线性代数课件-5.5二次型及其标准形
合集下载
第5章(二次型)线性代数及其应用.ppt

x2 ,
x3
)
x1 ,
x2
,
x3
1
0
1 2 3
0 3 2
x1 x2 x3
1
2
1 0 0 x1
(2)
f
(
x1
,
x2
,
x3
)
x1
,
x2
,
x3
0
1
0
x2
0 0 4 x3
问题: 如何将一个二次型经过可逆(满秩)的线
令 Q (q1, q2 , q3 ) 0
0 1
1 2
1 2
0
则正交变换x=Qy将二次型化为标准形
f 0 y12 2 y22 2 y32 .
正交变换是线性变换中的特殊一类,它具有 保持向量的内积、长度不变等优点,即若x=Qy为 正交变换,则
[Qx1,Qx2 ] (Qx1)T Qx2 x1TQTQx2 x1T x2 [ x1, x2 ]
1 1
(iii)将所求特征向量正交化、单位化
因1 分别 与2,3正交,故只需将 2,3 正交化.
正交化
取1 1 , 2 2
3
3
3
,
2
,
2
2
2
1
1 1
2 2
1 0 1
线性代数ppt 第五章 二次型

a11 a 21 a n1
a12 a 22 an2
a1n a2n , a nn
x =
x1 x2 , xn
则 二 次 型 可 记 作 f = xT Ax, 其 中 A为 对 称 矩 阵 .
(3)
此时A 此时A称为二次型 f 的矩阵, f 称为对称矩阵A 的矩阵, 称为对称矩阵A 对应的二次型. 对应的二次型. 对矩阵A的秩叫做二次型 的秩 二次型f的秩 二次型 的秩. f(x1,x2)=3x12+3x22+2x1x2 )=3x +3x +2x
k1 0 TAP = P … 0
0 k2 … 0
… … … …
0 0 … kn
第五章 二次型
§5.1 二次型及其矩阵表示
三. 矩阵的合同 可逆矩阵P, 使得PTAP = B. 记为: A B. 可逆矩阵 使得P 矩阵P 记为: 矩阵间的合同关系也是一种等价关系. 矩阵间的合同关系也是一种等价关系. An与Bn合同(congruent): 合同(congruent):
(1) 反身性: A A; 反身性: A; (2) 对称性: A B B A; 对称性: (3) 传递性: A B, B C A C. 传递性:
定理5.1. 实对称矩阵与对角矩阵合同. 定理5.1. 实对称矩阵与对角矩阵合同.
作业 P151 1. (B) 1(1), (3); 2
本章主要内容 (1) 二次型矩阵表示 (2) 标准二次型,规范二次型 标准二次型, 二次型 (3) 将二次型化为标准形 (4)二次型的正定型的判定—主要是利用顺序 (4)二次型的正定型的判定 主要是利用顺序 二次型的正定型的判定— 主子式判定 主子式判定 作业: 作业: P152 7(1); 20(1)
线性代数课件第5章:二次型及其标准形

x1 x2 x3 2
去掉配方后多出来的项
x22 x32 2x2 x3 2x22 5x32 6x2 x3
x1
x2
x3
2
x2 2
4
x2 3
4x2
x3
x1 x2 x3 2 x2 2x3 2.
令
y1 y2
x1 x2 x2 2x3
x3
x1 x2
y1 y2 y2 2 y3
1 3
1 2 3,
2 3
2 5
2 1 5 ,
0
2 45
3 4 45 .
5
45
1 3
得正交矩阵
P 2 3
2 3
于是所求正交变换为
2 5 15
0
2 45
4 45 5 45
且有
x1 x2 x3
1 2 2
3 3 3
2 5 15
0
f 9 y12 18 y22 18 y32 .
y3
y3 x3
x3 y3
x1 1 1 1 y1 x2 0 1 2 y2
x3 0 0 1 y3
f x12 2x22 5x32 2x1 x2 2x1 x3 6x2 x3
y12 y22 .
所用变换矩阵为
1
C
0
1 1
1
2
,
C 1 0
0 0 1
2 (2,1,0)T , 3 (2,0,1)T .
