高中数学函数、三角函数、三角恒等变换公式

合集下载

三角恒等变换公式

三角恒等变换公式

2
λ 等分点:


若 p1p→ = λp→p2,其中 p1(a1, a2, ⋯, an), p2(b1, b2, ⋯, bn)(n 维坐标,特殊情况是 n = 2 或 n = 3)

( ) a1 + λb1 a2 + λb2
an + λbn
p = 1 + λ , 1 + λ , ⋯, 1 + λ
辅助角公式:
θ+φ θ−φ sinθ + sinφ = 2sin 2 cos 2
θ+φ θ−φ sinθ − sinφ = 2cos 2 sin 2
θ+φ θ−φ cosθ + cosφ = 2cos 2 cos 2
θ+φ θ−φ cosθ − cosφ = − 2sin 2 sin 2
Processing math: 100%
cos(α ± β) = cosαcosβ ∓ sinαsinβ tanα ± tanβ
tan(α ± β) = 1 ∓ tanαtcosα
cos2α = cos2α − sin2α = 2cos2α − 1 = 1 − 2sin2α 2tanα
tan2α = 1 − tan2α
b 其中 tanφ = a
和差化积 & 积化和差 公式:
1 sinαcosβ = 2 (sin(α + β) + sin(α − β))
1 cosαsinβ = 2 (sin(α + β) − sin(α − β))
1 cosαcosβ = 2 (cos(α + β) + cos(α − β))
1 sinαsinβ = − 2 (cos(α + β) − cos(α − β))

三角恒等变换常见公式

三角恒等变换常见公式

三角恒等变换常见公式1. 两角和与差的正弦、余弦、正切公式:(1)βαβαβαsin cos cos sin )sin(+=+ βαβαβαsin co cos sin )sin(s -=-(2)βαβαβαsin sin cos cos )cos(-=+βαβαβαsin sin cos cos )cos(+=-(3)βαβαβαtan tan 1tan tan )tan(-+=+ ⇒()()tan tan tan 1tan tan αβαβαβ+=+- (4)βαβαβαtan tan 1tan tan )tan(+-=- ⇒()()tan tan tan 1tan tan αβαβαβ-=-+ (5))4tan(tan 1tan 1θπθθ+=-+ )4tan(tan 1tan 1θπθθ-=+- 2. 二倍角公式(1)(2)(3) (4)3. 降幂公式:(1) (2)a a a cos sin 22sin =1cos 2sin 21sin cos 2cos 2222-=-=-=a a a a a a a a 2tan 1tan 22tan -=22cos 1cos 2aa +=22cos 1sin 2aa -=4. 升幂公式(1)2cos 2cos 12αα=+ (2)2sin 2cos 12αα=- (3)2)2cos 2(sin sin 1ααα±=± (4)αα22cos sin 1+= (5)2cos 2sin 2sin ααα=5. 半角公式(符号的选择由2θ所在的象限确定) (1), (2), (3)6.辅助角公式(合成公式) (7)sin cos a b αα+=)αϕ+(其中,辅助角ϕ所在象限由点(,)a b 所在的象限决定,sin tan b aϕϕϕ=== ,该法也叫合一变形),比如:x x y cos 3sin += )cos )3(13sin )3(11()3(1222222x x ++++=)cos 23sin 21(2x x += )3sin cos 3cos (sin 2ππx x +=)3sin(2π+=x8.积化和差公式:sin α·cos β=(1/2)[sin(α+β)+sin(α-β)]cos α·sin β=(1/2)[sin(α+β)-sin(α-β)]2cos 12sin a a -±=2cos 12cos a a +±=a a a a a a a sin cos 1cos 1sin cos 1cos 12tan -=+=+-±=cos α·cos β=(1/2)[cos(α+β)+cos(α-β)]sin α·sin β=-(1/2)[cos(α+β)-cos(α-β)]9.和差化积公式:sin α+sin β=2sin[(α+β)/2]cos[(α-β)/2] sin α-sin β=2cos[(α+β)/2]sin[(α-β)/2] cos α+cos β=2cos[(α+β)/2]cos[(α-β)/2] cos α-cos β=-2sin[(α+β)/2]sin[(α-β)/2]10.常见数据: , 3215tan -=︒, 3275tan +=︒,10. 解题技巧:(1)三角函数式的化简方法:1.化简原则(a)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角合理地拆分,从而正确运用公式;(b)二看“函数名称”,看函数名称之间的差异,从而确定要使用的公式; (c)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,常见的有“遇到分式要通分”“遇到根式一般要升幂”等.2.化简要求6262sin15cos75,sin75cos1544-+︒=︒=︒=︒=(a)使三角函数式的项数最少、次数最低、角与函数名称的种类最少;(b)尽量使分母不含三角函数;(c)尽量使被开方数不含三角函数等.3.化简方法(a)直接应用公式进行降次、消项;(b)切化弦、异角化同角、异次化同次、异名化同名;(c)三角公式的逆用等.本质:三个统一(a).角度统一(化同角)(b).名称统一(化同名)(c).次幂统一(升幂降幂)(2)三角函数式的求值方法1.“给角求值”:一般所给出的角都是非特殊角,从表面上看是很难的,但非特殊角与特殊角总有一定关系,解题时,要利用这种关系,结合公式,转化为特殊角的三角函数并且消掉非特殊角的三角函数而得解.2.“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数式的值,解题关键在于“变角”,使角相同或具有某种关系.3.“给值求角”:实质是转化为“给值求值”,先求角的某一三角函数值,再求角的范围,确定角.。

