2016-2017学年山东省临沂市费县九年级(下)数学期中试卷【答案】

合集下载

山东省临沂市九年级下学期数学期中考试试卷

山东省临沂市九年级下学期数学期中考试试卷

山东省临沂市九年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)已知方程x2+2x﹣3=0的解是x1=1,x2=﹣3,则另一个方程(x+3)2+2(x+3)﹣3=0的解是()A . x1=﹣1,x2=3B . x1=1,x2=﹣3C . x1=2,x2=6D . x1=﹣2,x2=﹣62. (2分) (2017九上·上蔡期末) 如图,在△ABC中,∠C=90°,AB=3,BC=2,则cosB的值是().A .B .C .D .3. (2分)若3x=4y(xy≠0),则下列比例式成立的是()A . =B .C .D .4. (2分)(2017·香坊模拟) 如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A .B .C .D .5. (2分)(2017·陕西) 如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A .B .C .D .6. (2分)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=-1,且过点(-3,0).下列说法:①abc <0;②2a-b=0;③4a+2b+c<0;④3a+c=0;则其中说法正确的是().A . ①②B . ②③C . ①②④D . ②③④7. (2分)(2017·虎丘模拟) 如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,若CE=2,连接CF.以下结论:①∠BAF=∠BCF;②点E到AB的距离是2 ;③S△CDF:S△BEF=9:4;④tan∠DCF= .其中正确的有()A . 4个B . 3个C . 2个D . 1个8. (2分)如图,在△ABC中,AB=AC,∠BAC为锐角,CD为AB边上的高,I为△ACD的内切圆圆心,则∠AIB的度数是()A . 120°B . 125°C . 135°D . 150°9. (2分)小张同学说出了二次函数的两个条件:(1 )当x<1时,y随x的增大而增大;(2 )函数图象经过点(﹣2,4).则符合条件的二次函数表达式可以是()A . y=﹣(x﹣1)2﹣5B . y=2(x﹣1)2﹣14C . y=﹣(x+1)2+5D . y=﹣(x﹣2)2+2010. (2分)药品研究所开发一种抗菌素新药,经过多年的动物实验之后,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药后时间x(时)之间的函数关系如图所示,则当1≤x≤6时,y的取值范围是()A . ≤y≤B . ≤y≤8C . ≤y≤8D . 8≤y≤16二、填空题 (共6题;共6分)11. (1分)计算:2﹣2=________ .12. (1分)一种药品经过两次降价后,每盒的价格由原来的60元降到48.6元;那么平均每次降价的百分率是:________ .13. (1分)(2018·扬州) 用半径为,圆心角为的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为________ .14. (1分) (2019九上·渠县月考) 如图,O是矩形ABCD的对角线AC的中点,菱形ABEO的边长为2,则BC 的长是________.15. (1分) (2019八上·临海期中) 如图,在△ABC中,AB=5cm,AC=3cm,BC=4cm,点D.E分别在AC、AB上,且△BCD和△BED关于BD对称,则△ADE的周长为________cm.16. (1分) (2017八上·杭州期中) 如图,已知△ABC中,BC=2,AB=AC=4,点D是BC的中点,E为AC的中点,点P为AB上的动点,则点D到AC的距离为________,DP+EP的最小值等于________.三、解答题 (共8题;共82分)17. (5分)先化简,再求值:,其中a=﹣2.18. (10分)(2018·沾益模拟) 如图,点E在正方形ABCD的边AB上,连接DE,过点C作CF⊥DE于F,过点A作AG∥CF交DE于点G.(1)求证:△DCF≌△ADG.(2)若点E是AB的中点,设∠DCF=α,求sinα的值.19. (7分)(2018·潮南模拟) 2013年5月31日是第26个“世界无烟日”,校学生会书记小明同学就“戒烟方式”的了解程度对本校九年级学生进行了一次随机问卷调查,如图是他采集数据后绘制的两幅不完整的统计图(A:了解较多,B:不了解,C:了解一点,D:非常了解).请你根据图中提供的信息解答以下问题:(1)在扇形统计图中的横线上填写缺失的数据,并把条形统计图补充完整.(2) 2013年该初中九年级共有学生400人,按此调查,可以估计2013年该初中九年级学生中对戒烟方式“了解较多”以上的学生约有多少人?(3)在问卷调查中,选择“A”的是1名男生,1名女生,选择“D”的有4人且有2男2女.校学生会要从选择“A、D”的问卷中,分别抽一名学生参加活动,请你用列表法或树状图求出恰好是一名男生一名女生的概率.20. (10分) (2018九上·安陆月考) 设m是不小于﹣1的实数,关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1、x2 ,(1)若x12+x22=6,求m值;(2)令T= ,求T的取值范围.21. (5分)(2019·乌鲁木齐模拟) 如图,某高速公路设计中需要测量某条江的宽度,测量人员使用无人机测量,在处测得两点的俯角分别为和,若无人机离地面的高度为米,且点在同一条水平直线上,求这条江的宽度长(结果保留根号).22. (15分)(2012·福州) 如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D,AD交⊙O于点E.(1)求证:AC平分∠DAB;(2)若∠B=60°,CD=2 ,求AE的长.23. (15分)(2018·安徽模拟) 如图,一次函数与反比例函数的图象交于A(2,3),B (-3,n)两点.(1)求一次函数与反比例函数的表达式;(2)根据所给条件,请直接写出不等式 < 的解集;(3)过点B作BC⊥x轴,垂足为C,求S△ABC.24. (15分) (2017九下·六盘水开学考) 如图,抛物线的图象与x轴交于A(﹣1.0),B (3,0)两点,与y轴交于点C(0,﹣3),顶点为D.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和对称轴.(3)探究对称轴上是否存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共82分)17-1、18-1、18-2、19-1、19-2、19-3、20-1、20-2、21-1、22-1、23-1、23-2、23-3、24-1、24-2、24-3、。

