干扰为零时系统输出应该收敛于一个固定的值;(3)系统必须不具有周期性行为。
2. 瞬态稳定瞬态稳定是指控制系统在受到外界干扰后,输出通过系统自身调节能够在短时间内恢复到初始状态。
对于瞬态稳定的控制系统,在外界扰动干扰之后,系统应该在一定的时间范围内就能够恢复到稳态,并不受外界扰动的影响。
三、稳定性分析方法1. 时域分析法时域方法是根据系统传递函数展开的分析方法,它可以通过对系统传递函数进行分析,从而得出系统的稳定性状态。
时域方法的主要思路是,将系统的传递函数加上一个扰动,观察系统的反应,并根据系统的反应进行分析。
2. 频域分析法频域方法是根据系统的频率特性展开的分析方法,它可以通过对系统在不同频率下的响应进行分析,从而得出系统的稳定性状态。
频域方法的核心思想是,根据系统的传递函数得到其频率响应,然后通过求解系统的幅频特性曲线和相频特性曲线,来判断系统的稳定性情况。
四、稳定性分析技术1. 极点分析法极点分析法是一种基于控制理论的分析方法,它可以将系统的传递函数分解为多个一次项的乘积,然后分析每个一次项的为稳定极点,找出系统的稳定性状况。
控制系统的稳定性分析分解课件

目 录
• 控制系统稳定性分析方法 • 控制系统稳定性判据 • 控制系统稳定性优化方法 • 控制系统稳定性实例分析 • 控制系统稳定性总结与展望
01 引言
控制系统稳定性概念
01
02
03
稳定性定义
控制系统在受到外部扰动 后,能否恢复到平衡状态 的能力。
稳定性分类
根据系统性质不同,可分 为渐近稳定、指数稳定、 BIBO稳定等。
实例一:机械臂控制系统稳定性分析
01
02
03
04
系统建模
建立机械臂的动力学模型,包 括电机、减速器等组件的动力
学方程。
稳定性判据
应用劳斯判据或奈奎斯特判据 等方法,判断系统的稳定性。
控制器设计
设计合适的控制器,如PID控 制器,以保证系统的稳定性。
仿真与实验
通过仿真和实验验证控制器的 有效性,并对系统稳定性进行
定性。
超前校正优点
03
校正后系统带宽增宽,动态性能提高,对高频噪声有抑制作用。
滞后校正
滞后校正网络
采用RC电路构成的滞后网络,降低系统高频部分的增益,提高 相位裕量。
滞后校正原理
通过牺牲系统带宽来换取更大的相位裕量,从而提高系统稳定性。
滞后校正优点
对低频段增益影响较小,可保持系统稳态精度,同时有效抑制高 频噪声。
稳态误差分析
通过计算系统的稳态误差来分析系 统的稳定性和精度,包括静态误差 系数法、终值定理法等。
动态性能分析
通过分析系统的动态性能指标(如 调节时间、超调量等)来评估系统 的稳定性,常用的方法有相平面法、 时域响应法等。
频域分析法
奈奎斯特稳定判据
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、渐近稳定(经典控制理论稳定性定义)
如果平衡状态 xe 0 ,在李雅普诺夫意义下是稳定的,并且
始于域S()的任一条轨迹,当时间t 趋于无穷时,都不脱离 S(),且收敛于 xe 0 ,则称式(4.1)系统之平衡状态 xe 0 为渐近稳定的,其中球域S()被称为平衡状态 xe 0 的吸引域。 类似地,如果 与t0无关,则称此时之平衡状态 xe 0 为一致
第5页/共36页
(5-3)
式(5-3)描述了系统式(5-1)在n维状态空间的状态轨线。
若在式(5-1)所描述的系统中,存在状态点 x,e 当系统运动
到达该点时,系统状态各分量维持平衡,不再随时间变化,
即x& , 0该类状态点 xxe
即x为e 系统的平衡状态,即
若系统式(5-1)存在状态向量x e,对所有时间t都使
第3页/共36页
5.2 李亚普诺夫稳定性的基本概念 李雅普诺夫稳定性理论讨论的是动态系统各平衡态附近
的局部稳定性问题。它是一种具有普遍性的稳定性理论,不 仅适用于线性定常系统,而且也适用于非线性系统、时变系 统、分布参数系统。
第4页/共36页
5.2.1 平衡状态
稳定性是系统在平衡状态下受到扰动后,系统自由运动的 性质,与外部输入无关。对于系统自由运动,令输入u=0, 系统的齐次状态方程为
第2页/共36页
▲李亚普诺夫第二法(简称李氏第二法或直接法)的 特点是不必求解系统的微分方程式,就可以对系统的 稳定性进行分析判断。该方法建立在能量观点的基础 上:若系统的某个平衡状态是渐近稳定的,则随着系 统的运动,其储存的能量将随时间增长而不断衰减, 直至系统运动趋于平衡状态而能量趋于极小值。由此, 李亚普诺夫创立了一个可模拟系统能量的“广义能量” 函数,根据这个标量函数的性质来判断系统的稳定性。 由于该方法不必求解系统的微分方程就能直接判断其 稳定性,故又称为直接法,其最大优点在于对任何复 杂系统都适用,而对于运动方程求解困难的高阶系统、 非线性系统以及时变系统的稳定性分析,则更能显示 出优越性。