将
2
,
正交化:
3
取2
2
3
3
2,3 2,2
2,
对于实对称阵不同特征值的特征向量正交,
即得正交向量组 1 1 (1 2,1,1)T,
《二次型及其标准型》课件

任意二次型都可以表示成矩阵的形式。
特征矩阵
每个对称矩阵都有唯一的特征矩阵和特征向 量。
二、二次型的分类
正定二次型
在全空间内取正值,且仅在零 点处取零值。
负定二次型
在全空间内取负值,且仅在零 点处取零值。
半正定二次型
在全空间内取非负值,且在某 点处取零。
半负定二次型
在全空间内取非正值,且在某 点处取零。
三、二次型的标准型
1
消元法
通过矩阵初等变换将二次型化为标准型。
2
完成平方项法
通过添加与减去一些平方项使得二次型化为标准型。
3
正交变换法
通过正交变换使得二次型化为标准型。
四、实对称矩阵的对角化
对角化定理
任意实对称矩阵都可以通过正交相似变换对角化。
特征矩阵
其特征矩阵是一个对角矩阵,对应的特征向量即为变换矩阵的列向量。
正交矩阵
变换矩阵是一个正交矩阵,即其转置等于其逆。
五、二次型的规范化
规范化定理
每个二次型都可以通过正交变 换达到规范形式,其中自变量 部分是平方项相加的形式,而 系数全是1或0。
奇异值分解
通过奇异值分解,可
在优化问题中,可以通过规范 化二次型来处理一些特殊情况。
六、提高拓展
1 多项式对称型
2 奇异值分解与最小二乘法
一类特殊的二次型,在某些应用领域有重 要作用。
将奇异值分解应用于最小二乘法可以得到 一种快速求解带权重线性最小二乘问题的 方法。
二次型及其标准型
这是一场讲述二次型及其标准型的课程,我们将深入探讨它们的定义、分类 和转化方法,以及实对称矩阵的对角化和二次型的规范化等知识点,希望您 能够收获满满。
一、二次型的概念
特征矩阵
每个对称矩阵都有唯一的特征矩阵和特征向 量。
二、二次型的分类
正定二次型
在全空间内取正值,且仅在零 点处取零值。
负定二次型
在全空间内取负值,且仅在零 点处取零值。
半正定二次型
在全空间内取非负值,且在某 点处取零。
半负定二次型
在全空间内取非正值,且在某 点处取零。
三、二次型的标准型
1
消元法
通过矩阵初等变换将二次型化为标准型。
2
完成平方项法
通过添加与减去一些平方项使得二次型化为标准型。
3
正交变换法
通过正交变换使得二次型化为标准型。
四、实对称矩阵的对角化
对角化定理
任意实对称矩阵都可以通过正交相似变换对角化。
特征矩阵
其特征矩阵是一个对角矩阵,对应的特征向量即为变换矩阵的列向量。
正交矩阵
变换矩阵是一个正交矩阵,即其转置等于其逆。
五、二次型的规范化
规范化定理
每个二次型都可以通过正交变 换达到规范形式,其中自变量 部分是平方项相加的形式,而 系数全是1或0。
奇异值分解
通过奇异值分解,可
在优化问题中,可以通过规范 化二次型来处理一些特殊情况。
六、提高拓展
1 多项式对称型
2 奇异值分解与最小二乘法
一类特殊的二次型,在某些应用领域有重 要作用。
将奇异值分解应用于最小二乘法可以得到 一种快速求解带权重线性最小二乘问题的 方法。
二次型及其标准型
这是一场讲述二次型及其标准型的课程,我们将深入探讨它们的定义、分类 和转化方法,以及实对称矩阵的对角化和二次型的规范化等知识点,希望您 能够收获满满。
一、二次型的概念
线性代数 第五章二次型PPT课件

an1
f xAx
a12
a1n x1
a22
a2n
x2
an1
ann xn
aij a ji
二次型 f
对称矩阵 A
对称矩阵 A 的秩定义为二次型 f 的秩
设 二 次 型 f 3 x 1 2 6 x 1 x 2 8 x 1 x 3 5 x 2 2 x 2 x 3 x 3 2 求 f的 矩 阵 A ,当 x 1 = 3 , x 2 = 1 , x 3 = - 2时 , 求 f的 值 。
1 2 1
得特征值
1 10
2 15
可求得的单位特征向量顺次为
0.6
e1
0.8
0 .8
e2
0 .6
P
0.6 0.8
0.8
0.6
经 正 交 变 换 xPy,