2016-2017学年人教版九年级数学下期中综合检测试卷含答案

2016-2017学年人教版九年级数学下期中综合检测试卷含答案

期中综合检测(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.已知点P(-12,2)在反比例函数y=kx(k≠0)的图象上,则k的值是()A.-12B.2C.1D.-12.关于反比例函数y=4x的图象,下列说法正确的是()A.必经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.两个分支关于原点成中心对称3.(2015·成都中考)如图所示,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1B.2C.3D.44.如图所示,平行四边形ABCD中,E是BC上一点,BE∶EC=2∶3,AE交BD于F,则BF∶FD等于()A.2∶5B.3∶5C.2∶3D.5∶75.(2015·自贡中考)若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=-1x图象上的点,并且y1<0<y2<y3,则下列各式中正确的是()A.x1<x2<x3B.x1<x3<x2C.x2<x1<x3D.x2<x3<x16.已知反比例函数y=ax(a≠0)的图象在每一象限内,y的值随x值的增大而减小,则一次函数y=-ax+a的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.如图所示,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为()A.3B.4C.5D.68.(2015·浙江中考)如图所示,点A的坐标是(2,0),△ABO是等边三角形,点B在第一象限.若反比例函数y=kx 的图象经过点B,则k的值是()A.1B.2C.√3D.2√39.如图所示,这是圆桌正上方的灯泡(看成一个点)发出的光线照射到桌面后在地面上形成影子(圆形)的示意图.已知桌面直径为1.2米,桌面离地面1米.若灯泡离地面3米,则地面上阴影部分的面积为() A.0.36π米2 B.0.81π米2C.2π米2D.3.24π米210.(2015·重庆中考)如图所示,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=3x的图象经过A,B两点,则菱形ABCD的面积为()A.2B.4C.2√2D.4√2二、填空题(每小题4分,共24分)11.反比例函数y=(m-2)x2m+1的函数值为13时,自变量x的值是.12.(2015·重庆中考)已知△ABC∽△DEF,且△ABC与△DEF的面积比为4∶1,则△ABC与△DEF对应边上的高之比为.13.如图所示,平行四边形ABCD中,点E是AD边的中点,BE交对角线AC于点F,若AF=2,则对角线AC 的长为.图象的每一支上,y都随x的增大而减小,则k的取值范围是.14.已知在反比例函数y=k-2015x的图象与一次函数y=2x+1的图象的一个交点是(1,k),则反比例函数的解析式15.反比例函数y=kx是.16.如图所示,在△ABC中,AB=6,AC=4,P是AC的中点,过P点的直线交AB于点Q,若以A,P,Q为顶点的三角形和以A,B,C为顶点的三角形相似,则AQ的长为.三、解答题(共66分)(k≠0)与一次函数y=mx+b(m<0)交于点A(1,2k-1).17.(7分)反比例函数y=kx(1)求反比例函数的解析式;(2)若一次函数与x轴交于点B,且△AOB的面积为3,求一次函数的解析式.18.(7分)如图所示,将图中的△ABC作下列运动,画出相应的图形,并指出三个顶点的坐标所发生的变化.(1)向上平移4个单位长度得到△A1B1C1;(2)关于y轴对称得到△A2B2C2;(3)以点A为位似中心,将△ABC放大为原来的2倍得到△A3B3C3.19.(8分)(2015·泰安中考)如图所示,在△ABC中,AB=AC,点P,D分别是BC,AC边上的点,且∠APD=∠B.(1)求证AC·CD=CP·BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.的图象相交于A(-1,4),B(2,n)两点,直线AB 20.(8分)(2015·泰安中考)一次函数y=kx+b与反比例函数y=mx交x轴于点D.(1)求一次函数与反比例函数的表达式;(2)如图所示,过点B作BC⊥y轴,垂足为C,连接AC交x轴于点E,求△AED的面积S.21.(8分)如图所示,已知△ABC,延长BC到D,使CD=BC.取AB的中点F,连接FD交AC于点E.的值;(1)求AEAC(2)若AB=18,FB=EC,求AC的长.22.(9分)某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x(单位:元)与日销售;(2)设经营此贺卡的销售利润为W元,求出W与x之间的函数关系式.若物价局规定此贺卡的单价最高不能超过10元,请你求出当日销售单价x定为多少时,才能获得最大日销售利润.23.(9分)如图所示,在Rt△ABC中,∠ACB=90°,以AC为直径的☉O与AB边交于点D,过点D作☉O的切线,交BC于点E.(1)求证点E是边BC的中点;(2)若EC=3,BD=2√6,求☉O的直径AC的长;(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.24.(10分)(2015·成都中考)如图所示,一次函数y=-x+4的图象与反比例函数y=kx(k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.【答案与解析】1.D(解析:将点P(-12,2)代入函数解析式,得k=-12×2=-1.故选D.)2.D(解析:把(1,1)代入,左边≠右边,故A错误;因为k=4>0,所以图象在第一、三象限,故B错误;沿x轴对折不重合,故C错误;两分支关于原点对称,故D正确.故选D.)3.B(解析:根据平行线分线段成比例,得ADDB =AEEC,即63=4EC,则EC=2.故选B.)4.A(解析:∵BE∶EC=2∶3,∴BE∶BC=2∶5,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴BE∶AD=2∶5,△ADF∽△EBF,∴BFFD =BEAD=25.故选A.)5.D(解析:∵k=-1<0,∴反比例函数图象在第二、四象限,且在每个象限内y随x的增大而增大,∵y1<0<y2<y3,∴x1>0,x2<x3<0,即x2<x3<x1.故选D.)6.C(解析:根据反比例函数的性质可知a>0,再根据一次函数的性质知y=-ax+a的图象经过第一、二、四象限,不经过第三象限.故选C.)7.C(解析:在△ABC中,∠C=90°,AC=8,BC=6,∴AB=√AC2+BC2=√82+62=10,又△ADE∽△ABC,则DE BC =ADAB,36=AD10,∴AD=3×106=5.故选C.)8.C(解析:如图所示,过B点作BD⊥x轴,垂足为D,∵△OAB是等边三角形,∴OB=OA=2,∴OD=1,BD=√3.∴点B 的坐标为(1,√3).∵反比例函数的图象经过点B,∴k=√3.故选C.)9.B (解析:设阴影部分的直径是x m ,则1.2∶x =2∶3,解得x =1.8,所以地面上阴影部分的面积S =πr 2=0.81π(米2).故选B.)10.D (解析:∵反比例函数的图象经过A ,B 两点,且A ,B 两点的纵坐标分别为3,1,∴点A 的坐标为(1,3),点B 的坐标为(3,1),过B 作BE ⊥AD ,垂足为E ,则AE =2,BE =2,根据勾股定理可得AB =2√2,又∵四边形ABCD 为菱形,∴AD =AB =2√2,∴菱形ABCD 的面积为AD ·BE =2√2×2=4√2.故选D.) 11.-9(解析:∵函数y =(m -2)x 2m+1是反比例函数,∴m -2≠0,且2m +1=-1,∴m =-1,∴y =-3x ,当y =13时,x =-9.故填-9.)12.2∶1(解析:∵△ABC 与△DEF 相似且面积比为4∶1,∴△ABC 与△DEF 的相似比为2∶1,∴△ABC 与△DEF 的对应边上的高之比为2∶1.故填2∶1.)13.6(解析:∵四边形ABCD 是平行四边形,点E 是AD 边的中点,∴△AEF ∽△CBF ,∴AE BC =AF FC ,12=2FC,∴FC =4,∴AC =6.故填6.)14.k >2015(解析:反比例函数y =k x的性质:当k >0时,图象在第一、三象限,且在每一象限内,y 随x 的增大而减小;当k <0时,图象在第二、四象限,且在每一象限内,y 随x 的增大而增大.由题意得k -2015>0,解得k >2015.)15.y =3x(解析:将(1,k )代入一次函数解析式y =2x +1,得k =2+1=3,把(1,3)代入y =k x,得k =3,则反比例函数解析式为y =3x.故填y =3x.)16.3或43(解析:当△ABC ∽△AQP 时,AQ AB =AP AC ,即AQ 6=24,AQ =3;当△ABC ∽△APQ 时,AP AB =AQ AC ,即26=AQ 4,AQ =43.故填3或43.)17.解:(1)把A (1,2k -1)代入y =k x(k ≠0),得1×(2k -1)=k ,解得k =1,∴反比例函数的解析式为y =1x. (2)∵k =1,∴点A 坐标为(1,1),∵S △AOB =12OB ×1=3,∴OB =6,又m <0,∴点B 的坐标为(6,0),把(1,1),(6,0)代入y =mx +b ,得{m +b =1,6m +b =0,解得{m =-15,b =65.∴一次函数解析式为y =-15x +65.18.解:如图所示.(1)平移后三个顶点的横坐标都不变,纵坐标都加4. (2)三个顶点的纵坐标不变,横坐标变为原来的相反数. (3)点A 的坐标不变,点B 的纵坐标不变,横坐标为原来横坐标加AB 的长,点C 的横坐标为原来横坐标加AB 的长,纵坐标为原来纵坐标加BC 的长.19.(1)证明:∵∠APC =∠BAP +∠B ,∠APC =∠APD +∠DPC ,∠APD =∠B ,∴∠BAP =∠DPC ,∵AB =AC ,∴∠B =∠C ,∴△ABP ∽△PCD ,∴AB PC =BPCD,∴AB ·CD =CP ·BP ,即AC ·CD =CP ·BP. (2)解:∵PD ∥AB ,∴△PCD ∽△BCA ,由①得△ABP ∽△PCD ,∴△ABP ∽△BCA ,∴AB BC =PBAC ,∴1012=PB10,∴PB =253.20.解:(1)把A (-1,4)代入反比例函数解析式y =m x,得m =-1×4=-4,∴反比例函数的解析式为y =-4x;把B (2,n )代入y =-4x ,得2n =-4,解得n =-2,∴B 点坐标为(2,-2),将A (-1,4)和B (2,-2)代入y =kx +b ,得{-k +b =4,2k +b =-2,解得{k =-2,b =2,∴一次函数的解析式为y =-2x +2. (2)∵BC ⊥y 轴,垂足为C ,B (2,-2),∴C 点坐标为(0,-2),设直线AC 的解析式为y =px +q (p ≠0),∵A (-1,4),C (0,-2),∴{-p +q =4,q =-2,解得{p =-6,q =-2,∴直线AC 的解析式为y =-6x -2,当y =0时,-6x -2=0,解得x =-13,∴E 点坐标为(-13,0),∵直线AB 的解析式为y =-2x +2,∴直线AB 与x 轴交点D 的坐标为(1,0),∴DE =1-(-13)=43,∴△AED 的面积S =12×43×4=83.21.解:(1)如图所示,连接FC ,AD.∵点F 是AB 的中点,CD =BC ,∴FC 是△ADB 的中位线,∴FC ∥AD ,FC =12AD ,∴△EFC ∽△EDA ,∴AE CE =AD FC =2,∴AE AC =23. (2)∵点F 是AB 的中点,AB =18,FB =EC ,∴EC =12AB =9.由(1)知AEEC =2,则AE9=2,∴AE =18,∴AC =AE +EC =18+9=27.21.解:(1)如图所示,连接FC ,AD.∵点F 是AB 的中点,CD =BC ,∴FC 是△ADB 的中位线,∴FC ∥AD ,FC =12AD ,∴△EFC ∽△EDA ,∴AE CE =AD FC =2,∴AE AC =23. (2)∵点F 是AB 的中点,AB =18,FB =EC ,∴EC =12AB =9.由(1)知AEEC =2,则AE9=2,∴AE =18,∴AC =AE +EC =18+9=27. 22.解:(1)设y =k x ,把点(3,20)代入得k =60,∴y =60x ,其他组数据也满足此关系式,故y =60x,图象略. (2)∵W =(x -2)y =60-120x,又∵x ≤10,∴当x =10时,日销售利润最大.23.(1)证明:如图所示,连接CD ,OD.∵DE 为切线,∴∠EDC +∠ODC =90°.∵∠ACB =90°,∴∠ECD +∠OCD =90°.又∵OD =OC ,∴∠ODC =∠OCD ,∴∠EDC =∠ECD ,∴ED =EC.∵AC 为直径,∴∠ADC =90°,∴∠BDE +∠EDC =90°,∠B +∠ECD =90°,∴∠B =∠BDE ,∴ED =EB ,∴EB =EC ,即点E 为边BC 的中点. (2)解:∵AC 为直径,∴∠ADC =∠ACB =90°,又∵∠B =∠B ,∴△ABC ∽△CBD ,∴AB BC =BCBD ,∴BC 2=BD ·BA.∴(2EC )2=BD ·BA ,即BA ·2√6=36,∴BA =3√6,在Rt △ABC 中,由勾股定理,得AC =√AB 2-BC 2=3√2. (3)解:△ABC 是等腰直角三角形.理由如下:∵四边形ODEC 为正方形,∴∠OCD =45°.∵AC 为直径,∴∠ADC =90°,∴∠CAD =90°-45°=45°,∴Rt△ABC 为等腰直角三角形.24.解:(1)由已知可得a =-1+4=3,k =1×a =1×3=3,∴反比例函数的表达式为y =3x ,联立{y =-x +4,y =3x,解得{x =3,y =1, 或{x =1,y =3.所以B (3,1). (2)如图所示,作B 点关于x 轴的对称点,得到B'(3,-1),连接AB'交x 轴于点P',连接P'B ,则有PA +PB =PA +PB'≥AB',当且仅当P 点和P'点重合时取等号.易得直线AB'的解析式为y =-2x +5,令y =0,得x =52,∴P'(52,0),即满足条件的P 的坐标为(52,0),设y =-x +4交x 轴于点C ,则C (4,0),∴S △PAB =S △APC -S △BPC =12×PC ×(y A -y B )=12×(4-52)×(3-1)=32.。

