西安高新一中初中校区七年级下册数学期末试题及答案解答

合集下载

陕西省西安市雁塔区高新一中创新班七年级(下)期末数学试卷

陕西省西安市雁塔区高新一中创新班七年级(下)期末数学试卷

陕西省西安市雁塔区高新一中创新班七年级(下)期末数学试卷一、单项选择题(本题共10道小题,每小题4分,共40分,每小题只有一个选项是符合题意的,请将该选项所对应的字母填入下面的表格中)1-(4分)在盒子里放有三张分别写有整式。

+1,。

+2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()1913A.—B.—C.—D.—33642.(4分)a>b、c是正整数,a>b,且a2-ab-ac+bc=7,贝ij。

-c等于()A.-1B.- 1或-7C.1D.1或73.(4分)如果一个三角形的三边长分别为1,k,3,则化简7-V4k2-36k+81-|2k-3|的结果是()A.-5B.1C.13D.19-4k4.(4分)己知△ABC中AB=AC,AB的垂直平分线交AB于点D,交直线AC于点E,ZAEB=7Q°,则ZBAC等于()A.55°或125°B.65°C.55°D.125°5.(4分)己知方程组:的解x,满足》+斧0,则贞的取值范围是()2y+3x=irri-lA.mN-—B. D.-1C.tn^l36.(4分)如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),。

点坐标为(0,3),则AC长为()D,CA0BD.不能确定7.(4分)如图,正方形ABCD和正方形CEFG中,点。

在CG上,BC=1,CE=3,CH_LAF于点H,那么CH的长是()FG8.(4分)如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有()9.(4分)如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度10.(4分)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将MDE沿AE对折至AAFE,延长EF交边BC于点G,连接AG、CF.下列结论:AFG;②BG=GC;©AG//CF-,©5a F gc=3.其中正确结论的个数是()A DA.1B.2C.3D.4二、填空题:(每小题】分,计24分)11.(4分)关于x的不等式组匚,只有4个整数解,则〃的取值范围是.噂〉x-312.(4分)如图,等腰RtAABC中,ZBAC=90°,AB=AC=2,点F是边BC上不与点B,C重合的一个动点,直线/垂直平分BF,垂足为D,当MFC是等腰三角形时,BD13.(4分)如图,菱形ABCD中,对角线AC交于。