高中数学必修一 三角恒等变形总结(采百家之长版)

高中数学必修一 三角恒等变形总结(采百家之长版)

一、三角函数公式:辅助角公式的重要作用:合一变形⇒把形如x b x a cos sin +的函数转化为)sin(ϕ+=x A y 的函数,即:两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(ϕϖ形式tan tan tan 2212ααααβ=-=←−−相除以上是三角函数公式的关系图二、三角恒等变换:一角二名三结构,对角、函数名、式子结构===化异为同三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。

即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。

常用的数学思想方法技巧如下:(1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如:(2余弦是基础,通常化切、割为弦,变异名为同名。

(3)常数代换:在三角函数运算,求值,证明中,有时需要将常数转化为三角函数值,(4)幂的变换:降幂是三角变换时常用方法,对次数较高的三角函数式,一般采用降幂处理的方法。

降幂并非绝对,有时需要升幂,如对无理式αcos 1+常用升幂化为有理式 (5)公式变形:三角公式是变换的依据,应熟练掌握三角公式的顺用,逆用及变形应用。

三、三角函数式的化简运算通常从:“角、名、形、幂”四方面入手;基本规则是:切割化弦,异角化同角,复角化单角,异名化同名,高次化低次,无理化有理,和积互化,特殊值与特殊角的三角函数互化。

化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量 使分母不含三角函数;⑤尽量使被开方数不含三角函数。