山东省临沂市九年级下学期期中数学试卷

山东省临沂市九年级下学期期中数学试卷

山东省临沂市九年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)一个数在数轴上所对应的点向右移动8个单位后,得到它的相反数,则这个数是()A . 4B . ﹣4C . 8D . ﹣82. (2分)(2017·广东模拟) 根据有关资料显示,2015年广东省财政收入约为20934亿元,突破2万亿大关,财政支出民生实事类占近七成,数据20934亿用科学记数法表示为()A . 2.0934×1012B . 2.0934×1013C . 20.934×1011D . 20934×1083. (2分)如图,在单位长度为1的数轴上,点A、B表示的两个数互为相反数,那么点A表示的数是()A . 2B . -2C . 3D . -34. (2分) (2019九上·南岸期末) 如图,空心圆柱在指定方向上的主视图是()A .B .C .D .5. (2分) (2019九上·兰州期末) 若m,n是一元二次方程x2﹣2x﹣1=0的两个不同实数根,则代数式m2﹣m+n的值是()A . ﹣1B . 3C . ﹣3D . 16. (2分)如图,AB是半圆的直径,点C是弧AB的中点,点E是弧AC的中点,连接EB,CA交于点F,则=()A .B .C . 1﹣D .7. (2分)(2017·随州) 如图,在矩形ABCD中,AB<BC,E为CD边的中点,将△ADE绕点E顺时针旋转180°,点D的对应点为C,点A的对应点为F,过点E作ME⊥AF交BC于点M,连接AM、BD交于点N,现有下列结论:①AM=AD+MC;②AM=DE+BM;③DE2=AD•CM;④点N为△ABM的外心.其中正确的个数为()A . 1个B . 2个C . 3个D . 4个8. (2分)当x=5时一次函数y=2x+k和y=3kx-4的值相同,那么k和y的值分别为()A . 1,11B . -1,9C . 5,11D . 3,3二、填空题 (共6题;共7分)9. (1分) (2020七下·江阴期中) 若ax=2,ay=3,则ax+y=________.10. (1分) (2019七上·汽开区期中) 若x+2y=6,则代数式2x+4y﹣5的值为________.11. (2分)如图,平面直角坐标系xOy中,M点的坐标为(3,0),⊙M的半径为2,过M点的直线与⊙M的交点分别为A,B,则△AOB的面积的最大值为________,此时A,B两点所在直线与x轴的夹角等于________°.12. (1分) (2020八下·北京期中) 如图,在平行四边形中,,,,则 ________.13. (1分)(2012·资阳) 如图,O为矩形ABCD的中心,M为BC边上一点,N为DC边上一点,ON⊥OM,若AB=6,AD=4,设OM=x,ON=y,则y与x的函数关系式为________.14. (1分)(2020·贵港) 如图,对于抛物线y1=-x2+x+1, y2=-x2+2x+1, y3=-x2+3x+1,给出下列结论:①这三条抛物线都经过点C(0,1);②抛物线y3的对称轴可由抛物线y1的对称轴向右平移1个单位而得到;③这三条抛物线的顶点在同一条直线上;④这三条抛物线与直线y=1的交点中,相邻两点之间的距离相等。

2016-2017九年级数学下期中考试试卷(含答案)

2016-2017九年级数学下期中考试试卷(含答案)

新人教版九年级数学下册2016~2017学年度期中考试数学试卷温馨提示:仔细看题,工整答题,把你会做的题目写好就很棒了!一、选择题(本大题10小题,每小题4分,共40分,请将下列各题中唯一正确的答案代号A 、B 、C 、D 填到本题后括号内) 1.下列各点在反比例函数12y x=-的图象上的是( ) A .(3, 4) B .(-2.4,5) C .(2, 6) D .(-3,-4)2.已知点A (-1,y 1)、B (-2,y 2)在反比例函数(0ky k x=>)的图象上,则y 1,y 2的大小关系是( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定 3.已知△ABC ∽△A′B′C′且''=AB A B ,则S △ABC ∶S △A ′B ′C ′为( ) A .1∶2 B .2∶1 C .1∶4 D .4∶14.如图,下列条件不能判定△ADB ∽△ABC 的是( )A .∠ABD =∠ACB B .∠ADB =∠ABC C .AB 2=AD ·AC D.AD AB =AB BC5.如图,在△ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,且DE ∥BC ,EF ∥AB .若AD =2BD ,则CFBF的值为( )A. 12B. 13C. 14D. 236.如图,在网格中,小正方形的边长均为1,点A 、B 、C 都在格点上,则∠ABC 的正切值是( )A .2B .12CD7.如图,在Rt △ABC 中,AB =BC ,∠B =90°,AC=BDEF 是△ABC 的内接正方形(点D 、E 、F 在三角形的边上),则此正方形的面积是( )A .16B .16C .20D .25 8.如图,△AOB 是直角三角形,∠AOB =90°,OB =2OA ,点A 在反比例函数1y x=的第4题图第5题图第6题图 第7题图图象上.若点B 在反比例函数ky x=的图象上,则k 的值为( ) A .-4 B .4 C .-2 D .29.如图,在正方形ABCD 中,点E 为AB 边的中点,点G ,F 分别为AD ,BC 边上的点,若AG =1,BF =2,∠GEF =90°,则GF 的长为( )A .3B .4C .5D .6 10.如图,反比例函数6y x=-在第二象限的图象上有两点A 、B ,它们的横坐标分别为-1,-3,直线AB 与x 轴交于点C ,则△AOC 的面积为( )A .8B .10C .12D .24二、填空题(本题共4小题,每小题5分,共20分) 11.若函数1m y x-=的图象在同一象限内,y 随x 增大而增大,则m 的值可以是 .(写出一个即可)12.如图,在△ABC 中,D ,E 分别是边AB ,AC 上的点,且DE ∥BC ,若△ADE 与△ABC 的周长之比为2∶3,AD =4,则DB = .13.甲、乙两盏路灯底部间的距离是30米,一天晚上,当小华走到距路灯乙底部5米处时,发现自己的身影顶部正好接触路灯乙的底部.已知小华的身高为1.5米,那么路灯甲的高为 米.14.如图,已知点A 1,A 2,…,A n 均在直线y =x -1上,点B 1,B 2,…,B n 均在双曲线1y x=-上,并且满足A 1B 1⊥x 轴,B 1A 2⊥y 轴,A 2B 2⊥x 轴,B 2A 3⊥y 轴,…,A n B n⊥x 轴,B n A n +1⊥y 轴,…,记点A n 的横坐标为a n (n 为正整数).若a 1=-1,则a 2018= . 三、( 本大题共2个小题,每小题8分,满分16分)第10图第9题图第8题图第12题图第13题图第14题图15. 已知反比例函数5m y x-=(m 为常数,且m ≠5). (1) 如果在其图象的每个分支上,y 随x 的增大而增大,求m 的取值范围; (2) 如果其图象经过点(1, 3),求m 的值.16. 如图,在平面直角坐标系中,双曲线1my x=与直线y 2=﹣2x +2交于点A (﹣1,a ).(1)求a ,m 的值;(2)直接写出当y 2>y 1>0时,自变量x 的取值范围.四、( 本大题共2个小题,每小题8分,满分16分) 17.如图, □ABCD 中,:2:3AE EB =,DE 交AC 于F . (1)求AEF ∆与CDF ∆周长之比;(2)如果CDF ∆的面积为220cm ,求AEF ∆的面积.A BECD F18.如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当tan∠ABD=1,AC=3时,求BF的长.五、(本大题共2个小题,每小题10分,满分20分)19.如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(﹣3,4),B(﹣4,2),C(﹣2,1).(1) 画出△ABC关于y轴对称的△A1B1C1;(2) 以原点O为位似中心,画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2(画出一个即可);若点(a,b)为△ABC上一点,试写出在你所画的△A2B2C2中的对应点的坐标(用含a、b的式子表示).20. 家用电灭蚊器的发热部分使用了PTC发热材料,它的电阻R(kΩ)随温度t(℃)(在一定范围内)变化的大致图象如图所示.通电后,发热材料的温度在由室温10 ℃上升到30 ℃的过程中,电阻与温度成反比例关系,且在温度达到30 ℃时,电阻下降到最小值;随后电阻随温度升高而增加,温度每上升1 ℃,电阻增加415kΩ.(1)求当10≤t≤30时,R和t之间的关系式;(2)求温度在30 ℃时电阻R的值;并求出t≥30时,R和t之间的关系式;(3)家用电灭蚊器在使用过程中,温度在什么范围内时,发热材料的电阻不超过6 kΩ?21.如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE 与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.求证:(1) BD是⊙O的切线;(2) CE2=EH·EA.七、(本题满分12分)22.如图,已知抛物线经过原点O,顶点为A(1,1),与直线y=x﹣2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若线段BC上有一点M,满足以A,M,B为顶点的三角形与△ABC相似,请直接写出BM的长度.23.如图,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,AC=,点P为线段BE延长线上一点,连接CP以CP为直角边向下作等腰直角△CPD,线段BE与CD相交于点F(1)求证:PC CE CD CB;(2)连接BD,请你判断AC与BD有什么位置关系?并说明理由;(3)设PE=x,△PBD的面积为S,求S与x之间的函数关系式.A九年级数学月考一参考答案一、BCADA BDAAC二、11. 0(答案不唯一,小于1即可);12. 2;13. 9;14. 2 三、15. (1)m <5,(2)m=8. 16. (1)a=4, m=-4(2)x <-1四、17、解:∵四边形ABCD 是平行四边形 ∴,AB CD AB =∥CD∴,EAF DCF AEF CDF ∠=∠∠=∠ ∴AEF ∆∽CDF ∆∴2AEF AE CDF ∆==∆的周长的周长∴224()525AEFCDF S S ∆∆== ∵20CDF S ∆= ∴S △AEF =16518、(1)证明:∵AD ⊥BC ,BE ⊥AC , ∴∠BDF =∠ADC =∠BEC =90°, ∴∠C +∠DBF =90°,∠C +∠DAC =90°, ∴∠DBF =∠DAC , ∴△ACD ∽△BF D .(2)∵tan ∠ABD =1,∠ADB =90°,∴=1,∴AD =BD ,∵△ACD ∽△BFD ,∴==1,∴BF =AC =3.19、(1)图略;(2)图略,(-2a ,2b )或(2a ,-2b )(根据画图情况写坐标)20、解:(1)∵温度在由室温10 ℃上升到30 ℃的过程中,电阻与温度成反比例关系, ∴设R 和t 之间的关系式为R =kt .将(10,6)代入上式中得6=k10,解得k =60.∴当10≤t ≤30时,R =60t.(2)将t =30代入上式中,得R =6030,解得R =2.∴温度在30 ℃时,电阻R =2 k Ω.∵在温度达到30 ℃时,电阻下降到最小值;随后电阻随温度升高而增加,温度每上升1 ℃,电阻增加415k Ω,∴当t ≥30时,R =2+415(t -30),即R =415t -6.(3)把R =6代入R =415t -6,得t =45.∴温度在10~45 ℃时,电阻不超过6 k Ω.21、解:(1)∵∠ODB =∠AEC ,∠AEC =∠ABC ,∴∠ODB =∠ABC ,∵OF ⊥BC , ∴∠BFD =90°,∴∠ODB +∠DBF =90°,∴∠ABC +∠DBF =90°,即∠OBD =90°,∴BD ⊥OB ,∴BD 是⊙O 的切线;(2)连接AC ,∵OF ⊥BC ,∴BE ︵=CE ︵,∴∠ECB =∠CAE ,又∵∠HEC =∠CEA ,∴△CEH ∽△AEC ,∴CE EA =EHCE,∴CE 2=EH ·EA 22、解:(1)∵顶点坐标为(1,1),∴设抛物线解析式为y =a (x ﹣1)2+1, 又抛物线过原点,∴0=a (0﹣1)2+1,解得a =﹣1, ∴抛物线解析式为y =﹣(x ﹣1)2+1,即y =﹣x 2+2x ,联立抛物线和直线解析式可得,解得或,∴B (2,0),C (﹣1,﹣3);(2)如图,分别过A 、C 两点作x 轴的垂线,交x 轴于点D 、E 两点, 则AD =OD =BD =1,BE =OB +OE =2+1=3,EC =3,∴∠ABO=∠CBO=45°,即∠ABC=90°,∴△ABC是直角三角形;23、(1)证明:∵△BCE和△CDP均为等腰直角三角形,∴∠ECB=∠PCD=45°,∠CEB=∠CPD=90°,∴△BCE∽△DCP,∴=;(2)解:AC∥BD,理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,∴∠PCE=∠BCD,又∵=,∴△PCE∽△DCB,∴∠CBD=∠CEP=90°,∵∠ACB=90°,∴∠ACB=∠CBD,∴AC∥BD;(3)解:如图所示:作PM⊥BD于M,∵AC=4,△ABC和△BEC均为等腰直角三角形,∴BE=CE=4,∵△PCE∽△DCB,∴=,即=,∴BD=x,∵∠PBM=∠CBD﹣∠CBP=45°,BP=BE+PE=4+x,∴PM=,∴△PBD的面积S=BD•PM=×x×=x2+2x.。