f 10y1 215y2 2
1 2 4
A
2
4
2
,
4 2 1
x1
x
x2
x3
试用正交变换化二次型
e2
2 2
( 1 ,0, 2
1 ) 2
e3
3 3
( 2,2 2, 2) 63 6
2
3
1 2
2
6
作正交变换
Pe1
e2
e3
1
3
2
3
0
2
2
(x 1 ,x 2 ,x 3 ) P (y 1 ,y 2 ,y 3 )
设B为n阶方阵, 求证f xBx的矩阵是A 1 (B B)
显然A是对称矩阵,xRn xAx1(xBx2xBx) 2
xBx(xBx) xBx xAx1(xBxxBx)xBx
f xAx
a12
a1n x1
a22
a2n
x2
an1
ann xn
aij a ji
二次型 f
对称矩阵 A
对称矩阵 A 的秩定义为二次型 f 的秩
设 二 次 型 f 3 x 1 2 6 x 1 x 2 8 x 1 x 3 5 x 2 2 x 2 x 3 x 3 2 求 f的 矩 阵 A ,当 x 1 = 3 , x 2 = 1 , x 3 = - 2时 , 求 f的 值 。
1 2 1
得特征值
1 10
2 15
可求得的单位特征向量顺次为
0.6
e1
0.8
0 .8
e2
0 .6
P
0.6 0.8
0.8
0.6
经 正 交 变 换 xPy,
f 10y1 215y2 2
1 2 4
A
2
4
2
,
4 2 1
x1
x
x2
x3
试用正交变换化二次型
e2
2 2
( 1 ,0, 2
1 ) 2
e3
3 3
( 2,2 2, 2) 63 6
2
3
1 2
2
6
作正交变换
Pe1
e2
e3
1
3
2
3
0
2
2
(x 1 ,x 2 ,x 3 ) P (y 1 ,y 2 ,y 3 )
设B为n阶方阵, 求证f xBx的矩阵是A 1 (B B)
显然A是对称矩阵,xRn xAx1(xBx2xBx) 2
xBx(xBx) xBx xAx1(xBxxBx)xBx
线性代数—二次型的标准形和规范形PPT课件

问题,等价于该二次型的矩阵 A 合同于一个对角矩阵的问
题。
下面介绍二次型化为标准形的方法。
2
第2页/共33页
1、用拉格朗日配方法化二次型为标准形
拉格朗日配方法的基本步骤: 1. 若二次型含有 的平方项,则先把含有
x 的乘积项集中,然后配方,再对其余i 的变量同 x样进i 行,直到都配成平方项为止,经过非退化线
第12页/共33页
1
2
2
1 2 , 2 1 , 3 0 ,
2
0
1
正交化,
3
2 0 1
4 5
2 1 0
1 5
2 4 5
,
再单位化,合在一起,即得所求正交变换的矩阵
1 3 2 5 2 45
P 2 3 1 5 4 45
2 3
(x1 x2 x3)2 (x2 2x3)2 ,
4
第4页/共33页
f (x1 x2 x3)2 (x2 2x3)2 ,
令
y1 y2
x1 x2 x2 2x3
x3
x1 x2
y1 y2 y2 2 y3
y3
y3 x3
x3 y3
x1 1 1 1 y1 x2 0 1 1
1 1
1
A 1 3
1
1
11 11 1 3
1
1
1
1 13 01 1
0 0
0 10
1 1 11 11
0
1 0 10
,
1
1 1 11
,
1
2
1,
E
A
1 1 1
1 1 1 1
1 1 1 1
1 1
1 11
0 0 0
题。
下面介绍二次型化为标准形的方法。
2
第2页/共33页
1、用拉格朗日配方法化二次型为标准形
拉格朗日配方法的基本步骤: 1. 若二次型含有 的平方项,则先把含有
x 的乘积项集中,然后配方,再对其余i 的变量同 x样进i 行,直到都配成平方项为止,经过非退化线
第12页/共33页
1
2
2
1 2 , 2 1 , 3 0 ,
2
0
1
正交化,
3
2 0 1
4 5
2 1 0
1 5
2 4 5
,
再单位化,合在一起,即得所求正交变换的矩阵
1 3 2 5 2 45
P 2 3 1 5 4 45
2 3
(x1 x2 x3)2 (x2 2x3)2 ,