四、三角函数的求值类型有三类(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。

高中数学必修二知识点总结及公式大全

高中数学必修二知识点总结及公式大全

高中数学必修二知识点总结及公式大全高中数学是培养学生逻辑思维和抽象能力的重要学科。

《必修二》作为高中数学课程的重要组成部分,涉及了许多核心知识点和基础公式。

本文将为您详细总结《必修二》的知识点,并整理出一份公式大全,帮助您更好地掌握这门学科。

一、高中数学必修二知识点总结1.函数概念与性质- 函数的定义、表示方法、分类- 函数的性质(单调性、奇偶性、周期性、对称性等)- 反函数及其求法2.指数函数与对数函数- 指数函数的定义、性质、图像- 对数函数的定义、性质、图像- 指数方程与对数方程的解法3.三角函数- 角度制与弧度制互换- 三角函数的定义、图像、性质- 三角恒等变换- 三角方程与不等式的解法4.数列- 等差数列与等比数列的定义、性质、求和公式- 数列的通项公式与求和公式- 数列的极限5.平面向量- 向量的定义、表示、线性运算- 向量的坐标表示与几何表示- 向量的数量积与垂直关系- 向量的平行四边形法则与三角形法则6.解析几何- 直线方程的求法(点斜式、截距式、一般式等)- 圆的方程与性质- 常见图形的面积、周长、体积计算二、高中数学必修二公式大全1.函数类- y=f(x) 的反函数:y=f^(-1)(x)- 幂函数:y=x^a(a 为常数)- 指数函数:y=a^x(a>0 且a≠1)- 对数函数:y=log_a(x)(a>0 且a≠1)2.三角函数类- 正弦函数:y=sin(x)- 余弦函数:y=cos(x)- 正切函数:y=tan(x)- 三角恒等变换公式(和差公式、倍角公式、半角公式等)3.数列类- 等差数列通项公式:a_n=a_1+(n-1)d- 等差数列求和公式:S_n=n/2(a_1+a_n)- 等比数列通项公式:a_n=a_1q^(n-1)- 等比数列求和公式:S_n=a_1(1-q^n)/(1-q)(q≠1)4.向量类- 向量加法:A+B=(a_x+b_x, a_y+b_y)- 向量减法:A-B=(a_x-b_x, a_y-b_y)- 向量数量积:A·B=a_xb_x+a_yb_y- 向量模长:|A|=√(a_x^2+a_y^2)5.解析几何类- 点斜式直线方程:y-y_1=k(x-x_1)- 截距式直线方程:x/a+y/b=1- 圆的标准方程:(x-a)^2+(y-b)^2=r^2总结:本文为您详细总结了高中数学必修二的知识点,并整理了一份公式大全。

三角恒等变换公式大全

三角恒等变换公式大全

三角恒等变换公式大全1.正弦和余弦的平方和差关系:sin²x + cos²x = 1sin²x = 1 - cos²xcos²x = 1 - sin²x2.正弦和余弦的和差关系:sin(x + x) = sin x cos x + cos x sin xsin(x - x) = sin x cos x - cos x sin xcos(x + x) = cos x cos x - sin x sin xcos(x - x) = cos x cos x + sin x sin x3.正切和余切的和差关系:tan(x + x) = (tan x + tan x) / (1 - tan x tan x)tan(x - x) = (tan x - tan x) / (1 + tan x tan x)cot(x + x) = (cot x cot x - 1) / (cot x + cot x)cot(x - x) = (cot x cot x + 1) / (cot x - cot x)4.正弦和余弦的二倍角关系:sin(2x) = 2sin x cos xcos(2x) = cos²x - sin²x = 2cos²x - 1 = 1 - 2sin²x 5.正切和余切的二倍角关系:tan(2x) = (2tan x) / (1 - tan²x)cot(2x) = (cot²x - 1) / (2cot x)6.正弦和余弦的三倍角关系:sin(3x) = 3sin x - 4sin³xcos(3x) = 4cos³x - 3cos x7.正切和余切的三倍角关系:tan(3x) = (3tan x - tan³x) / (1 - 3tan²x)cot(3x) = (cot³x - 3cot x) / (3cot²x - 1)8.正弦和余弦的半角关系:sin(x/2) = ± √(1 - cos x) / 2cos(x/2) = ± √(1 + cosx) / 29.正切和余切的半角关系:tan(x/2) = (1 - cos x) / sin x = sin x / (1 + cos x) cot(x/2) = (1 + cos x) / sin x = sin x / (1 - cos x) 10.和差的三角函数关系:sin x + sin x = 2 sin((x + x)/2) cos((x - x)/2) sin x - sin x = 2 cos((x + x)/2) sin((x - x)/2) cos x + cos x = 2 cos((x + x)/2) cos((x - x)/2) cos x - cos x = -2 sin((x + x)/2) sin((x - x)/2)这些是一些常见的三角恒等变换公式,应用在不同的数学问题和物理公式的推导中。