2016-2017学年山东省临沂市费县九年级(下)期中数学试卷和解析

2016-2017学年山东省临沂市费县九年级(下)期中数学试卷和解析

2016-2017学年山东省临沂市费县九年级(下)期中数学试卷一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)在0,1,﹣2,3这四个数中,最小的数是()A.﹣2 B.1 C.0 D.32.(3分)如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A.50°B.45°C.40°D.30°3.(3分)下列计算正确的是()A.(﹣x3)2=x5B.x8÷x4=x2C.x3•x2=x6D.(﹣3x2)2=9x44.(3分)如图所示的几何体为圆台,其俯视图正确的是()A.B.C.D.5.(3分)把不等式组的解集表示在数轴上,正确的是()A.B.C.D.6.(3分)“服务他人,提升自我”,某学校积极开展志愿者服务活动,来自初三的5名同学(3男2女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是()A.B.C.D.7.(3分)将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1 B.x(x﹣2)+(2﹣x) C.x2﹣2x+1 D.x2+2x+18.(3分)如图是某市2016年四月每日的最低气温(℃)的统计图,则在四月份每日的最低气温这组数据中,中位数和众数分别是()A.14℃,14℃B.15℃,15℃C.14℃,15℃D.15℃,14℃9.(3分)如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45°B.50°C.60°D.75°10.(3分)施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x米,则根据题意所列方程正确的是()A.﹣=2 B.﹣=2C.﹣=2 D.﹣=211.(3分)下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依次规律,图⑩中黑色正方形的个数是()A.32 B.29 C.28 D.2612.(3分)如图,在▱ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC 交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是()A.梯形B.矩形C.菱形D.正方形13.(3分)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表:下列结论错误的是()A.ac<0B.当x>1时,y的值随x的增大而减小C.3是方程ax2+(b﹣1)x+c=0的一个根D.当﹣1<x<3时,ax2+(b﹣1)x+c>014.(3分)如图,△ABC的三个顶点分别为A(1,2),B(2,5),C(6,1).若函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.2≤k≤B.6≤k≤10 C.2≤k≤6 D.2≤k≤二、填空题(本大题共5小题,每小题3分,共15分)15.(3分)若=3﹣x,则x的取值范围是.16.(3分)化简﹣(a+1)的结果是.17.(3分)如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为cm.18.(3分)如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A′的位置,若OB=,tan∠BOC=,则点A′的坐标为.19.(3分)规定:log a b(a>0,a≠1,b>0)表示a,b之间的一种运算.现有如下的运算法则:log a a n=n.log N M=(a>0,a≠1,N>0,N≠1,M >0).例如:log223=3,log25=,则log1001000=.三、解答题(本大题共7小题,共63分)20.(7分)计算:+|2﹣3|﹣()﹣1﹣2cos30°.21.(7分)在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 73258430 8215 7453 7446 67547638 6834 7326 6830 86488753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:步数分组统计表请根据以上信息解答下列问题:(1)填空:m=,n=;(2)补全频数发布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在组;(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.22.(7分)如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C 两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)23.(9分)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.24.(9分)为了提高身体素质,有些人选择到专业的健身中心锻炼身体,某健身中心的消费方式如下:普通消费:35元/次;白金卡消费:购卡280元/张,凭卡免费消费10次再送2次;钻石卡消费:购卡560元/张,凭卡每次消费不再收费.以上消费卡使用年限均为一年,每位顾客只能购买一张卡,且只限本人使用.(1)李叔叔每年去该健身中心健身6次,他应选择哪种消费方式更合算?(2)设一年内去该健身中心健身x次(x为正整数),所需总费用为y元,请分别写出选择普通消费和白金卡消费的y与x的函数关系式;(3)王阿姨每年去该健身中心健身至少18次,请通过计算帮助王阿姨选择最合算的消费方式.25.(11分)△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:.②BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.26.(13分)如图,已知抛物线y=ax2﹣x+c与x轴相交于A、B两点,并与直线y=x﹣2交于B、C两点,其中点C是直线y=x﹣2与y轴的交点,连接AC.(1)求抛物线的解析式;(2)证明:△ABC为直角三角形;(3)△ABC内部能否截出面积最大的矩形DEFG?(顶点D、E、F、G在△ABC 各边上)若能,求出最大面积;若不能,请说明理由.2016-2017学年山东省临沂市费县九年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)在0,1,﹣2,3这四个数中,最小的数是()A.﹣2 B.1 C.0 D.3【解答】解:∵﹣2<0<1<3,∴最小的数是﹣2,故选:A.2.(3分)如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A.50°B.45°C.40°D.30°【解答】解:∵l1∥l2,∴∠1=∠ABC=50°.∵CD⊥AB于点D,∴∠CDB=90°.∴∠BCD+∠DBC=90°,即∠BCD+50°=90°.∴∠BCD=40°.故选:C.3.(3分)下列计算正确的是()A.(﹣x3)2=x5B.x8÷x4=x2C.x3•x2=x6D.(﹣3x2)2=9x4【解答】解:A、(﹣x3)2=x3×2=x6,故本选项错误;B、x8÷x4=x8﹣4=x4,故本选项错误;C、x3•x2=x3+2=x5,故本选项错误;D、(﹣3x2)2=(﹣3)2•(x2)2=9x4,故本选项正确.故选:D.4.(3分)如图所示的几何体为圆台,其俯视图正确的是()A.B.C.D.【解答】解:从几何体的上面看所得到的图形是两个同心圆,故选:C.5.(3分)把不等式组的解集表示在数轴上,正确的是()A.B.C.D.【解答】解:解不等式x+1>0得:x>﹣1,解不等式2x﹣4≤0得:x≤2,则不等式的解集为:﹣1<x≤2,在数轴上表示为:.故选:B.6.(3分)“服务他人,提升自我”,某学校积极开展志愿者服务活动,来自初三的5名同学(3男2女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是()A.B.C.D.【解答】解:根据题意画出树状图如下:一共有20种情况,恰好是一男一女的有12种情况,所以,P(恰好是一男一女)==.故选:D.7.(3分)将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1 B.x(x﹣2)+(2﹣x) C.x2﹣2x+1 D.x2+2x+1【解答】解:A、x2﹣1=(x+1)(x﹣1),故A选项不合题意;B、x(x﹣2)+(2﹣x)=(x﹣2)(x﹣1),故B选项不合题意;C、x2﹣2x+1=(x﹣1)2,故C选项不合题意;D、x2+2x+1=(x+1)2,故D选项符合题意.故选:D.8.(3分)如图是某市2016年四月每日的最低气温(℃)的统计图,则在四月份每日的最低气温这组数据中,中位数和众数分别是()A.14℃,14℃B.15℃,15℃C.14℃,15℃D.15℃,14℃【解答】解:由条形统计图中出现频数最大条形最高的数据是在第三组,14℃,故众数是14℃;因图中是按从小到大的顺序排列的,最中间的环数是14℃、14℃,故中位数是14℃.故选:A.9.(3分)如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45°B.50°C.60°D.75°【解答】解:设∠ADC的度数=α,∠ABC的度数=β;∵四边形ABCO是平行四边形,∴∠ABC=∠AOC;∵∠ADC=β,∠ADC=α;而α+β=180°,∴,解得:β=120°,α=60°,∠ADC=60°,故选:C.10.(3分)施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x米,则根据题意所列方程正确的是()A.﹣=2 B.﹣=2C.﹣=2 D.﹣=2【解答】解:设原计划每天施工x米,则实际每天施工(x+50)米,根据题意,可列方程:﹣=2,故选:A.11.(3分)下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依次规律,图⑩中黑色正方形的个数是()A.32 B.29 C.28 D.26【解答】解:观察图形发现:图①中有2个黑色正方形,图②中有2+3×(2﹣1)=5个黑色正方形,图③中有2+3×(3﹣1)=8个黑色正方形,图④中有2+3×(4﹣1)=11个黑色正方形,…,图n中有2+3(n﹣1)=3n﹣1个黑色的正方形,当n=10时,2+3×(10﹣1)=29,故选:B.12.(3分)如图,在▱ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC 交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是()A.梯形B.矩形C.菱形D.