西安高新一中初中校区七年级下册数学期末压轴难题试题及答案解答

西安高新一中初中校区七年级下册数学期末压轴难题试题及答案解答

西安高新一中初中校区七年级下册数学期末压轴难题试题及答案解答一、选择题1.4的平方根为()A .2B .2±C .4D .4±2.下列四幅图案中,通过平移能得到图案E 的是( )A .AB .BC .CD .D3.平面直角坐标系中有一点()2021,2022P -,则点P 在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限 4.下列命题中,是假命题的是( )A .经过一个已知点能画一条且只能画一条直线与已知直线平行B .从直线外一点到这条直线的垂线段的长度叫做这点到直线的距离C .在同一平面内,一条直线的垂线可以画无数条D .连接直线外一点与直线上各点的所有线段中,垂线段最短5.如图,//AB CD ,点E 为AB 上方一点,,FB CG 分别为,EFG ECD ∠∠的角平分线,若2210E G ∠+∠=︒,则EFG 的度数为( )A .140︒B .150︒C .130︒D .160︒6.下列运算中:2551114412;22222-=-=-;33(3)3-;3648=,错误的个数有( )A .1个B .2个C .3个D .4个7.如图,在//AB CD 中,∠AEC =50°,CB 平分DCE ∠,则ABC ∠的度数为( )A .25°B .30°C .35°D .40°8.如图,在平面直角坐标系上有点1,0A ,点A 第一次向左跳动至()11,1A -,第二次向右跳动至()22,1A ,第三次向左跳动至()32,2A -,第四次向右跳动至()43,2A …依照此规律跳动下去,点A 第124次跳动至124A 的坐标为( )A .()63,62B .()62,63C .()62,62-D .()124,123二、填空题9.若8x -+2y -=0,则xy =__________.10.平面直角坐标系中,点(3,1)--关于y 轴的对称点的坐标为________.11.如图,在△ABC 中,∠ACB =90°,AD 是△ABC 的角平分线,BC =10cm ,BD :DC =3:2,则点D 到AB 的距离为_____.12.如图,直线//AB CD ,若30ABE ∠=︒,150BEC ∠=︒,ECD ∠=______.13.如图, 把一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G ,D 、C 分别在M 、N 的位置上,若∠EFG=54°,则∠EGB=_______.14.已知a ,b 为两个连续的整数,且19a b <<,则a b +的平方根为___________. 15.在平面直角坐标系中,若点()3,1P a a -+在第二象限,则a 的取值范围为_______. 16.在平面直角坐标系中,已知点A (﹣4,0),B (0,3),对△AOB 连续作图所示的旋转变换,依次得到三角形(1),(2),(3),(4)…,那么第(2013)个三角形的直角顶点坐标是______三、解答题17.(1)计算:3317362271? 48-++-- (2)比较325- 与-3的大小18.求下列各式中的x 的值:(1)2810x -=;(2)()3164x -=.19.请把以下证明过程补充完整,并在下面的括号内填上推理理由:已知:如图,∠1=∠2,∠A =∠D .求证:∠B =∠C .证明:∵∠1=∠2,(已知)又:∵∠1=∠3,( )∴∠2=____________(等量代换)AE FD ∴∥(同位角相等,两直线平行)∴∠A =∠BFD ( )∵∠A =∠D (已知)∴∠D =_____________(等量代换)∴____________∥CD ( )∴∠B=∠C()20.在如图的方格中,每个小方格都是边长为1个单位长度的正方形,三角形ABC的三个顶点都在格点(小方格的顶点)上,(1)请建立适当的平面直角坐标系,使点A,C的坐标分别为(﹣2,﹣1),(1,﹣1),并写出点B的坐标;(2)在(1)的条件下,将三角形ABC先向右平移4个单位长度,再向上平移2个单位长度后可得到三角形A'B'C',请在图中画出平移后的三角形A'B'C',并分别写出点A',B',C'的坐标.21.阅读下面的文字,解答问题:2是无理数,而无理数是无限不循环小数,因212<2212部分.请解答下列问题:29_______,小数部分是_________;(2)1015a,b,求10a b+二十二、解答题22.小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.二十三、解答题23.已知点C在射线OA上.(1)如图①,CD//OE,若∠AOB=90°,∠OCD=120°,求∠BOE的度数;(2)在①中,将射线OE沿射线OB平移得O′E'(如图②),若∠AOB=α,探究∠OCD 与∠BO′E′的关系(用含α的代数式表示)(3)在②中,过点O′作OB的垂线,与∠OCD的平分线交于点P(如图③),若∠CPO′=90°,探究∠AOB与∠BO′E′的关系.24.阅读下面材料:小颖遇到这样一个问题:已知:如图甲,//,AB CD E 为,AB CD 之间一点,连接,,35,37BE DE B D ∠=︒∠=︒,求BED ∠的度数.她是这样做的:过点E 作//,EF AB则有,BEF B ∠=∠因为//,AB CD所以//.EF CD ①所以,FED D ∠=∠所以,BEF FED B D ∠+∠=∠+∠即BED ∠=_ ; 1.小颖求得BED ∠的度数为__ ;2.上述思路中的①的理由是__ ;3.请你参考她的思考问题的方法,解决问题:已知:直线//,a b 点,A B 在直线a 上,点,C D 在直线b 上,连接,,AD BC BE 平分,ABC DE ∠平分,ADC ∠且,BE DE 所在的直线交于点E .(1)如图1,当点B 在点A 的左侧时,若,ABC ADC αβ∠=∠=,则BED ∠的度数为 ;(用含有,αβ的式子表示).(2)如图2,当点B 在点A 的右侧时,设,ABC ADC αβ∠=∠=,直接写出BED ∠的度数(用含有,αβ的式子表示).25.如图①,将一副直角三角板放在同一条直线AB 上,其中∠ONM =30°,∠OCD =45°.(1)将图①中的三角板OMN 沿BA 的方向平移至图②的位置,MN 与CD 相交于点E ,求∠CEN 的度数;(2)将图①中的三角板OMN 绕点O 按逆时针方向旋转,使∠BON =30°,如图③,MN 与CD 相交于点E ,求∠CEN 的度数;(3)将图①中的三角板OMN 绕点O 按每秒30°的速度按逆时针方向旋转一周,在旋转的过程中,在第____________秒时,直线MN 恰好与直线CD 垂直.(直接写出结果) 26.已知,//AB CD ,点E 为射线FG 上一点.(1)如图1,写出EAF ∠、AED ∠、EDG ∠之间的数量关系并证明;(2)如图2,当点E 在FG 延长线上时,求证:EAF AED EDG ∠=∠+∠;(3)如图3,AI 平分BAE ∠,DI 交AI 于点I ,交AE 于点K ,且EDI ∠:2:1CDI ∠=,20AED ∠=︒,30I ∠=︒,求EKD ∠的度数.【参考答案】一、选择题1.B解析:B【分析】根据平方根的定义,如果一个数的平方等于a,则.【详解】解:因为22=4,(-2)2=4,所以4的平方根是2±,故选B.