高中数学公式大全归纳

高中数学公式大全归纳

高中数学公式大全归纳以下是高中数学中常用的一些公式大全的归纳:一、三角函数1. 正弦函数:sinθ = 对边/斜边2. 余弦函数:cosθ = 邻边/斜边3. 正切函数:tanθ = 对边/邻边4. 余切函数:ctgθ = 邻边/对边5. 正割函数:secθ = 对角/斜边6. 余割函数:cscθ = 对角/对边7. 半角公式:sinθ/2 = 正弦函数值/28. cosθ/2 = 余弦函数值/29. tanθ/2 = 正切函数值/210. ctgθ/2 = 余切函数值/2二、指数函数1. 指数函数:a^x = 对数函数值/ln(a)2. 幂指数函数:x^y = 指数函数值/ln(x)3. 自然指数函数:n^x = 指数函数值/ln(n)三、对数函数1. 对数函数:log2(x) = 底数指数函数值2. 对数函数:log10(x) = 底数指数函数值3. 对数函数:log(x,y) = 对数函数值/ln(y)4. 换底数对数函数:xlnx = 对数函数值/ln(新底数)5. 扩展对数函数:log2(x), log10(x), log(x,y) 等都是对数函数四、三角恒等变换公式1. sin(2θ) = 2sinθcosθ2. cos(2θ) = 2cos2θ - 13. tan(2θ) = 2tanθ/(1 - tan2θ)4. ctg(2θ) = (1 - cot2θ)/(1 + cot2θ)5. sec(2θ) = 2sec2θ - 16. csc(2θ) = 2csc2θ - 1五、导数与微分1. f"(x) = 导数2. g"(x) = 微分3. f(x) = g(x) + h(x) 时,f"(x) = g"(x) + h"(x)4. f(x) = ln(x) 时,f"(x) = 1/x5. f(x) = sin(x) 时,f"(x) = cos(x)6. g(x) = f(x) + c 时,g"(x) = f"(x) + c以上是高中数学常用的一些公式,希望能够帮助到您。

高中三角函数公式(共10篇)

高中三角函数公式(共10篇)