第6页/共36页
李雅普诺夫稳定性研究的是平衡态附近(邻域)的运动变化问 题。若平衡态附近某充分小邻域内所有状态的运动最后都趋 于该平衡态,则称该平衡态是渐近稳定的;若发散掉则称为 不稳定的,若能维持在平衡态附近某个邻域内运动变化则称 为稳定的。
平衡态附近(邻域)的运动变化图 第7页/共36页
【例5-1】设系统的状态方程为
x& f (x,t)
(5-1)
式中,x为n维状态向量,且显含时间变量t; 为线性或非线 性,定常或时变的n维向量函数,其展开式为
x&i fi (x1, x2,L , xn ,(t) ,5i-21), 2,L , n
式(5-1)的解为
x(t) Φ(t; x0 , t0 )
式中,t0为初始时刻,x(t0 ) 为x0状态向量的初始值
是有界的。
x0
第10页/共36页
5.2.3 李亚普诺夫稳定性定义 一、李亚普诺夫意义下的稳定
在H邻域内,若对于任意给定的 0 H ,均有:
(t; x0,t0) ,t t0
如果对应于每一个S( ),存在一个 S(,) 使得当t趋于无穷时,
始于 的S(轨)迹不脱离 S(,) 则式(5-1)系统之平衡状态
态。
x&1 x&2
x1 x1
x2
,求其平衡状
x23
解:其平衡状态应满足平衡方程式(5-4),即
x&1 x1 0
x&2
x1
Hale Waihona Puke x2x230
,即
x1 0
x1
x2
x23
0
解之,得系统存在3个孤立的平衡状态
0
0
0
xe1 0 , xe2 1 , xe13 1
第8页/共36页
5.2.2 范数和球域 范数: 定义为度量n维空间中的点之间的距离。对n维空间中
第1页/共36页
李亚普诺夫将判断系统稳定性的问题归纳为两种方法, 即李亚普诺夫第一法和李亚普诺夫第二法。
▲李亚普诺夫第一法(简称李氏第一法或间接法)是通过解 系统的微分方程式,然后根据解的性质来判断系统的稳定性, 其基本思路和分析方法与经典控制理论一致。对线性定常系 统,只需解出全部特征根即可判断稳定性;对非线性系统, 则采用微偏线性化的方法处理,即通过分析非线性微分方程 的一次线性近似方程来判断稳定性,故只能判断在平衡状态 附近很小范围的稳定性。
任意两点的和,它们之间距离的范数记为 x x。e
工程中常用的是2-范数: x xe (x1 xe1 )2 (x2 xe2 )2 L (xn xen )2
第9页/共36页
在n维状态空间中,若用点集 S( )表示以 x为e 中心、为 半径
内的各点所组成空间体称为超球域,那么, x,S则(表) 示
(5-6) 当 x很小xe 时 ,(则x1 称xe为1 )2的 (x2 邻xe域2 )2。L因此(x,n 若xen有)2 ,则意味
着 。同理,若方程式S(( )5-1)的解
x0 S( )
位于球域 x0 内x,e 便有
(t; x0 , t0 )
S( )
(5-7)
表明齐次方程式内初(态t; x0,t0或) 短 暂,t扰动t0 所引起的自由响应应
称为x在e 李0 雅普诺夫意义下是稳定的。一般地,实数与有
关,通常也与t0有关。如果 与t0无关,则称此时之平衡状
态
为一xe 致 0稳定的平衡状态。
以上定义意味着:首先选择一个球域S(),对应于每一 个S(),必存在一个球域S(),使得当t趋于无穷时,始 于S()的轨迹总不脱离球域S()。
第11页/共36页
1892年,俄国学者李亚普诺夫(Aleksandr Mikhailovich Lyapunov,1857-1918)在他的博士论文“运动稳定性的 一般问题”中借助平衡状态稳定与否的特征对系统或系统 运动稳定性给出了严格定义,提出了解决稳定性问题的一 般理论,即李亚普诺夫稳定性理论。该理论基于系统的状 态空间描述法,是对单变量、多变量、线性、非线性、定 常、时变系统稳定性分析皆适用的通用方法,是现代稳定 性理论的重要基础和现代控制理论的重要组成部分。
f (xe,t) 0
(5-4)
成立,则称 xe为系统的平衡状态。由平衡状态在状态空间中所
确定的点,称为平衡点。 式(5-4)为确定式(5-1)所描 述系统平衡状态的方程。
平衡态即指状态空间中状态变量的导数向量为零向量的 点(状态)。由于导数表示的状态的运动变化方向,因此平 衡态即指能够保持平衡、维持现状不运动的状态。