4
第4页/共33页
f (x1 x2 x3)2 (x2 2x3)2 ,
令
y1 y2
x1 x2 x2 2x3
x3
x1 x2
y1 y2 y2 2 y3
y3
y3 x3
x3 y3
x1 1 1 1 y1 x2 0 1 1
1 1
1
A 1 3
1
1
11 11 1 3
1
1
1
1 13 01 1
0 0
0 10
1 1 11 11
0
1 0 10
,
1
1 1 11
,
1
2
1,
E
A
1 1 1
1 1 1 1
1 1 1 1
1 1
1 11
0 0 0
线代课件§5二次型及其标准形

f x1 , x2 , , xn a11 x12 a22 x22 ann xn2
2a12 x1 x2 2a13 x1 x3 2an1,n xn1 xn 取a ji aij , 则2aij xi x j aij xi x j a ji x j xi ,于是
f a11 x12 a12 x1 x2 a1n x1 xn a21 x2 x1 a22 x22 a2n x2 xn an1 xn x1 an2 xn x2 ann xn2
对称矩阵 A 叫做二次型 f 的矩阵 ; f 叫做对称矩阵 A的二次型;
对称矩阵 A的秩叫做二次型 f 的秩 .
例1 写出二次型 f x12 2 x22 3 x32 4 x1 x2 6 x2 x3 的矩阵表示式并求 f 的秩 .
解
1 2 0 x1
f ( x1, x2 , x3 ) ( x1, x2 , x3 ) 2 2 3 x2 .
2 5 15
0
2 45 y1 4 45 y2 , 5 45 y3
且有 f 9 y12 18 y22 18 y32 .
例4
二次型 f x12 ax22 x32 2bx1 x2 2 x1 x3 2 x2 x3
经过正交变换
x1 x2
P
y1 y2
化成了标准形
x3 y3
4. 将特征向量1, 2 , ,n正交化,单位化,得
P1 , P2 , , Pn ,记C P1 , P2 , , Pn ;
5. 作正交变换x Cy,则得f的标准形
f
1 y12
n
y
2 n
.
例3 将二次型
f 17 x12 14x22 14x32 4 x1 x2 4 x1 x3 8 x2 x3 通过正交变换 x Py,化成标准形.
2a12 x1 x2 2a13 x1 x3 2an1,n xn1 xn 取a ji aij , 则2aij xi x j aij xi x j a ji x j xi ,于是
f a11 x12 a12 x1 x2 a1n x1 xn a21 x2 x1 a22 x22 a2n x2 xn an1 xn x1 an2 xn x2 ann xn2
对称矩阵 A 叫做二次型 f 的矩阵 ; f 叫做对称矩阵 A的二次型;
对称矩阵 A的秩叫做二次型 f 的秩 .
例1 写出二次型 f x12 2 x22 3 x32 4 x1 x2 6 x2 x3 的矩阵表示式并求 f 的秩 .
解
1 2 0 x1
f ( x1, x2 , x3 ) ( x1, x2 , x3 ) 2 2 3 x2 .
2 5 15
0
2 45 y1 4 45 y2 , 5 45 y3
且有 f 9 y12 18 y22 18 y32 .
例4
二次型 f x12 ax22 x32 2bx1 x2 2 x1 x3 2 x2 x3
经过正交变换
x1 x2
P
y1 y2
化成了标准形
x3 y3
4. 将特征向量1, 2 , ,n正交化,单位化,得
P1 , P2 , , Pn ,记C P1 , P2 , , Pn ;
5. 作正交变换x Cy,则得f的标准形
f
1 y12
n
y
2 n
.
例3 将二次型
f 17 x12 14x22 14x32 4 x1 x2 4 x1 x3 8 x2 x3 通过正交变换 x Py,化成标准形.
Ch5-5线性代数二次型及其标准型

2 01
0
0 0 1
可得
f
的规范形:f
=
-z
2 1
+
z
2 2
+
z
2 3
.