高中三角函数公式(共10篇)高中三角函数公式(一): 高中数学必修4三角函数公式大全诱导公式sin (α+k·360°)=sinα(k∈Z)cos(α+k·360°)=cosα(k∈Z) tan (α+k·360°)=tanα(k∈Z) cot(α+k·360°)=cotα (k∈Z) sec(α+k·360°)=secα (k∈Z) csc(α+k·360°)=cscα (k∈Z)课改后COT SEC CSC不做要求的sin(180°+α)=-sinα cos(180°+α)=-cosα tan(180°+α)=tanαsin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanαsin(180°-α)=sinα cos(180°-α)=-cosα tan(180°-α)=-tanαsin(90°+α)=cosα cos(90°+α)=-sinα tan(90°+α)=-cotα sin (90°-α)=cosα cos (90°-α)=sinα tan (90°-α)=cotα两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α+β)=sinα·cosβ+cosα·sinβ sin(α-β)=sinα·cosβ-cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角公式:sin(2α)=2sinα·cosα=2tan(α)/[1+tan^2(α)] cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)=(1-tan^2(α))/(1+tan^2(α))tan(2α)=2tanα/[1-tan^2(α)]半角公式:sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=(1/2)[cos(α+β)-cos(α-β)]和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]高中三角函数公式(二): 数学三角函数的公式把高中数学所有数学三角函数公式列出来高中数学必修1和必修4的公式总结最佳答案乘法与因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2) •a^3-b^3=(a-b(a^2+ab+b^2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b^2-4ac=0 注:方程有两个相等的实根b^2-4ac>0 注:方程有两个不等的实根b^2-4ac0抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c"*h正棱锥侧面积 S=1/2c*h" 正棱台侧面积 S=1/2(c+c")h"圆台侧面积 S=1/2(c+c")l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积 V=S"L 注:其中,S"是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h高中三角函数公式(三): 高中阶段比较重要的三角函数公式有哪些最好能一一列举下来【高中三角函数公式】倒数关系:商的关系:平方关系:tanα ·cotα=1 sinα ·cscα=1cosα ·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α 诱...高中三角函数公式(四): 求高中数学三角函数公式推导所有的三角函数公式的推导全部过程诱导公式:sin(2kπ+α)=sinα .cos(2kπ+α)=cosα.tan(2kπ+α)=tanα .sin(π+α)=-sinα .cos(π+α)=-cosα .tan(π+α)=tanα.sin(-α)=-sinα .cos(-α)=cosα .tan(-α)=-tanα.sin(π-α)=sinα .cos(π-α)=-cosα.tan(π-α)=-tanα.sin(2π-α)=-sinα .cos(2π-α)=cosα .tan(2π-α)=-tanα .sin(π/2+α)=cosα .cos(π/2+α)=-sinα.sin(π/2-α)=cosα .cos(π/2-α)=sinα .sin(3π/2+α)=-cosα.cos(3π/2+α)=sinα .sin(3π/2-α)=-cosα.cos(3π/2-α)=-sinα 基本关系:sin^2(A)+cos^2(A)=1.tanA=sinA/cosA三角恒等变换公式:sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-cosAsinB cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) sin2A=2sinAcosA cos2A=cos^2(A)-sin^2(A)tan2A=(2tanA)/(1-tan^2(A))弦定理:若a、b、c为任意三角形ABC三边,A、B、C为三个角,则:a/sinA=b/sinB=c/sinC余弦定理:如上所设,则a^2=b^2+c^2-2bccosA b^2=a^2+c^2-2accosBc^2=a^2+b^2-2abcosC【高中三角函数公式】高中三角函数公式(五): 高中常用的三角函数公式有哪些在什么地方应用如题1.诱导公式 sin(-a) = - sin(a) cos(-a) = cos(a) sin(π/2 - a) =cos(a) cos(π/2 - a) = sin(a) sin(π/2 + a) = cos(a) cos(π/2 + a) = - sin(a) sin(π - a) = sin(a) cos(π - a) = - cos(a) sin(π + a) = -...高中三角函数公式(六): 高中三角函数公式表已知直角三角形三边长度求另外两角角度高中的数学公式定理大集中三角函数公式表同角三角函数的基本关系式倒数关系:商的关系:平方关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα sin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积.”)诱导公式(口诀:奇变偶不变,符号看象限.)sin(-α)=-sinαcos(-α)=cosα tan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=ta nαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tanα+tanβtan(α+β)=——————1-tanα ·tanβtanα-tanβtan(α-β)=——————1+tanα ·tanβ2tan(α/2)sinα=——————1+tan2(α/2)1-tan2(α/2)cosα=——————1+tan2(α/2)2tan(α/2)tanα=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+β α-βsinα+sinβ=2高中三角函数公式(七): 2023年江苏省高中数学公式特别是三角函数公式三角函数内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系.而掌握三角函数的内部规律及本质也是学好三角函数的关键所在.1、三角函数本质:三角函数的本质来源于定义,如右图:根据右图,有sinθ=y/ R; cosθ=x/R; tanθ=y/x; cotθ=x/y.深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导sin(A+B) = sinAcosB+cosAsinB 为例:推导:首先画单位圆交X轴于C,D,在单位圆上有任意A,B点.角AOD为α,BOD为β,旋转AOB使OB与OD重合,形成新A"OD.A(cosα,sinα),B(cosβ,sinβ),A"(cos(α-β),sin(α-β))OA"=OA=OB=OD=1,D(1,0)∴[cos(α-β)-1]^2+[sin(α-β)]^2=(cosα-cosβ)^2+(sinα-sinβ)^2 和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2) [1]两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)Sin2A=2SinA CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=2tanA/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A))tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sinαsinβ = -1/2*[cos(α+β)-cos(α-β)] cosαcosβ = 1/2*[cos(α+β)+cos(α-β)] sinαcosβ = 1/2*[sin(α+β)+sin(α-β)] cosαsinβ = 1/2*[sin(α+β)-sin(α-β)] sin(-α) = -sinαcos(-α) = cosαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα高中三角函数公式(八): 高中三角函数的公式在非直角三角形ABC中设∠A邻边a,对边b,斜边c,那么sin∠A=cos∠A=tan∠A=(用含a、b、c的代数式表示)由于csc、sec、cot在直角三角形中分别为以上三种三角函数的倒数,在非直角三角形中是否仍然适用老师跟我讲过三角函数不在直角三角形中也是有的.如果答案是网上大段大段的Ctrl+C和Ctrl+V搞来的何必回答我的问题很清楚.前后答案最多100字.当然适用,三角函数抽象出来它就是一种不依赖于几何图形的函数.当然在高中会以圆为依托来深入研究它.事实上,如果你感兴趣,可以自己查询‘正弦定理‘、’余弦定理‘以及’正切定理‘.相信这个会给你提供你想要的,它就是在任意三角形中的.高中三角函数公式(九): 高中三角函数公式记忆RT老师说有N个公式一百多个呢咋记呢最好有口诀啥的追分ing...其实不用记忆那么多的啊!我就是有多年高三经验的老师。