正方形【解答】解:四边形AECF是菱形,理由:∵在▱ABCD中,对角线AC与BD相交于点O,∴AO=CO,∠AFO=∠CEO,∴在△AFO和△CEO中,∴△AFO≌△CEO(AAS),∴FO=EO,∴四边形AECF平行四边形,∵EF⊥AC,∴平行四边形AECF是菱形.故选:C.13.(3分)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表:下列结论错误的是()A.ac<0B.当x>1时,y的值随x的增大而减小C.3是方程ax2+(b﹣1)x+c=0的一个根D.当﹣1<x<3时,ax2+(b﹣1)x+c>0【解答】解:∵抛物线经过点(0,3)和(3,3),∴c=3,抛物线的对称轴为直线x=,顶点坐标为(1,5),∴抛物线开口向上,∴a<0,∴ac<0,所以A选项的结论正确;当x>时,y的值随x的增大而减小,所以B选项的结论错误;∵抛物线过点(﹣1,﹣1),(3,3),即抛物线与直线y=x相交于点(﹣1,﹣1),(3,3),∴3和﹣1是方程ax2+bx+c=x的根,所以C选项的结论正确;当﹣1<x<3时,ax2+bx+c>x,即ax2+(b﹣1)x+c>0,所以D选项的结论正确.故选:B.14.(3分)如图,△ABC的三个顶点分别为A(1,2),B(2,5),C(6,1).若函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.2≤k≤B.6≤k≤10 C.2≤k≤6 D.2≤k≤【解答】解:反比例函数和三角形有交点的第一个临界点是交点为A,∵过点A(1,2)的反比例函数解析式为y=,∴k≥2.随着k值的增大,反比例函数的图象必须和线段BC有交点才能满足题意,经过B(2,5),C(6,1)的直线解析式为y=﹣x+7,,得x2﹣7x+k=0根据△≥0,得k≤综上可知2≤k≤.故选:A.二、填空题(本大题共5小题,每小题3分,共15分)15.(3分)若=3﹣x,则x的取值范围是x≤3.【解答】解:∵=3﹣x,∴3﹣x≥0,解得:x≤3,故答案为:x≤3.16.(3分)化简﹣(a+1)的结果是.【解答】解:原式=﹣=故答案为:17.(3分)如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为13cm.【解答】解:∵将线段DC沿着CB的方向平移7cm得到线段EF,∴EF=DC=4cm,FC=7cm,∵AB=AC,BC=12cm,∴∠B=∠C,BF=5cm,∴∠B=∠BFE,∴BE=EF=4cm,∴△EBF的周长为:4+4+5=13(cm).故答案为:13.18.(3分)如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A′的位置,若OB=,tan∠BOC=,则点A′的坐标为(,).【解答】解:如图,过点A′作A′D⊥x轴与点D;设A′D=λ,OD=μ;∵四边形ABCO为矩形,∴∠OAB=∠OCB=90°;四边形ABA′D为梯形;设AB=OC=γ,BC=AO=ρ;∵OB=,tan∠BOC=,∴,解得:γ=2,ρ=1;由题意得:A′O=AO=1;△ABO≌△A′BO;由勾股定理得:λ2+μ2=1①,由面积公式得:②;联立①②并解得:λ=,μ=.故答案为(,).19.(3分)规定:log a b(a>0,a≠1,b>0)表示a,b之间的一种运算.现有如下的运算法则:log a a n=n.log N M=(a>0,a≠1,N>0,N≠1,M >0).例如:log223=3,log25=,则log1001000=.【解答】解:先由公式log N M=得:log1001000=,由公式log a a n=n得:①log101000==3;②log10100==2;∴log1001000===.故答案为:.三、解答题(本大题共7小题,共63分)20.(7分)计算:+|2﹣3|﹣()﹣1﹣2cos30°.【解答】解:原式=3+3﹣2﹣3+2×=+3﹣3﹣3=﹣3.21.(7分)在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 73258430 8215 7453 7446 67547638 6834 7326 6830 86488753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:步数分组统计表请根据以上信息解答下列问题:(1)填空:m=4,n=1;(2)补全频数发布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在B组;(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.【解答】解:(1)m=4,n=1.故答案是:4,1;(2);(3)行走步数的中位数落在B组,故答案是:B;(4)一天行走步数不少于7500步的人数是:120×=48(人).答:估计一天行走步数不少于7500步的人数是48人.22.(7分)如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C 两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)【解答】解:如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在直角△ADF中,∵AF=80m﹣10m=70m,∠ADF=45°,∴DF=AF=70m.在直角△CDE中,∵DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=70﹣10≈70﹣17.32≈52.7(m).答:障碍物B,C两点间的距离约为52.7m.23.(9分)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.【解答】(1)证明:连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)∵在Rt△AED中,∠D=30°,AE=6,∴AD=2AE=12,在Rt△AED中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD=,∴S△OCD=,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=×π×OC2=,∵S阴影=S△COD﹣S扇形OBC∴S阴影=8﹣,∴阴影部分的面积为8﹣.24.(9分)为了提高身体素质,有些人选择到专业的健身中心锻炼身体,某健身中心的消费方式如下:普通消费:35元/次;白金卡消费:购卡280元/张,凭卡免费消费10次再送2次;钻石卡消费:购卡560元/张,凭卡每次消费不再收费.以上消费卡使用年限均为一年,每位顾客只能购买一张卡,且只限本人使用.(1)李叔叔每年去该健身中心健身6次,他应选择哪种消费方式更合算?(2)设一年内去该健身中心健身x次(x为正整数),所需总费用为y元,请分别写出选择普通消费和白金卡消费的y与x的函数关系式;(3)王阿姨每年去该健身中心健身至少18次,请通过计算帮助王阿姨选择最合算的消费方式.【解答】解:(1)35×6=210(元),210<280<560,∴李叔叔选择普通消费方式更合算.(2)根据题意得:y普通=35x.当x≤12时,y白金卡=280;当x>12时,y白金卡=280+35(x﹣12)=35x﹣140.∴y白金卡=.(3)当x=18时,y普通=35×18=630;y白金卡=35×18﹣140=490;令y白金卡=560,即35x﹣140=560,解得:x=20.当18≤x≤19时,选择白金卡消费最合算;当x=20时,选择白金卡消费和钻石卡消费费用相同;当x≥21时,选择钻石卡消费最合算.25.(11分)△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:垂直.②BC,CD,CF之间的数量关系为:BC=CD+CF;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.【解答】解:(1)①正方形ADEF中,AD=AF,在△DAB与△FAC中,,∴△DAB≌△FAC,∴∠B=∠ACF,∴∠ACB+∠ACF=90°,即BC⊥CF;故答案为:垂直;②△DAB≌△FAC,∴CF=BD,∵BC=BD+CD,∴BC=CF+CD;故答案为:BC=CF+CD;(2)CF⊥BC成立;BC=CD+CF不成立,CD=CF+BC.∵正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC,∴∠ABD=∠ACF,∵∠BAC=90°,AB=AC,∴∠ACB=∠ABC=45°.∴∠ABD=180°﹣45°=135°,∴∠BCF=∠ACF﹣∠ACB=135°﹣45°=90°,∴CF⊥BC.∵CD=DB+BC,DB=CF,∴CD=CF+BC.(3)解:过A作AH⊥BC于H,过E作EM⊥BD于M,EN⊥CF于N,∵∠BAC=90°,AB=AC,∴DH=3,由(2)证得BC⊥CF,CF=BD=5,∵四边形ADEF是正方形,∴AD=DE,∠ADE=90°,∵BC⊥CF,EM⊥BD,EN⊥CF,∴四边形CMEN是矩形,∴NE=CM,EM=CN,∵∠AHD=∠ADE=∠EMD=90°,∴∠ADH+∠EDM=∠EDM+∠DEM=90°,∴∠ADH=∠DEM,在△ADH与△DEM中,,∴△ADH≌△DEM,∴EM=DH=3,DM=AH=2,∴CN=EM=3,EN=CM=3,∵∠ABC=45°,∴∠BGC=45°,∴△BCG是等腰直角三角形,∴CG=BC=4,∴GN=1,∴EG==.26.(13分)如图,已知抛物线y=ax2﹣x+c与x轴相交于A、B两点,并与直线y=x﹣2交于B、C两点,其中点C是直线y=x﹣2与y轴的交点,连接AC.(3)△ABC内部能否截出面积最大的矩形DEFG?(顶点D、E、F、G在△ABC 各边上)若能,求出最大面积;若不能,请说明理由.【解答】(1)解:∵直线y=x﹣2交x轴、y轴于B、C两点,∴B(4,0),C(0,﹣2),∵y=ax2﹣x+c过B、C两点,∴,解得,∴y=x2﹣x﹣2.(2)证明:如图1,连接AC,∵y=x2﹣x﹣2与x负半轴交于A点,∴A(﹣1,0),在Rt△AOC中,∵AO=1,OC=2,∵BO=4,OC=2,∴BC=2,∵AB=AO+BO=1+4=5,∴AB2=AC2+BC2,∴△ABC为直角三角形.(3)解:△ABC内部可截出面积最大的矩形DEFG,面积为,理由如下:①一点为C,AB、AC、BC边上各有一点,如图2,此时△AGF∽△ACB∽△FEB.设GC=x,AG=﹣x,∵,∴,∴GF=2﹣2x,∴S=GC•GF=x•(2)=﹣2x2+2x=﹣2[(x﹣)2﹣]=﹣2(x﹣)2+,即当x=时,S最大,为.②AB边上有两点,AC、BC边上各有一点,如图3,此时△CDE∽△CAB∽△GAD,∵, ∴, ∴AD=x ,∴CD=CA ﹣AD=﹣x ,∵,∴,∴DE=5﹣x ,∴S=GD•DE=x•(5﹣x )=﹣x 2+5x=﹣[(x ﹣1)2﹣1]=﹣(x ﹣1)2+, 即x=1时,S 最大,为.综上所述,△ABC 内部可截出面积最大的矩形DEFG ,面积为.。