用正交阵将二次型化为标准形的步骤:
正交变换法
(i) 写出 f 的矩阵 A,并求出 A所有相异特征值 1, , m;
它们的重数依次为 r1, r2 , rm ( r1 r2 rm n )
(ii) 对每个重特征值i , 求出对应的 ri 个线性无关的特征向量
二次曲线
旋转变换
ax2 bxy cy2 1
令
x y
x cos x sin
y sin y cos
, ,
二次齐次多项式
m x2 n y2 1
不改变长度、夹角
可逆线性变换 正交变换
对于n 元的二次齐次多项式,能否存在一个可逆的线性变换 将其变为只含平方项的二次齐次多项式
求可逆矩阵 C 使得 C TAC B , 称为将 A 合同(变换)为 B .
简单性质:
10 矩阵的合同关系是等价关系;
20 合同矩阵CT必A等C 秩 B; , 而 C 可逆,
30 与对称矩阵合同的矩阵也是对称阵.
A AT , C TAC B BT CT ATC CT AC B
从合同的角度看二次型的变换问题:
二次型 f xTAx 经可逆变换 x C y化成二次型 f yTB y
存在可逆阵 C 将矩阵 A合同为B, 即 A, B 满足CTAC =B, 且 B仍为对称阵,二次型 f 的秩不变.
能将二次型 f = xTA x 经过可逆线性变换化成标准形
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则称矩阵A 和 B 相似.(P.124定义7) 定义:设 A, B 都是 n 阶矩阵,若有可逆矩阵 C 满足
CTAC = B , 则称矩阵A 和 B 合同.(P.132定义9) 显然, BT = (CTAC)T = CTAT (CT)T = CTAC = B
即若 A 为对称阵,则 B 也为对称阵. R(B) = R(A) . 经过可逆变换后,二次型 f 的矩阵由 A 变为与 A 合同的矩阵 CTAC,且二次型的秩不变.
1 2 0 A 2 2 3.
0 3 3
例:写出二次型
的矩阵.
f = -2x1x2 + 2x1x3 + 2x2x3
0 1 1
解:二次型的矩阵
A
1
0
1
1 1 0
对于二次型,寻找可逆的线性变换
x1 c11 y1 c12 y2
x2
c21 y1
c22 y2
c1n yn , c2n yn ,
,
xn
)
a21
a22
an1 an2
a1n x1
a2n
x2
xT
Ax
ann xn
a11 a12
f ( x1, x2 ,
, xn ) ( x1, x2 ,
,
xn
)
a21
a22
对称阵的
an1 an2
二次型
a1n x1
a2n
x2
ann xn
an1 xn x1 an2 xn x2 an3 xn x3
n
aij xi x j
i, j1
ann xn2
f ( x1, x2 ,
, xn ) ax111(xa1211x1a12 ax12xx22 aa1n1nxx1nx)n ax221(xa22x1 x1 1aa222x2 x22 2 aa2n2xn x2 xn )n
简记为 x = C y , 于是 f = xTAx
xn cn1 y1 cm2 y2 cnn yn .
= (C y)T A (C y) = yT (CTAC) y
使二次型只含平方项,即
f = k1 y12 + k2 y22 + … + kn yn2 定义:只含平方项的二次型称为二次型的标准形(或法式).
P1( x1 , y1 )
0
x
解析几何中,二次曲线的一般形式 ax2 + bxy + cy2 = 0
通过选择适当的的旋转变换
x x cos y sin,
y
x sin
y cos.
使得 mx' 2 + ny' 2 = 0 .
定义:含有 n 个变量 x1, x2, …, xn 的二次齐次函数 f ( x1 , x2 , , xn ) a11 x12 a22 x22 ann xn2 2a12 x1 x2 2a13 x1 x3 2an1,n xn1 xn
二次型 的矩阵
a11 a12
A
a21
a22
an1 an2
a1n
a2n
ann
对称阵 A 的秩也叫做二次型 f 的秩. 线性变换与矩阵之间存在着一一对应关系.
例 写出二次型 f x12 2 x22 3 x32 4 x1 x2 6 x2 x3
的矩阵.