高考数学简单的三角恒等变换

高考数学简单的三角恒等变换
课前基础巩固
◈ 对点演练 ◈
π
[解析] sin 15°-cos 15°=2×=2(sin 30°sin 15°-cos 30°cos 15°)=-2cos(30°+15°)=-2cos 45°=-.
[解析] f(x)=sin2x-=-,故f(x)的最小正周期T==π.
3. [教材改编] 化简:sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)= .
课堂考点探究
(2)[2021·江西鹰潭一模] 已知tan α=,则= .
2
[解析] ====2.
角度2 给角求值例3 计算:= .
课堂考点探究
[思路点拨]先利用诱导公式,再利用两角和与差的余弦公式求解即可.[解析] ========2.
2
[总结反思]该类问题中给出的角一般都不是特殊角,需要通过三角恒等变换将其变为特殊角,或者能够正负相消,或者能够约分相消,最后得到具体的值.
D
[总结反思]给值求值是指已知某个角的三角函数值(或三角函数式的值)求与该角相关的其他三角函数值(或三角函数式的值)的问题,解题关键在于“变角”,使角相同或具有某种关系.
课堂考点探究
课堂考点探究
变式题 (1)已知=,则tan α+的值为 .
-8
[解析] ∵==cos α-sin α=,∴1-2sin αcos α=, ∴sin αcos α=-,则tan α+=+===-8.
课堂考点探究
探究点一 三角函数式的化简
[思路点拨] 将1变换为sin22+cos22,将cos 4和sin 4利用二倍角公式拆开,使得根号下的式子变成完全平方的形式,再根据符号整理得结果;[解析] ∵===sin 2+ cos 2,====-2cos 2, ∴2+=2sin 2+2cos 2-2cos 2=2sin 2,故选B.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数、三角函数、三角恒等变换重要公式
1. B A = {|,}x x A x B ∈∈或 ;B A = {|,}x x A x B ∈∈且; {|,}U C A x x U x U =∈∉且 2、 当n 为奇数时,
a a n
n =;当n 为偶数时,a a n n =.
3、 ⑴m n m
n a a
=()1,,,0*>∈>m N n m a ; ⑵()01
>=
-n a
a n n ; 4、 运算性质: ⑴()Q s r a a
a a s
r s
r
∈>=+,,0;⑵()()Q s r a a a rs s
r ∈>=,,0;⑶()()Q r b a b a ab r r r
∈>>=,0,0.
5、指数函数解析式:()1,0≠>=a a a y x
6、指数函数性质:
7、指数与对数互化式:log x
a a N x N =⇔=; 8、对数恒等式:log a N
a
N =
9、基本性质:01log =a ,1log =a a .
10、运算性质:当0,0,1,0>>≠>N M a a 时:
⑴()N M MN a a a log log log +=;⑵N M N M a a a log log log -=⎪⎭