【点睛】本题主要考查平方根的定义,解决本题的关键是要熟练掌握平方根的定义.2.B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案.【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件解析:B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案.【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件的原图是B;A,D选项改变了方向,故错误,C选项中,三角形和四边形位置不对,故C错误故选:B【点睛】在平面内,把一个图形整体沿某一个方向移动,这种图形的平行移动,叫做平移变换,简称平移.平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.确定一个图形平移的方向和距离,只需确定其中一个点平移的方向和距离.3.D【分析】根据平面直角坐标系内各象限内点的坐标符号特征判定即可.【详解】解:根据平面直角坐标系内各象限内点的坐标符号特征可知:()P-在第四象限2021,2022故选D.【点睛】本题考查了各象限内点的坐标的符号特征,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).记住各象限内点的坐标的符号是解决的关键.4.A【分析】分别利用平行线以及点到直线的距离以及垂线以及垂线段最短的定义分别分析得出即可.【详解】解:A、在同一平面内,经过一点(点不在已知直线上)能画一条且只能画一条直线与已知直线平行,故选项错误,符合题意;B、从直线外一点到这条直线的垂线段的长叫做点到直线的距离,正确,不符合题意;C、一条直线的垂线可以画无数条,正确,不符合题意;D、连接直线外一点与直线上各点的所有线段中,垂线段最短,正确,不符合题意;故选:A.【点评】此题主要考查了平行线、垂线以及垂线段和点到直线的距离等定义,正确把握相关定义是解题关键.5.A【分析】过G作GM//AB,根据平行线的性质可得∠2=∠5,∠6=∠4,进而可得∠FGC=∠2+∠4,再利用平行线的性质进行等量代换可得3∠1=210°,求出∠1的度数,然后可得答案.【详解】解:过G作GM//AB,∴∠2=∠5,∵AB//CD,∴MG//CD,∴∠6=∠4,∴∠FGC=∠5+∠6=∠2+∠4,∵FG、CG分别为∠EFG,∠ECD的角平分线,∴∠1=∠2=12∠EFG,∠3=∠4=12∠ECD,∵∠E+2∠G=210°,∴∠E+∠1+∠2+∠ECD=210°,∵AB//CD,∴∠ENB=∠ECD,∴∠E+∠1+∠2+∠ENB=210°,∵∠1=∠E+∠ENB,∴∠1+∠1+∠2=210°,∴3∠1=210°,∴∠1=70°,∴∠EFG=2×70°=140°.故选:A.【点睛】此题主要考查了平行线的性质,关键是正确作出辅助线,掌握两直线平行同位角相等,内错角相等.6.D【分析】对每个选项依次计算判断即可.【详解】 2511442131=,故该项错误; 22- 33(3)3--,故该项错误; 3644=,故该项错误.共4个错误的,故选:D.【点睛】此题考查平方根、立方根的化简,熟记平方根、立方根的性质即可正确化简. 7.A【分析】根据平行线的性质得到∠ABC =∠BCD ,∠ECD =∠AEC =50°再根据角平分线的定义得到∠BCE =∠BCD =12∠ECD =25°,由此即可求解.【详解】解:∵AB ∥CD ,∴∠ABC =∠BCD ,∠ECD =∠AEC =50°∵CB 平分∠DCE ,∴∠BCE =∠BCD =12∠ECD =25°∠ABC =∠BCD =25°故选A .【点睛】本题考查了平行线的性质,角平分线的定义,掌握平行线的性质:两直线平行,内错角相等是解题的关键.8.A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.【详解】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标解析:A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.【详解】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),∴第124次跳动至点的坐标是(63,62).故选:A.【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.二、填空题9.16【分析】根据算术平方根的性质列式求出x、y的值,然后代入代数式进行计算即可求解.【详解】∵+=0,∴x−8=0,y−2=0,∴x=8,y=2,∴xy=.故答案为16.【点睛】解析:16【分析】根据算术平方根的性质列式求出x、y的值,然后代入代数式进行计算即可求解.【详解】∵,∴x−8=0,y−2=0,∴x=8,y=2,⨯=.∴xy=8216故答案为16.【点睛】性:(1)被开方数a是非负数,即a≥0;(2.10.(3,-1)【分析】让纵坐标不变,横坐标互为相反数可得所求点的坐标.【详解】解:∵-3的相反数为3,∴所求点的横坐标为3,纵坐标为-1,故答案为(3,-1).【点睛】本题考查关于y轴解析:(3,-1)【分析】让纵坐标不变,横坐标互为相反数可得所求点的坐标.【详解】解:∵-3的相反数为3,∴所求点的横坐标为3,纵坐标为-1,故答案为(3,-1).【点睛】本题考查关于y轴对称的点特点;用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标不变.11.4cm【详解】∵BC=10cm,BD:DC=3:2,∴BD=6cm,CD=4cm,∵AD是△ABC的角平分线,∠ACB=90°,∴点D到AB的距离等于DC,即点D到AB的距离等于4cm.解析:4cm【详解】∵BC=10cm,BD:DC=3:2,∴BD=6cm,CD=4cm,∵AD是△ABC的角平分线,∠ACB=90°,∴点D到AB的距离等于DC,即点D到AB的距离等于4cm.12.60°.【分析】过点E作EF∥AB,由平行线的性质,先求出∠CEF=120°,即可求出的度数.【详解】解:过点E作EF∥AB,如图:∴,∴,,∵,∴∠CEF=120°,∴;故答解析:60°.【分析】的度数.过点E作EF∥AB,由平行线的性质,先求出∠CEF=120°,即可求出ECD【详解】解:过点E作EF∥AB,如图:EF AB CD,∴////∴30BEF ABE ∠=∠=︒,180ECD CEF ∠+∠=︒,∵150BEC ∠=︒,∴∠CEF =120°,∴18012060ECD ∠=︒-︒=︒;故答案为:60°.【点睛】本题考查了平行线的性质,解题的关键是掌握平行线的性质,正确的作出辅助线,从而进行解题.13.108°【分析】由折叠的性质可得:∠DEF=∠GEF ,根据平行线的性质:两直线平行,内错角相等可得:∠DEF=∠EFG=54°,从而得到∠GEF=54°,根据平角的定义即可求得∠1,再由平行线的解析:108°【分析】由折叠的性质可得:∠DEF =∠GEF ,根据平行线的性质:两直线平行,内错角相等可得:∠DEF =∠EFG =54°,从而得到∠GEF =54°,根据平角的定义即可求得∠1,再由平行线的性质求得∠EG B .【详解】解:∵AD ∥BC ,∠EFG =54°,∴∠DEF =∠EFG =54°,∠1+∠2=180°,由折叠的性质可得:∠GEF =∠DEF =54°,∴∠1=180°-∠GEF -∠DEF =180°-54°-54°=72°,∴∠EGB =180°-∠1=108°.