解 a11 1, a22 2, a33 3, a12 a21 2, a13 a31 0, a23 a32 3.
若二次型 f 经过可逆变换 x = C y 变为标准形,即
f xT Ax
(Cy)T A(Cy)
yT (CT AC ) y
k1 y12 k2 y22 kn yn2
k1
( y1 , y2 ,
,
yn
)
k2
y1
y2
kn yn
问题:对于对称阵 A,寻找可逆矩阵 C,使 CTAC 为对角阵, (把对称阵合同对角化).
§5 二次型及其标准形
例 2阶方阵
1 0
0
0
对应
例 2阶方阵
cos sin
sin
cos
y
x1 y1
x, 0.
0
投影变换
P(x, y)
P1( x1 , y1 )
x
对应
x
y
x1 x1
cos sin
y1 sin , y1 cos .
y
P(x, y)
以原点为中心逆时针
旋转 角的旋转变换
如果标准形的系数 k1 , k2 , … , kn 只在−1, 0, 1三个数中取值,
即
f = y12 + … + yp2 − yp+12 − … − yr2
则上式称为二次型的规范形.
说明:这里只讨论实二次型,所求线性变换也限于实数范围.
定义:设 A, B 都是 n 阶矩阵,若有可逆矩阵 P 满足 P −1AP = B ,
axnn1(xannx1 x1 1aan2nx2 xn x2 2 aannnxn xn )n2
( x1, x2 ,
a11 x1 a12 x2
,
xn
)
a21 x1
a22
x2
对称阵
an1 x1 an2 x2
a1n xn
a2n
xn
ann xn
a1二次型.
令 aij = aji,则 2 aij xi xj = aij xi xj + aji xi xj ,于是
f ( x1, x2 ,
, xn ) a11 x12 a22 x22 a33 x32 ann xn2 2a12 x1 x2 2a13 x1x3 2an1,n xn1xn a11 x12 a12 x1 x2 a13 x1x3 a1n x1xn a21 x2 x1 a22 x22 a23 x2 x3 a2n x2 xn a31 x3 x1 a32 x3 x2 a33 x32 a3n x3 xn
f (P y) = l1 y12 + l2 y22 + … + ln yn2 其中 l1 , l2 , … , ln 是 f 的矩阵 A 的特征值.
推论:任给二次型 f (x) = xTAx (其中A = AT) ,总存在 可逆变换 x = C z ,使 f (Cz) 为规范形.
定义:如果 n 阶矩阵A 满足 ATA = E,即 A−1 = AT, 则称矩阵A 为正交矩阵,简称正交阵. 定理:设 A 为 n 阶对称阵,则必有正交阵 P,使得
P −1AP = PTAP = L, 其中 L 是以 A 的 n 个特征值为对角元的对角阵(不唯一).
(P.128定理5)
定理:任给二次型 f (x) = xTAx (其中A = AT) ,总存在 正交变换 x = P y ,使 f 化为标准形
CTAC = B , 则称矩阵A 和 B 合同.(P.132定义9) 显然, BT = (CTAC)T = CTAT (CT)T = CTAC = B
即若 A 为对称阵,则 B 也为对称阵. R(B) = R(A) . 经过可逆变换后,二次型 f 的矩阵由 A 变为与 A 合同的矩阵 CTAC,且二次型的秩不变.
1 2 0 A 2 2 3.
0 3 3
例:写出二次型
的矩阵.
f = -2x1x2 + 2x1x3 + 2x2x3
0 1 1
解:二次型的矩阵
A
1
0
1
1 1 0
对于二次型,寻找可逆的线性变换
x1 c11 y1 c12 y2
x2
c21 y1
c22 y2
c1n yn , c2n yn ,
,
xn
)
a21
a22
an1 an2
a1n x1
a2n
x2
xT
Ax
ann xn
a11 a12
f ( x1, x2 ,
, xn ) ( x1, x2 ,
,
xn
)
a21
a22
对称阵的
an1 an2
二次型
a1n x1
a2n
x2
ann xn
an1 xn x1 an2 xn x2 an3 xn x3
n
aij xi x j
i, j1
ann xn2
f ( x1, x2 ,
, xn ) ax111(xa1211x1a12 ax12xx22 aa1n1nxx1nx)n ax221(xa22x1 x1 1aa222x2 x22 2 aa2n2xn x2 xn )n
简记为 x = C y , 于是 f = xTAx
xn cn1 y1 cm2 y2 cnn yn .