⎝⎛;⑶M n M a n
a log log =. 11、换底公式:a
b
b c c a log log log =
()0,1,0,1,0>≠>≠>b c c a a .
12、重要公式:log log n m
a a m
b b n
= 13、倒数关系:a
b b a log 1
log =
()1,0,1,0≠>≠>b b a a .
14、对数函数解析式:()1,0log ≠>=a a x y a 15、对数函数性质:
16、几种幂函数的图象:
17、 与角α终边相同的角的集合: {}Z k k ∈+=,2παββ.
18、弧长公式:l
R α=.(α为弧度制下角)
19、扇形面积公式:211
=||22
S lR R α=
. 20、 设α是一个任意角, 设点(),P x y 为角α终边上任意一点,那么: sin y r α=
,cos x r α=,tan y
x
α=,
(设r =
21、 αsin ,αcos ,αtan 在四个象限的符号和三角函数线的画法.
正弦线:MP; 余弦线:OM; 正切线:AT
22、 特殊角
23、同角三角函数的基本关系式 ⑴ 平方关系:1cos sin
22
=+αα;⑵ 商数关系:α
α
αcos sin tan =
. 24、三角函数的诱导公式(概括为“奇变偶不变,符号看象限”Z k ∈) ⑴ 诱导公式一:()()()sin 2sin ;cos 2cos ;tan 2tan .k k k απααπααπα+=+=+=(其中:Z k ∈) ⑵ 诱导公式二:()()()sin sin ;cos cos ;tan tan .πααπααπαα+=-+=-+=
⑶诱导公式三:()()()sin sin ;cos cos ;tan tan .αααααα-=--=-=- ⑷诱导公式四:()()()sin
sin ;cos cos ;tan tan .πααπααπαα-=-=--=-
⑸诱导公式五:sin cos ;cos sin .22ππαααα⎛⎫⎛⎫
-=-=
⎪ ⎪⎝⎭⎝⎭
⑹诱导公式六:sin cos ;cos sin .22ππαααα⎛⎫⎛⎫
+=+=-
⎪ ⎪⎝⎭⎝⎭
25、正弦、余弦、正切函数的图像及其性质
x y sin =
x y cos = x y tan =
图象
定义域 R
R
},2
|{Z k k x x ∈+≠
ππ
值域
[-1,1]
[-1,1]
R
最值
max min 2,1
2
2,1
2
x k k Z y x k k Z y π
ππ
π=+
∈==-
∈=-时,时,
max min 2,12,1
x k k Z y x k k Z y πππ=∈==+∈=-时,时,

周期性 π2=T
π2=T
π=T
奇偶性



单调性
Z k ∈ 在[2,2]22k k ππππ-+上单调递增 在3[2,2]2
2
k k ππππ++上单调递减 在[2,2]k k πππ-上单调递增
在[2,2]k k πππ+上单调递减
在(,)22
k k ππππ-+上单调递增
26、函数x y sin =的图象与()sin y A x B ωϕ=++的图象之间的平移伸缩变换关系.
① 先平移后伸缩:
sin y x = 平移||
ϕ个单位
()sin y x ϕ=+ (左加右减)
横坐标不变
()sin y A x ϕ=+ 纵坐标变为原来的A 倍
纵坐标不变
()sin y A x ωϕ=+
横坐标变为原来的1
|


平移||B 个单位 ()sin y A x B ωϕ=++
(上加下减)
② 先伸缩后平移:
sin y x = 横坐标不变 sin y A x =
纵坐标变为原来的A 倍
纵坐标不变
sin y A x ω=
横坐标变为原来的1
|


()sin A x ωϕ+ (左加右减) 平移||B 个单位 ()sin y A x B ωϕ=++
(上加下减)
27、两角和与差的正弦、余弦、正切公式 ⑴()sin
sin cos cos sin αβαβαβ±=±; ⑵()cos
cos cos sin sin αβαβ
αβ±=;
⑶()tan tan 1tan tan tan αβ
αβα
β±±=.
28、二倍角的正弦、余弦、正切公式 ⑴ααα
cos sin 22sin =, 变形: 12sin cos sin 2ααα
=. ⑵ααα22
sin cos 2cos -=1cos 22-=αα2sin 21-=. 变形如下:
升幂公式:2
21cos 22cos 1cos 22sin αααα
⎧+=⎪⎨-=⎪⎩;降幂公式:22
1cos (1cos 2)
2
1sin (1cos 2)2
αααα=+=-⎧⎪⎨⎪⎩
⑶α
αα
2tan 1tan 22tan -=.
29、辅助角公式:)sin(cos sin 22ϕ++=+=x b a x b x a y (其中辅助角ϕ所在象限由点(,)a b 的象限决
定,tan b a
ϕ= ).。

相关文档
最新文档