山东省临沂市经济技术开发区2016届九年级数学下学期期中学业水平质量调研试题

山东省临沂市经济技术开发区2016届九年级数学下学期期中学业水平质量调研试题

某某省某某市经济技术开发区2016届九年级数学下学期期中学业水平质量调研试题(时间:120分钟 满分:120分)一、选择题(本大题共14小题,每小题3分,共42分). 1.12-的相反数是: A.12B.12- C.2D.2- 2.下列运算正确的是: A. ()623a a -=- B.842a a a ÷=C.222)(b a b a -=- D.235a a a ⋅=3.南海是我国固有领海,面积超过东海、黄海、渤海面积的总和,约为360万平方千 米,360万用科学记数法可表示为:A .3.6×102B .360×104C .3.6×104D .3.6×1064.如图是一架婴儿车的平面示意图,其中AB //CD ,∠1=130°,∠3=40°,那么∠2的度数为: A .80° B .90°C .100°D .102°5.如图是某工厂要设计生产的正六棱柱形密封罐的立体图形,它的主视图是:A .B .C .D .6.不等式组32>2(4)x xx +⎧⎨--⎩≥1的解集在数轴上表示正确的是:7.如图,一只蚂蚁在树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它获得食物的概率是:A .12B .13C .14D .168.某区10名学生参加市级汉字听写大赛,他们得分情况如下表:正面A B1321CD FE 第4题图第5题图人数 3 4 2 1 分数80859095那么这10名学生所得分数的众数和中位数分别是: A .85和85B .85和80 C .95和85D .85和87.59.化简2221121a a a a a a +-÷--+的结果是: A.1a B.a C.11a a +- D.11a a -+ 10.速录员小明打2500个字和小刚打3000个字所用的时间相同,已知小刚每分钟比小明多打50个字,求两人的打字速度.设小刚每分钟打x 个字,根据题意列方程,正确的是: A .x 2500=503000-x B.x 2500=503000+x C. 502500-x =x 3000D.502500+x =x300011.如图,在平面直角坐标系中,已知点A (2,0),B (0,3),如果将线段AB 绕点B 顺时针旋转90°至CB ,那么点C 的坐标是A .(﹣3,2)B .(﹣3,1)C .(2,1)D .(﹣2,1)12.如图,在⊙O 中,弦AC ∥OB ,∠BOC =50°,则∠OAB 的度数为: A .25° B.50°C.60°D.30°13.小明在做数学题时,发现下面有趣的结果: 3﹣2=18+7﹣6﹣5=415+14+13﹣12﹣11﹣10=924+23+22+21﹣20﹣19﹣18﹣17=16 ……根据以上规律可知第10行左起第一个数是: A .100 B .121 C .120 D .8214.在平面直角坐标系中,直线y =-x +2与反比例函数1y x=的图象有唯一公共点. 若直线y =-x +b 与反比例函数1y x=的图象没有公共点,则b 的取值X 围是: A.b >2 B.-2<b <2 C. b >2或b <-2 D. b <-2第7题图二、填空题(本题1大题,5小题,每小题3分,共15分)15.(1)已知实数a 、b 满足ab=1,a =2﹣b ,则a 2b +ab 2=(2)若n (其中n ≠0)是关于x 的方程x 2+mx +2n =0的根,则m +n 的值为(3)如图,平行于BC 的直线DE 把△ABC 分成的两部分面积相等,则ADAB =(4)如图,在菱形ABCD 中,DE ⊥AB ,3cos 5A =,AE =3,则tan ∠DBE 的值是 (5)规定:sin (x +y )=sin x •cos y +cos x •sin y .根据初中学过的特殊角的三角函数值,求得sin75°的值为 三、解答题(共63分) 16.(本小题满分7分) 计算:48tan 30°+2(6)--)017.(本小题满分7分)为了解学生体育训练的情况,某市从全市九年级学生中随机抽取部分学生进行了一次体育科目测试(把测试结果分为四个等级:A 级、B 级、C 级、D 级),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)扇形图中∠α的度数是,并把条形统计图补充完整;(3)对A ,B ,C ,D 四个等级依次赋分为90,75,65,55(单位: 分),比如:等级为A 级的同学体育得分为90分,…,依此类推.该市九年级共有学生32000名,如果全部参加这次体育测试,则不及格(即60分以下)的有多少人? 18.(本小题满分7分)第15(3)题图 第15(4)题图 DAB CE体育测试各等级学生人数条形图体育测试各等级学生人数扇形图αD 级A 级C 级20%B 级40%41612等级人数D 级C 级B 级A 级24681012141618O 第17题图 20 60 80100120140 160 180 40120 16040如图,一楼房AB 后有一假山,山坡斜面CD 与水平面夹角为30°,坡面上点E 处有一亭子,测得假山坡脚C 与楼房水平距离BC =10米,与亭子距离CE =20米,小丽从楼房顶测得点E 的俯角为45°.求楼房AB 的高(结果保留根号). 19.(本小题满分9分) 在□ABCD 中,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF 。

费县初三数学期中试卷答案

费县初三数学期中试卷答案

一、选择题(每题3分,共30分)1. 下列各数中,无理数是()A. √4B. √9C. √16D. √25答案:A2. 下列等式中,正确的是()A. (a+b)^2 = a^2 + b^2B. (a-b)^2 = a^2 - b^2C. (a+b)^2 = a^2 + 2ab + b^2D. (a-b)^2 = a^2 - 2ab + b^2答案:C3. 若x=2,则代数式x^2-3x+2的值为()A. 1B. 2C. 3D. 4答案:A4. 在△ABC中,若∠A=45°,∠B=90°,则∠C的度数为()A. 45°B. 90°C. 135°D. 180°答案:C5. 下列图形中,中心对称图形是()A. 正方形B. 等腰三角形C. 长方形D. 梯形答案:A6. 若a、b、c是等差数列,且a+b+c=12,则ab+bc+ca的值为()A. 36B. 24C. 18D. 12答案:A7. 下列函数中,是反比例函数的是()A. y = x^2B. y = 2x + 3C. y = 1/xD. y = 3x - 2答案:C8. 下列方程中,解为x=2的是()A. 2x - 4 = 0B. 2x + 4 = 0C. 2x - 2 = 0D. 2x + 2 = 0答案:A9. 若等比数列的首项为2,公比为3,则第5项为()A. 18B. 27C. 81D. 243答案:D10. 下列不等式中,正确的是()A. 2x + 3 > 5B. 2x - 3 > 5C. 2x + 3 < 5D. 2x - 3 < 5答案:A二、填空题(每题3分,共30分)11. 若a=3,b=4,则a^2 + b^2 = ________。

答案:2512. 已知等差数列的首项为2,公差为3,则第10项为 ________。

答案:3113. 若∠A和∠B是等腰三角形的两个底角,则∠A的度数为 ________。

费县初三试卷数学答案解析

费县初三试卷数学答案解析

一、选择题1. 下列各数中,有理数是:()A. √2B. πC. √-1D. √3答案:C解析:有理数是可以表示为两个整数之比的数。

在给出的选项中,只有√-1可以表示为两个整数之比(即-1/1),所以选C。

2. 下列各式中,正确的是:()A. 3a + 2b = 5a - 2bB. 3a - 2b = 5a + 2bC. 3a + 2b = 5a + 2bD. 3a - 2b = 5a - 2b答案:D解析:对于等式两边的同类项,系数相等时,可以合并。