= (C y)T A (C y) = yT (CTAC) y
使二次型只含平方项,即
f = k1 y12 + k2 y22 + … + kn yn2 定义:只含平方项的二次型称为二次型的标准形(或法式).
P1( x1 , y1 )
0
x
解析几何中,二次曲线的一般形式 ax2 + bxy + cy2 = 0
通过选择适当的的旋转变换
x x cos y sin,
y
x sin
y cos.
使得 mx' 2 + ny' 2 = 0 .
定义:含有 n 个变量 x1, x2, …, xn 的二次齐次函数 f ( x1 , x2 , , xn ) a11 x12 a22 x22 ann xn2 2a12 x1 x2 2a13 x1 x3 2an1,n xn1 xn
二次型 的矩阵
a11 a12
A
a21
a22
an1 an2
a1n
a2n
ann
对称阵 A 的秩也叫做二次型 f 的秩. 线性变换与矩阵之间存在着一一对应关系.
例 写出二次型 f x12 2 x22 3 x32 4 x1 x2 6 x2 x3
的矩阵.
解 a11 1, a22 2, a33 3, a12 a21 2, a13 a31 0, a23 a32 3.
若二次型 f 经过可逆变换 x = C y 变为标准形,即
f xT Ax
(Cy)T A(Cy)
yT (CT AC ) y
k1 y12 k2 y22 kn yn2
k1
( y1 , y2 ,
,
yn
)
k2
y1
y2
kn yn
问题:对于对称阵 A,寻找可逆矩阵 C,使 CTAC 为对角阵, (把对称阵合同对角化).
§5 二次型及其标准形
例 2阶方阵
1 0
0
0
对应
例 2阶方阵
cos sin
sin
cos
y
x1 y1
x, 0.
0
投影变换
P(x, y)
P1( x1 , y1 )
x
对应
x
y
x1 x1
cos sin
y1 sin , y1 cos .
y
P(x, y)
以原点为中心逆时针
旋转 角的旋转变换
如果标准形的系数 k1 , k2 , … , kn 只在−1, 0, 1三个数中取值,
即
f = y12 + … + yp2 − yp+12 − … − yr2
则上式称为二次型的规范形.
说明:这里只讨论实二次型,所求线性变换也限于实数范围.
定义:设 A, B 都是 n 阶矩阵,若有可逆矩阵 P 满足 P −1AP = B ,
axnn1(xannx1 x1 1aan2nx2 xn x2 2 aannnxn xn )n2
( x1, x2 ,
a11 x1 a12 x2
,
xn
)
a21 x1
a22
x2
对称阵
an1 x1 an2 x2
a1n xn
a2n
xn
ann xn
a1二次型.
令 aij = aji,则 2 aij xi xj = aij xi xj + aji xi xj ,于是
f ( x1, x2 ,
, xn ) a11 x12 a22 x22 a33 x32 ann xn2 2a12 x1 x2 2a13 x1x3 2an1,n xn1xn a11 x12 a12 x1 x2 a13 x1x3 a1n x1xn a21 x2 x1 a22 x22 a23 x2 x3 a2n x2 xn a31 x3 x1 a32 x3 x2 a33 x32 a3n x3 xn
f (P y) = l1 y12 + l2 y22 + … + ln yn2 其中 l1 , l2 , … , ln 是 f 的矩阵 A 的特征值.
推论:任给二次型 f (x) = xTAx (其中A = AT) ,总存在 可逆变换 x = C z ,使 f (Cz) 为规范形.
定义:如果 n 阶矩阵A 满足 ATA = E,即 A−1 = AT, 则称矩阵A 为正交矩阵,简称正交阵. 定理:设 A 为 n 阶对称阵,则必有正交阵 P,使得
P −1AP = PTAP = L, 其中 L 是以 A 的 n 个特征值为对角元的对角阵(不唯一).
(P.128定理5)
定理:任给二次型 f (x) = xTAx (其中A = AT) ,总存在 正交变换 x = P y ,使 f 化为标准形