故答案为:108°.【点睛】此题主要考查折叠的性质,平行线的性质和平角的定义,解决问题的关键是根据折叠的方法找准对应角,求出∠GEF 的度数.14.±3【分析】分别算出a ,b 计算即可;【详解】∵a ,b 为两个连续的整数,且,∴,∴,∴,,∴,∴的平方根为±3;故答案是:±3.【点睛】本题主要考查了无理数的估算和求一个数的平解析:±3【分析】分别算出a ,b 计算即可;【详解】∵a ,b 为两个连续的整数,且a b <,∴∴45,∴4a =,5b =,∴9a b +=,∴a b +的平方根为±3;故答案是:±3.【点睛】本题主要考查了无理数的估算和求一个数的平方根,准确计算是解题的关键. 15.-1<a <3【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.【详解】解:∵点P (a-3,a+1)在第二象限,∴,解不等式①得,a <3,解不等式②得,a >解析:-1<a <3【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.【详解】解:∵点P (a-3,a+1)在第二象限,∴3010a a -⎧⎨+⎩<①>②, 解不等式①得,a <3,解不等式②得,a >-1,∴-1<a <3.故答案为:-1<a <3.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式组,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).16.(8052,0).【分析】观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O 的距离,然后写出坐标即可.【详解解析:(8052,0).【分析】观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O 的距离,然后写出坐标即可.【详解】解:∵点A (﹣4,0),B (0,3),∴OA =4,OB =3,∴AB5,∴第(3)个三角形的直角顶点的坐标是()12,0;观察图形不难发现,每3个三角形为一个循环组依次循环,∴一次循环横坐标增加12,∵2013÷3=671∴第(2013)个三角形是第671组的第三个直角三角形,其直角顶点与第671组的第三个直角三角形顶点重合,∴第(2013)个三角形的直角顶点的坐标是()67112,0⨯即()8052,0.故答案为:()8052,0.【点睛】本题考查了坐标与图形变化-旋转,勾股定理的应用,观察图形,发现每3个三角形为一个循环组依次循环是解题的关键.三、解答题17.(1)-1;(2)【分析】(1)根据算数平方根,立方根化简,然后根据实数的运算法则计算即可; (2)求出-3= ,即可得出结果.【详解】解:(1)原式===-1;(2)∵∴即解析:(1)-1;(23-【分析】(1)根据算数平方根,立方根化简,然后根据实数的运算法则计算即可;(2)求出,即可得出结果.【详解】解:(1)原式= =3163()22-++-- =-1;(2)∵3(3)27-=-2527->- ∴3-.故答案为(1)-1;(23>-.【点睛】本题考查实数的运算及实数的大小比较,熟练掌握平方根和立方根的性质是解题的关键. 18.(1)或;(2)【分析】(1)方程整理后,利用平方根定义开方即可求出x 的值;(2)方程利用立方根定义开立方即可求出x 的值.【详解】解:(1),或.(2),.【点睛】此题考查了解析:(1)9x =或9x =-;(2)5x =【分析】(1)方程整理后,利用平方根定义开方即可求出x的值;(2)方程利用立方根定义开立方即可求出x的值.【详解】解:(1)2810x-=2x=81,x=或99x=-.x-=(2)()3164x-=,14x=.5【点睛】此题考查了立方根,以及平方根,熟练掌握运算法则是解本题的关键.19.对顶角相等;∠3;两直线平行,同位角相等;∠BFD;AB;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据对顶角相等,平行线的性质与判定定理填空即可.【详解】证明:∵∠1=∠2,(解析:对顶角相等;∠3;两直线平行,同位角相等;∠BFD;AB;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据对顶角相等,平行线的性质与判定定理填空即可.【详解】证明:∵∠1=∠2,(已知)又:∵∠1=∠3,(对顶角相等)∴∠2=∠3(等量代换)∴∥(同位角相等,两直线平行)AE FD∴∠A=∠BFD(两直线平行,同位角相等)∵∠A=∠D(已知)∴∠D=∠BFD(等量代换)∴AB∥CD(内错角相等,两直线平行)∴∠B=∠C(两直线平行,内错角相等).【点睛】本题考查了平行线的性质与判定,掌握平行线的性质与判定是解题的关键.20.(1)坐标系见解析,B(0,1);(2)画图见解析,A′(2,1),B′(4,3),C′(5,1)【分析】(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可.(解析:(1)坐标系见解析,B(0,1);(2)画图见解析,A′(2,1),B′(4,3),C′(5,1)【分析】(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可.(2)分别作出A′,B′,C′即可解决问题.【详解】解:(1)平面直角坐标系如图所示:B(0,1).(2)△A′B′C′如图所示.A′(2,1),B′(4,3),C′(5,1).【点睛】本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(1)5;-5(2)0【分析】(1)先估算出的范围,即可得出答案;(2)先估算出、的范围,求出a、b的值,再代入求出即可.【详解】(1)∵5<<6,∴的整数部分是5,小数部分是-5,故解析:(1)529(2)0【分析】(129(21015a、b的值,再代入求出即可.【详解】(1)∵5296,∴5,故答案为:5;(2)∵34,∴a,∵34,∴b=3,∴a b+.【点睛】二十二、解答题22.(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴a2=400又∵a>0∴a=20又∵要裁出的长方形面积为300cm2∴若以原正方形纸片的边长为长方形的长,则长方形的宽为:300÷20=15(cm)∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3x cm,则宽为2x cm∴6x 2=300∴x 2=50又∵x>0∴x=∴长方形纸片的长为又∵(2=450>202即:>20∴小丽不能用这块纸片裁出符合要求的纸片二十三、解答题23.(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根据平行线的性质得到∠AOE的度数,再根据直角、周角的定义即可求得∠BOE的度数;(2)解析:(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根据平行线的性质得到∠AOE的度数,再根据直角、周角的定义即可求得∠BOE的度数;(2)如图②,过O点作OF∥CD,根据平行线的判定和性质可得∠OCD、∠BO′E′的数量关系;(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,结合角平分线的定义可推出∠OCD=2∠PCO=360°-2∠AOB,根据(2)∠OCD+∠BO′E′=360°-∠AOB,进而推出∠AOB=∠BO′E′.