在给出的选项中,只有D 选项满足这个条件,所以选D。

3. 若一个等腰三角形的底边长为5,腰长为6,则这个三角形的面积是:()A. 15B. 18C. 20D. 24答案:C解析:等腰三角形的面积可以用公式S = 1/2 × 底边长× 高来计算。

首先,需要求出高。

由勾股定理可知,等腰三角形的高等于腰长的一半,即3。

代入公式计算得到S = 1/2 × 5 × 3 = 15/2 = 7.5,所以选C。

4. 下列函数中,单调递减的是:()A. y = 2x - 1B. y = -x^2 + 1C. y = x^2 - 1D. y = -2x + 1答案:D解析:单调递减的函数是指随着自变量的增大,函数值逐渐减小的函数。

在给出的选项中,只有D选项满足这个条件,所以选D。

二、填空题1. 若a > b,则a - b的符号是()答案:正号解析:由于a > b,所以a - b > 0,因此a - b的符号是正号。

2. 已知等差数列的首项为2,公差为3,则第10项是()答案:31解析:等差数列的通项公式为an = a1 + (n - 1)d,其中an表示第n项,a1表示首项,d表示公差。

代入公式计算得到第10项an = 2 + (10 - 1) × 3 = 2 + 27 = 29,所以第10项是31。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年山东省临沂市费县九年级(下)期中数学试卷一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)在0,1,﹣2,3这四个数中,最小的数是()A.﹣2 B.1 C.0 D.32.(3分)如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A.50°B.45°C.40°D.30°3.(3分)下列计算正确的是()A.(﹣x3)2=x5B.x8÷x4=x2C.x3•x2=x6D.(﹣3x2)2=9x44.(3分)如图所示的几何体为圆台,其俯视图正确的是()A.B.C.D.5.(3分)把不等式组的解集表示在数轴上,正确的是()A.B.C.D.6.(3分)“服务他人,提升自我”,某学校积极开展志愿者服务活动,来自初三的5名同学(3男2女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是()A.B.C.D.7.(3分)将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1 B.x(x﹣2)+(2﹣x) C.x2﹣2x+1 D.x2+2x+18.(3分)如图是某市2016年四月每日的最低气温(℃)的统计图,则在四月份每日的最低气温这组数据中,中位数和众数分别是()A.14℃,14℃B.15℃,15℃C.14℃,15℃D.15℃,14℃9.(3分)如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45°B.50°C.60°D.75°10.(3分)施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x米,则根据题意所列方程正确的是()A.﹣=2 B.﹣=2C.﹣=2 D.﹣=211.(3分)下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依次规律,图⑩中黑色正方形的个数是()A.32 B.29 C.28 D.2612.(3分)如图,在▱ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC 交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是()A.梯形B.矩形C.菱形D.正方形13.(3分)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表:下列结论错误的是()A.ac<0B.当x>1时,y的值随x的增大而减小C.3是方程ax2+(b﹣1)x+c=0的一个根D.当﹣1<x<3时,ax2+(b﹣1)x+c>014.(3分)如图,△ABC的三个顶点分别为A(1,2),B(2,5),C(6,1).若函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.2≤k≤B.6≤k≤10 C.2≤k≤6 D.2≤k≤二、填空题(本大题共5小题,每小题3分,共15分)15.(3分)若=3﹣x,则x的取值范围是.16.(3分)化简﹣(a+1)的结果是.17.(3分)如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为cm.18.(3分)如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A′的位置,若OB=,tan∠BOC=,则点A′的坐标为.19.(3分)规定:log a b(a>0,a≠1,b>0)表示a,b之间的一种运算.现有如下的运算法则:log a a n=n.log N M=(a>0,a≠1,N>0,N≠1,M >0).例如:log223=3,log25=,则log1001000=.三、解答题(本大题共7小题,共63分)20.(7分)计算:+|2﹣3|﹣()﹣1﹣2cos30°.21.(7分)在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 73258430 8215 7453 7446 67547638 6834 7326 6830 86488753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:步数分组统计表请根据以上信息解答下列问题:(1)填空:m=,n=;(2)补全频数发布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在组;(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.22.(7分)如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C 两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)23.(9分)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.24.(9分)为了提高身体素质,有些人选择到专业的健身中心锻炼身体,某健身中心的消费方式如下:普通消费:35元/次;白金卡消费:购卡280元/张,凭卡免费消费10次再送2次;钻石卡消费:购卡560元/张,凭卡每次消费不再收费.以上消费卡使用年限均为一年,每位顾客只能购买一张卡,且只限本人使用.(1)李叔叔每年去该健身中心健身6次,他应选择哪种消费方式更合算?(2)设一年内去该健身中心健身x次(x为正整数),所需总费用为y元,请分别写出选择普通消费和白金卡消费的y与x的函数关系式;(3)王阿姨每年去该健身中心健身至少18次,请通过计算帮助王阿姨选择最合算的消费方式.25.(11分)△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:.②BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.26.(13分)如图,已知抛物线y=ax2﹣x+c与x轴相交于A、B两点,并与直线y=x﹣2交于B、C两点,其中点C是直线y=x﹣2与y轴的交点,连接AC.(1)求抛物线的解析式;(2)证明:△ABC为直角三角形;(3)△ABC内部能否截出面积最大的矩形DEFG?(顶点D、E、F、G在△ABC 各边上)若能,求出最大面积;若不能,请说明理由.2016-2017学年山东省临沂市费县九年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)在0,1,﹣2,3这四个数中,最小的数是()A.﹣2 B.1 C.0 D.3【解答】解:∵﹣2<0<1<3,∴最小的数是﹣2,故选:A.2.(3分)如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A.50°B.45°C.40°D.30°【解答】解:∵l1∥l2,∴∠1=∠ABC=50°.∵CD⊥AB于点D,∴∠CDB=90°.∴∠BCD+∠DBC=90°,即∠BCD+50°=90°.∴∠BCD=40°.故选:C.3.(3分)下列计算正确的是()A.(﹣x3)2=x5B.x8÷x4=x2C.x3•x2=x6D.(﹣3x2)2=9x4【解答】解:A、(﹣x3)2=x3×2=x6,故本选项错误;B、x8÷x4=x8﹣4=x4,故本选项错误;C、x3•x2=x3+2=x5,故本选项错误;D、(﹣3x2)2=(﹣3)2•(x2)2=9x4,故本选项正确.故选:D.4.(3分)如图所示的几何体为圆台,其俯视图正确的是()A.B.C.D.【解答】解:从几何体的上面看所得到的图形是两个同心圆,故选:C.5.(3分)把不等式组的解集表示在数轴上,正确的是()A.B.C.D.【解答】解:解不等式x+1>0得:x>﹣1,解不等式2x﹣4≤0得:x≤2,则不等式的解集为:﹣1<x≤2,在数轴上表示为:.故选:B.6.(3分)“服务他人,提升自我”,某学校积极开展志愿者服务活动,来自初三的5名同学(3男2女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是()A.B.C.D.【解答】解:根据题意画出树状图如下:一共有20种情况,恰好是一男一女的有12种情况,所以,P(恰好是一男一女)==.故选:D.7.(3分)将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1 B.x(x﹣2)+(2﹣x) C.x2﹣2x+1 D.x2+2x+1【解答】解:A、x2﹣1=(x+1)(x﹣1),故A选项不合题意;B、x(x﹣2)+(2﹣x)=(x﹣2)(x﹣1),故B选项不合题意;C、x2﹣2x+1=(x﹣1)2,故C选项不合题意;D、x2+2x+1=(x+1)2,故D选项符合题意.故选:D.8.(3分)如图是某市2016年四月每日的最低气温(℃)的统计图,则在四月份每日的最低气温这组数据中,中位数和众数分别是()A.14℃,14℃B.15℃,15℃C.14℃,15℃D.15℃,14℃【解答】解:由条形统计图中出现频数最大条形最高的数据是在第三组,14℃,故众数是14℃;因图中是按从小到大的顺序排列的,最中间的环数是14℃、14℃,故中位数是14℃.故选:A.9.(3分)如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45°B.50°C.60°D.75°【解答】解:设∠ADC的度数=α,∠ABC的度数=β;∵四边形ABCO是平行四边形,∴∠ABC=∠AOC;∵∠ADC=β,∠ADC=α;而α+β=180°,∴,解得:β=120°,α=60°,∠ADC=60°,故选:C.10.(3分)施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x米,则根据题意所列方程正确的是()A.﹣=2 B.﹣=2C.﹣=2 D.﹣=2【解答】解:设原计划每天施工x米,则实际每天施工(x+50)米,根据题意,可列方程:﹣=2,故选:A.11.(3分)下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依次规律,图⑩中黑色正方形的个数是()A.32 B.29 C.28 D.26【解答】解:观察图形发现:图①中有2个黑色正方形,图②中有2+3×(2﹣1)=5个黑色正方形,图③中有2+3×(3﹣1)=8个黑色正方形,图④中有2+3×(4﹣1)=11个黑色正方形,…,图n中有2+3(n﹣1)=3n﹣1个黑色的正方形,当n=10时,2+3×(10﹣1)=29,故选:B.12.