【详解】解:(1)∵CD∥OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°;(2)∠OCD+∠BO′E′=360°-α.证明:如图②,过O点作OF∥CD,∵CD∥O′E′,∴OF∥O′E′,∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α,∴∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′.证明:∵∠CPO′=90°,∴PO′⊥CP,∵PO′⊥OB,∴CP ∥OB ,∴∠PCO +∠AOB =180°,∴2∠PCO =360°-2∠AOB ,∵CP 是∠OCD 的平分线,∴∠OCD =2∠PCO =360°-2∠AOB ,∵由(2)知,∠OCD +∠BO ′E ′=360°-α=360°-∠AOB ,∴360°-2∠AOB +∠BO ′E ′=360°-∠AOB ,∴∠AOB =∠BO ′E ′.【点睛】此题考查了平行线的判定和性质,平移的性质,直角的定义,角平分线的定义,正确作出辅助线是解决问题的关键.24.;2.平行于同一条直线的两条直线平行;3.(1);(2).【分析】1、根据角度和计算得到答案;2、根据平行线的推论解答;3、(1)根据角平分线的性质及1的结论证明即可得到答案;(2)根据B解析:1.72;2.平行于同一条直线的两条直线平行;3.(1)1122αβ+;(2)1118022αβ-+. 【分析】1、根据角度和计算得到答案;2、根据平行线的推论解答;3、(1)根据角平分线的性质及1的结论证明即可得到答案;(2)根据BE 平分,ABC DE ∠平分,ADC ∠求出11,22ABE CDE αβ∠=∠=,过点E 作EF ∥AB ,根据平行线的性质求出∠BEF =12α,11801802DEF CDE β∠=︒-∠=︒-,再利用周角求出答案.【详解】1、过点E 作//,EF AB则有,BEF B ∠=∠因为//,AB CD所以//.EF CD ①所以,FED D ∠=∠所以,BEF FED B D ∠+∠=∠+∠即BED ∠=72;故答案为:72;2、过点E 作//,EF AB则有,BEF B ∠=∠因为//,AB CD所以EF ∥CD (平行于同一条直线的两条直线平行),故答案为:平行于同一条直线的两条直线平行;3、(1)∵BE 平分,ABC DE ∠平分,ADC ∠ ∴1111,2222ABE ABC CDE ADC αβ∠=∠=∠=∠=, 过点E 作EF ∥AB ,由1可得∠BED =BEF FED ABE CDE ∠+∠=∠+∠,∴∠BED =1122αβ+, 故答案为:1122αβ+;(2)∵BE 平分,ABC DE ∠平分,ADC ∠∴1111,2222ABE ABC CDE ADC αβ∠=∠=∠=∠=, 过点E 作EF ∥AB ,则∠ABE =∠BEF =12α, ∵//,AB CD∴EF ∥CD ,∴180CDE DEF ∠+∠=︒,∴11801802DEF CDE β∠=︒-∠=︒-, ∴11360360(180)22BED DEF BEF βα∠=︒-∠-∠=︒-︒--=1118022αβ-+.【点睛】此题考查平行线的性质:两直线平行内错角相等,两直线平行同旁内角互补,平行线的推论,正确引出辅助线是解题的关键.25.(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形内角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角解析:(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形内角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角互补即可求出∠CEN的度数.(3)画出图形,求出在MN⊥CD时的旋转角,再除以30°即得结果.【详解】解:(1)在△CEN中,∠CEN=180°-∠ECN-∠CNE=180°-45°-30°=105°;(2)∵∠BON=30°,∠N=30°,∴∠BON=∠N,∴MN∥CB.∴∠OCD+∠CEN=180°,∵∠OCD=45°∴∠CEN=180°-45°=135°;(3)如图,MN⊥CD时,旋转角为360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在第165°÷30°=5.5或345°÷30°=11.5秒时,直线MN恰好与直线CD垂直.【点睛】本题以学生熟悉的三角板为载体,考查了三角形的内角和、平行线的判定和性质、垂直的定义和旋转的性质,前两小题难度不大,难点是第(3)小题,解题的关键是画出适合题意的几何图形,弄清求旋转角的思路和方法,本题的第一种情况是将旋转角∠DOM放在四边形DOMF中,用四边形内角和求解,第二种情况是用周角减去∠DOM的度数. 26.(1),证明见解析;(2)证明见解析;(3).【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H∠+∠=∠,证明见解析;(2)证明见解析;(3)解析:(1)EAF EDG AED∠=︒.80EKD【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H,根据∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,进而得到∠EAF=∠AED+∠EDG;α+5°,再根(3)设∠EAI=∠BAI=α,则∠CHE=∠BAE=2α,进而得出∠EDI=α+10°,∠CDI=12α+5°+α+10°+20°,求得据∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=12α=70°,即可根据三角形内角和定理,得到∠EKD的度数.【详解】解:(1)∠AED=∠EAF+∠EDG.理由:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)证明:如图2,设CD与AE交于点H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分∠BAE,∴可设∠EAI=∠BAI=α,则∠BAE=2α,如图3,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°-20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=12∠EDK=12α+5°,∵∠CHE是△DEH的外角,∴∠CHE=∠EDH+∠DEK,即2α=12α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°-80°-20°=80°.【点睛】本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解.解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.。

2019-2020学年陕西省西安市高新一中七年级下学期期末数学试卷 (解析版)

2019-2020学年陕西省西安市高新一中七年级下学期期末数学试卷 (解析版)

2019-2020学年陕西省西安市高新一中七年级第二学期期末数学试卷一、选择题1.在下列各数中,无理数是()A.0B.3πC.D.2.2019年是大家公认的5G商用元年,移动通讯行业人员想了解5G手机的使用情况,在某高校随机对500位大学生进行了问卷调查,下列说法正确的是()A.该调查方式是普查B.该调查中的个体是每一位大学生C.该调查中的样本容量是500位大学生D.该调查中的样本是被随机调查的500位大学生5G手机的使用情况3.如图所示,下列推理不正确的是()A.若∠1=∠B,则BC∥DEB.若∠2=∠ADE,则AD∥CEC.若∠A+∠ADC=180°,则AB∥CDD.若∠B+∠BCD=180°,则BC∥DE4.如图,用三角板作△ABC的边AB上的高线,下列三角板的摆放位置正确的是()A.B.C.D.5.已知小明的家、体育场、文具店在同一直线上,图中的信息反映的过程是:小明从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x表示时间,y表示小明离家的距离.依据图中的信息,下列说法错误的是()A.体育场离小明家2.5kmB.体育场离文具店1kmC.小明从体育场出发到文具店的平均速度是50m/minD.小明从文具店回家的平均速度是60m/min6.△ABC满足下列条件中的一个,其中不能说明△ABC是直角三角形的是()A.b2=(a+c)(a﹣c)B.a:b:c=1::2C.∠C=∠A﹣∠B D.∠A:∠B:∠C=3:4:57.如果(a+b)2=16,(a﹣b)2=4,且a、b是长方形的长和宽,则这个长方形的面积是()A.3B.4C.5D.68.如图,D,E分别是AB,AC上的点,BE与CD交于点F,给出下列三个条件:①∠DBF=∠ECF;②∠BDF=∠CEF;③BD=CE.两两组合在一起,共有三种组合:(1)①②(2)①③(3)②③问能判定AB=AC的组合的是()A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)9.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则下列结论不一定成立的是()A.AD⊥BC B.OC+OD=AD C.OA=OB D.∠ACO=∠BOF 10.若x是不等于1的实数,我们把称为x的差倒数,如2的差倒数是=﹣1,﹣1的差倒数为=,现已知x1=,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2020的值为()A.B.﹣2C.﹣D.二、填空题.11.=;﹣(﹣3)2=;|﹣2|=.12.如图,若输入x的值为﹣5,则输出的结果.13.在抗击“新冠肺炎”时期,开展停课不停学活动,王老师从3月1号到7号在网上答题个数记录如下:日期1号2号3号4号5号6号7号答题个数68555056544868在王老师每天的答题个数所组成的这组数据中,中位数是.14.已知与(x+y﹣4)2互为相反数,则y﹣x=.15.如图,已知点C在点A的北偏东19°,在点B的北偏西71°,若CB=9,AC=12,则AB=.16.有若干张如图所示的正方形和长方形卡片,如果要拼一个长为(2a+b),宽为(a+b)的长方形,则需要A类卡片张,B类卡片张,C类卡片张.17.如图,Rt△ABC中,∠C=90°,AC=4,BC=3,点P为AC边上的动点,过点P作PD⊥AB于点D,则PB+PD的最小值为.三、解答题18.计算(1)×(2﹣)0﹣()﹣1;(2)÷﹣.19.计算:(2a﹣b)2+(a+b)(a﹣b)+2a•3b.20.阅读材料:图中是小马同学的作业,老师看了后,找来小马问道:“小马同学,你标在数轴上的两个点对应题中的两个无理数,是吗?”小马点点头.老师又说:“你这两个无理数对应的点找的非常准确,遗憾的是没有完成全部解答.”请你帮小马同学完成本次作业.请把实数0,﹣π,﹣2,,1表示在数轴上,并比较它们的大小(用<号连接).解:21.家访是学校与家庭沟通的有效渠道,是形成教育合力的关键,是转化后进生的催化剂.某市教育局组织全市中小学教师开展家访活动活动过程中,教育局随机抽取了部分教师调查其近两周家访次数,将采集到的数据按家访次数分成五类,并分别绘制了下面的两幅不完整的统计图.请根据以上信息,解答下列问题:(1)请把条形统计图补充完整;(2)所抽取的教师中,近两周家访次数的众数是次,平均每位教师家访次;(3)若该市有12000名教师,请估计近两周家访不少于3次的教师有多少名?22.如图,学习了勾股定理后,数学活动兴趣小组的小娟和小燕对离教室不远的一个直角三角形花台斜边上的高进行了探究:两人在直角边AB上距直角顶点B10米远的点D处同时开始测量,点C为终点.小娟沿D→B→C的路径测得所经过的路程是15米,小燕沿D→A→C的路径测得所经过的路程也是15米,这时小娟说我能求出这个直角三角形的花台斜边上的高了,小燕说我也知道怎么求出这个直角三角形的花台斜边上的高了.亲爱的同学们你能求出这个直角三角形的花台斜边上的高吗?若能,请你求出来:若不能,请说明理由?23.如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,点Q的运动速度为xcm/s,其它条件不变,当点P、Q运动到何处时有△ACP与△BPQ全等,求出相应的x的值.参考答案一、选择题1.在下列各数中,无理数是()A.0B.3πC.D.【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.