(3分)如图,在▱ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC 交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是()A.梯形B.矩形C.菱形D.正方形【解答】解:四边形AECF是菱形,理由:∵在▱ABCD中,对角线AC与BD相交于点O,∴AO=CO,∠AFO=∠CEO,∴在△AFO和△CEO中,∴△AFO≌△CEO(AAS),∴FO=EO,∴四边形AECF平行四边形,∵EF⊥AC,∴平行四边形AECF是菱形.故选:C.13.(3分)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表:下列结论错误的是()A.ac<0B.当x>1时,y的值随x的增大而减小C.3是方程ax2+(b﹣1)x+c=0的一个根D.当﹣1<x<3时,ax2+(b﹣1)x+c>0【解答】解:∵抛物线经过点(0,3)和(3,3),∴c=3,抛物线的对称轴为直线x=,顶点坐标为(1,5),∴抛物线开口向上,∴a<0,∴ac<0,所以A选项的结论正确;当x>时,y的值随x的增大而减小,所以B选项的结论错误;∵抛物线过点(﹣1,﹣1),(3,3),即抛物线与直线y=x相交于点(﹣1,﹣1),(3,3),∴3和﹣1是方程ax2+bx+c=x的根,所以C选项的结论正确;当﹣1<x<3时,ax2+bx+c>x,即ax2+(b﹣1)x+c>0,所以D选项的结论正确.故选:B.14.(3分)如图,△ABC的三个顶点分别为A(1,2),B(2,5),C(6,1).若函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.2≤k≤B.6≤k≤10 C.2≤k≤6 D.2≤k≤【解答】解:反比例函数和三角形有交点的第一个临界点是交点为A,∵过点A(1,2)的反比例函数解析式为y=,∴k≥2.随着k值的增大,反比例函数的图象必须和线段BC有交点才能满足题意,经过B(2,5),C(6,1)的直线解析式为y=﹣x+7,,得x2﹣7x+k=0根据△≥0,得k≤综上可知2≤k≤.故选:A.二、填空题(本大题共5小题,每小题3分,共15分)15.(3分)若=3﹣x,则x的取值范围是x≤3.【解答】解:∵=3﹣x,∴3﹣x≥0,解得:x≤3,故答案为:x≤3.16.(3分)化简﹣(a+1)的结果是.【解答】解:原式=﹣=故答案为:17.(3分)如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为13cm.【解答】解:∵将线段DC沿着CB的方向平移7cm得到线段EF,∴EF=DC=4cm,FC=7cm,∵AB=AC,BC=12cm,∴∠B=∠C,BF=5cm,∴∠B=∠BFE,∴BE=EF=4cm,∴△EBF的周长为:4+4+5=13(cm).故答案为:13.18.(3分)如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A′的位置,若OB=,tan∠BOC=,则点A′的坐标为(,).【解答】解:如图,过点A′作A′D⊥x轴与点D;设A′D=λ,OD=μ;∵四边形ABCO为矩形,∴∠OAB=∠OCB=90°;四边形ABA′D为梯形;设AB=OC=γ,BC=AO=ρ;∵OB=,tan∠BOC=,∴,解得:γ=2,ρ=1;由题意得:A′O=AO=1;△ABO≌△A′BO;由勾股定理得:λ2+μ2=1①,由面积公式得:②;联立①②并解得:λ=,μ=.故答案为(,).19.(3分)规定:log a b(a>0,a≠1,b>0)表示a,b之间的一种运算.现有如下的运算法则:log a a n=n.log N M=(a>0,a≠1,N>0,N≠1,M >0).例如:log223=3,log25=,则log1001000=.【解答】解:先由公式log N M=得:log1001000=,由公式log a a n=n得:①log101000==3;②log10100==2;∴log1001000===.故答案为:.三、解答题(本大题共7小题,共63分)20.(7分)计算:+|2﹣3|﹣()﹣1﹣2cos30°.【解答】解:原式=3+3﹣2﹣3+2×=+3﹣3﹣3=﹣3.21.(7分)在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 73258430 8215 7453 7446 67547638 6834 7326 6830 86488753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:步数分组统计表请根据以上信息解答下列问题:(1)填空:m=4,n=1;(2)补全频数发布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在B组;(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.【解答】解:(1)m=4,n=1.故答案是:4,1;(2);(3)行走步数的中位数落在B组,故答案是:B;(4)一天行走步数不少于7500步的人数是:120×=48(人).答:估计一天行走步数不少于7500步的人数是48人.22.(7分)如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C 两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)【解答】解:如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在直角△ADF中,∵AF=80m﹣10m=70m,∠ADF=45°,∴DF=AF=70m.在直角△CDE中,∵DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=70﹣10≈70﹣17.32≈52.7(m).答:障碍物B,C两点间的距离约为52.7m.23.(9分)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.【解答】(1)证明:连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)∵在Rt△AED中,∠D=30°,AE=6,∴AD=2AE=12,在Rt△AED中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD=,∴S△OCD=,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=×π×OC2=,∵S阴影=S△COD﹣S扇形OBC∴S阴影=8﹣,∴阴影部分的面积为8﹣.24.(9分)为了提高身体素质,有些人选择到专业的健身中心锻炼身体,某健身中心的消费方式如下:普通消费:35元/次;白金卡消费:购卡280元/张,凭卡免费消费10次再送2次;钻石卡消费:购卡560元/张,凭卡每次消费不再收费.以上消费卡使用年限均为一年,每位顾客只能购买一张卡,且只限本人使用.(1)李叔叔每年去该健身中心健身6次,他应选择哪种消费方式更合算?(2)设一年内去该健身中心健身x次(x为正整数),所需总费用为y元,请分别写出选择普通消费和白金卡消费的y与x的函数关系式;(3)王阿姨每年去该健身中心健身至少18次,请通过计算帮助王阿姨选择最合算的消费方式.【解答】解:(1)35×6=210(元),210<280<560,∴李叔叔选择普通消费方式更合算.(2)根据题意得:y普通=35x.当x≤12时,y白金卡=280;当x>12时,y白金卡=280+35(x﹣12)=35x﹣140.∴y白金卡=.(3)当x=18时,y普通=35×18=630;y白金卡=35×18﹣140=490;令y白金卡=560,即35x﹣140=560,解得:x=20.当18≤x≤19时,选择白金卡消费最合算;当x=20时,选择白金卡消费和钻石卡消费费用相同;当x≥21时,选择钻石卡消费最合算.25.(11分)△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:垂直.②BC,CD,CF之间的数量关系为:BC=CD+CF;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.【解答】解:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC,∴∠B=∠ACF,∴∠ACB+∠ACF=90°,即BC⊥CF;故答案为:垂直;②△DAB≌△FAC,∴CF=BD,∵BC=BD+CD,∴BC=CF+CD;故答案为:BC=CF+CD;(2)CF⊥BC成立;BC=CD+CF不成立,CD=CF+BC.∵正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC,∴∠ABD=∠ACF,∵∠BAC=90°,AB=AC,∴∠ACB=∠ABC=45°.∴∠ABD=180°﹣45°=135°,∴∠BCF=∠ACF﹣∠ACB=135°﹣45°=90°,∴CF⊥BC.∵CD=DB+BC,DB=CF,∴CD=CF+BC.(3)解:过A作AH⊥BC于H,过E作EM⊥BD于M,EN⊥CF于N,∵∠BAC=90°,AB=AC,∴BC=AB=4,AH=BC=2,∴CD=BC=1,CH=BC=2,∴DH=3,由(2)证得BC⊥CF,CF=BD=5,∵四边形ADEF是正方形,∴AD=DE,∠ADE=90°,∵BC⊥CF,EM⊥BD,EN⊥CF,∴四边形CMEN是矩形,∴NE=CM,EM=CN,∵∠AHD=∠ADE=∠EMD=90°,∴∠ADH+∠EDM=∠EDM+∠DEM=90°,∴∠ADH=∠DEM,在△ADH与△DEM中,,∴△ADH≌△DEM,∴EM=DH=3,DM=AH=2,∴CN=EM=3,EN=CM=3,∵∠ABC=45°,∴∠BGC=45°,∴△BCG是等腰直角三角形,∴CG=BC=4,∴GN=1,∴EG==.26.(13分)如图,已知抛物线y=ax2﹣x+c与x轴相交于A、B两点,并与直线y=x﹣2交于B、C两点,其中点C是直线y=x﹣2与y轴的交点,连接AC.(1)求抛物线的解析式;(2)证明:△ABC为直角三角形;(3)△ABC内部能否截出面积最大的矩形DEFG?(顶点D、E、F、G在△ABC 各边上)若能,求出最大面积;若不能,请说明理由.【解答】(1)解:∵直线y=x﹣2交x轴、y轴于B、C两点,∴B(4,0),C(0,﹣2),∵y=ax2﹣x+c过B、C两点,∴,解得,∴y=x2﹣x﹣2.(2)证明:如图1,连接AC,∵y=x2﹣x﹣2与x负半轴交于A点,∴A(﹣1,0),在Rt△AOC中,∵AO=1,OC=2,∴AC=,在Rt△BOC中,∵BO=4,OC=2,∴BC=2,∵AB=AO+BO=1+4=5,∴AB2=AC2+BC2,∴△ABC为直角三角形.(3)解:△ABC内部可截出面积最大的矩形DEFG,面积为,理由如下:①一点为C,AB、AC、BC边上各有一点,如图2,此时△AGF∽△ACB∽△FEB.设GC=x,AG=﹣x,∵,∴,∴GF=2﹣2x,∴S=GC•GF=x•(2)=﹣2x2+2x=﹣2[(x﹣)2﹣]=﹣2(x﹣)2+,即当x=时,S最大,为.②AB边上有两点,AC、BC边上各有一点,如图3,此时△CDE∽△CAB∽△GAD,设GD=x,∵,∴,∴AD=x,∴CD=CA﹣AD=﹣x,∵,∴,∴DE=5﹣x,∴S=GD•DE=x•(5﹣x)=﹣x2+5x=﹣[(x﹣1)2﹣1]=﹣(x﹣1)2+,即x=1时,S最大,为.综上所述,△ABC内部可截出面积最大的矩形DEFG,面积为.。

相关文档
最新文档