解:A、0是整数,属于有理数;B、3π是无限不循环小数,属于无理数;C、是分数,属于有理数;D、,是整数,属于有理数;故选:B.2.2019年是大家公认的5G商用元年,移动通讯行业人员想了解5G手机的使用情况,在某高校随机对500位大学生进行了问卷调查,下列说法正确的是()A.该调查方式是普查B.该调查中的个体是每一位大学生C.该调查中的样本容量是500位大学生D.该调查中的样本是被随机调查的500位大学生5G手机的使用情况【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.解:A.该调查方式是抽样调查,此选项错误;B.该调查中的个体是每一位大学生5G手机的使用情况,此选项错误;C.该调查中的样本容量是500,此选项错误;D.该调查中的样本是被随机调查的500位大学生5G手机的使用情况,此选项正确;故选:D.3.如图所示,下列推理不正确的是()A.若∠1=∠B,则BC∥DEB.若∠2=∠ADE,则AD∥CEC.若∠A+∠ADC=180°,则AB∥CDD.若∠B+∠BCD=180°,则BC∥DE【分析】根据平行线的判定定理即可判断.解:A、若∠1=∠B,则BC∥DE,不符合题意;B、若∠2=∠ADE,则AD∥CE,不符合题意;C、若∠A+∠ADC=180°,则AB∥CD,不符合题意;D、若∠B+∠BCD=180°,则AB∥CD,符合题意.故选:D.4.如图,用三角板作△ABC的边AB上的高线,下列三角板的摆放位置正确的是()A.B.C.D.【分析】根据高线的定义即可得出结论.解:A,C,D都不是△ABC的边AB上的高,故选:B.5.已知小明的家、体育场、文具店在同一直线上,图中的信息反映的过程是:小明从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x表示时间,y表示小明离家的距离.依据图中的信息,下列说法错误的是()A.体育场离小明家2.5kmB.体育场离文具店1kmC.小明从体育场出发到文具店的平均速度是50m/minD.小明从文具店回家的平均速度是60m/min【分析】因为小明从家直接到体育场,故第一段函数图象所对应的y轴的最高点即为体育场离小明家的距离;小明从体育场到文具店是减函数,此段函数图象最高点与最低点纵坐标的差为小明家到文具店的距离;根据“速度=路程÷时间”即可得出小明从体育场出发到文具店的平均速度;先求出小明家离文具店的距离,再求出从文具店到家的时间,求出二者的比值即可.解:由函数图象可知,体育场离小明家2.5km,故选项A不合题意;由函数图象可知,小明家离文具店1.5千米,离体育场2.5千米,所以体育场离文具店1千米,故选项B不合题意;小明从体育场出发到文具店的平均速度为:1000÷(45﹣30)=(m/min),故选项C符合题意;小明从文具店回家的平均速度是1500÷(90﹣65)=60(m/min),故选项D不合题意.故选:C.6.△ABC满足下列条件中的一个,其中不能说明△ABC是直角三角形的是()A.b2=(a+c)(a﹣c)B.a:b:c=1::2C.∠C=∠A﹣∠B D.∠A:∠B:∠C=3:4:5【分析】根据勾股定理的逆定理和三角形内角和定理求出最大角,即可判断.解:A、由b2=(a+c)(a﹣c)可得:c2+b2=a2,可以组成直角三角形,故此选项不符合题意;B、12+()2=22,可以组成直角三角形,故此选项不符合题意;C、由∠C=∠A﹣∠B,∠A+∠B+∠C=180°,可得:∠A=90°,可以组成直角三角形,故此选项不符合题意;D、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴最大角∠C=75°,∴不能构成直角三角形,故选项符合题意;故选:D.7.如果(a+b)2=16,(a﹣b)2=4,且a、b是长方形的长和宽,则这个长方形的面积是()A.3B.4C.5D.6【分析】将所给两个式子作差可得(a+b)2﹣(a﹣b)2=4ab=12,即可求长方形面积.解:∵(a+b)2=16,(a﹣b)2=4,∴(a+b)2﹣(a﹣b)2=4ab=12,∴ab=3,∴长方形的面积为3,故选:A.8.如图,D,E分别是AB,AC上的点,BE与CD交于点F,给出下列三个条件:①∠DBF=∠ECF;②∠BDF=∠CEF;③BD=CE.两两组合在一起,共有三种组合:(1)①②(2)①③(3)②③问能判定AB=AC的组合的是()A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)【分析】由全等三角形的判定与性质,对各个组合进行判定即可.解:能判定AB=AC的组合的是(2)(3),理由如下:(1)①∠DBF=∠ECF;②∠BDF=∠CEF,不能证明△ABE≌△ACD,没有相等的边;∴不能判定AB=AC;(2)①∠DBF=∠ECF;③BD=CE,在△BDF和△CEF中,,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BE=CD,在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AB=AC;(3)②∠BDF=∠CEF;③BD=CE,同(2)得:△BDF≌△CEF(AAS),∴∠DBF=∠ECF,BF=CF,DF=EF,∴BE=CD,在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AB=AC;故选:C.9.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则下列结论不一定成立的是()A.AD⊥BC B.OC+OD=AD C.OA=OB D.∠ACO=∠BOF 【分析】由等腰三角形的性质可得AD⊥BC,由线段垂直平分线的性质可得AO=CO,可证AD=AO+OD=CO+OD,由“SAS”可证△AOC≌△AOB,可得BO=CO=AO,由外角的性质可得∠ACO不一定等于∠BOF,即可求解.解:∵AB=AC,AD是∠BAC的角平分线,∴AD⊥BC,故①不合题意,∵EF是AC的垂直平分线,∴AO=CO,∴AD=AO+OD=CO+OD,故②不合题意,∵AD是∠BAC的角平分线,∴∠CAD=∠BAD,又∵AB=AC,AO=AO,∴△AOC≌△AOB(SAS)∴OB=OC,∴OA=OB,故③不合题意;∵∠COF=∠CEO+∠OCE=∠COB+∠BOF,且∠COB不一定为90°,∴∠ACO不一定等于∠BOF,故④符合题意,故选:D.10.若x是不等于1的实数,我们把称为x的差倒数,如2的差倒数是=﹣1,﹣1的差倒数为=,现已知x1=,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2020的值为()A.B.﹣2C.﹣D.【分析】根据题意,可以写出这列数的前几项,然后即可发现数字的变化特点,从而可以得到x2020的值.解:由题意可得,x1=,x2==,x3==﹣2,x4==,…,∵2020÷3=673…1,∴x2020=,故选:A.二、填空题.11.=3;﹣(﹣3)2=﹣9;|﹣2|=2﹣.【分析】根据算术平方根、有理数的乘方、实数的绝对值计算即可.解:=3;﹣(﹣3)2=﹣9;|﹣2|=﹣(﹣2)=2﹣.故答案为:3,﹣9,2﹣.12.如图,若输入x的值为﹣5,则输出的结果6.【分析】根据图表信息得到当x=﹣5时,要把x=﹣5代入y=﹣x+1中进行计算.解:当x=﹣5时,y=﹣x+1=﹣(﹣5)+1=5+1=6.故答案为6.13.在抗击“新冠肺炎”时期,开展停课不停学活动,王老师从3月1号到7号在网上答题个数记录如下:日期1号2号3号4号5号6号7号答题个数68555056544868在王老师每天的答题个数所组成的这组数据中,中位数是55.【分析】将数据重新排列,根据中位数的定义求解可得.解:将这7个数据重新排列为48,50,54,55,56,68,68,所以这组数据的中位数为55,故答案为:55.14.已知与(x+y﹣4)2互为相反数,则y﹣x=8.【分析】由与(x+y﹣4)2互为相反数,得出+(x+y﹣4)2=0,根据非负数的性质得出x、y的值,进一步代入求得答案即可.解:∵与(x+y﹣4)2互为相反数,∴+(x+y﹣4)2=0,∴x+2=0,x+y﹣4=0,∴x=﹣2,y=6,∴y﹣x=6﹣(﹣2)=6+2=8.故答案为:8.15.如图,已知点C在点A的北偏东19°,在点B的北偏西71°,若CB=9,AC=12,则AB=15.【分析】根据点C在点A的北偏东19°,在点B的北偏西71°得出∠ACB=90°,即得出△ABC是直角三角形,根据勾股定理解答即可.解:如图:∵点C在点A的北偏东19°,在点B的北偏西71°,∴∠ACD=19°,∠BCD=71°,∴∠ACB=19°+71°=90°,∴AC2+CB2=AB2,∵CB=9,AC=12,∴122+92=AB2,∴AB=15,故答案为:15.16.有若干张如图所示的正方形和长方形卡片,如果要拼一个长为(2a+b),宽为(a+b)的长方形,则需要A类卡片2张,B类卡片1张,C类卡片3张.【分析】首先分别计算大矩形和三类卡片的面积,再进一步根据大矩形的面积应等于三类卡片的面积和进行分析所需三类卡片的数量.解:长为2a+b,宽为a+b的矩形面积为(2a+b)(a+b)=2a2+3ab+b2,A图形面积为a2,B图形面积为b2,C图形面积为ab,则可知需要A类卡片2张,B类卡片1张,C类卡片3张.故答案为:2;1;3.17.如图,Rt△ABC中,∠C=90°,AC=4,BC=3,点P为AC边上的动点,过点P作PD⊥AB于点D,则PB+PD的最小值为.【分析】作点B关于AC的对称点B′,过点B′作B′D⊥AB于点D,交AC于点P,点P即为所求作的点,此时PB+PD有最小值,连接AB′,根据对称性的性质,BP=B′P,证明△ABC≌△AB′C,根据S△ABB′=S△ABC+S△AB′C=2S△ABC,即可求出PB+PD的最小值.解:如图,作点B关于AC的对称点B′,过点B′作B′D⊥AB于点D,交AC于点P,点P即为所求作的点,此时PB+PD有最小值,连接AB′,根据对称性的性质,BP=B′P,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB==5,∵AC=AC,∠ACB=∠ACB′,BC=B′C,∴△ABC≌△AB′C(SAS),∴S△ABB′=S△ABC+S△AB′C=2S△ABC,即AB•B′D=2×BC•AC,∴5B′D=24,∴B′D=.故答案为:.三、解答题18.计算(1)×(2﹣)0﹣()﹣1;(2)÷﹣.【分析】(1)原式利用立方根定义,零指数幂、负整数指数幂法则计算即可求出值;(2)原式利用二次根式的乘除法则计算即可求出值.解:(1)原式=3×1﹣2=3﹣2=1;(2)原式=4÷3﹣(+)=﹣1﹣=﹣.19.计算:(2a﹣b)2+(a+b)(a﹣b)+2a•3b.【分析】先利用完全平方公式和平方差公式及单项式乘单项式法则计算,再合并同类项即可得.解:原式=4a2﹣4ab+b2+a2﹣b2+6ab=5a2+2ab.20.阅读材料:图中是小马同学的作业,老师看了后,找来小马问道:“小马同学,你标在数轴上的两个点对应题中的两个无理数,是吗?”小马点点头.老师又说:“你这两个无理数对应的点找的非常准确,遗憾的是没有完成全部解答.”请你帮小马同学完成本次作业.请把实数0,﹣π,﹣2,,1表示在数轴上,并比较它们的大小(用<号连接).解:【分析】根据﹣π和确定原点,根据数轴上的点左边小于右边的排序.解:根据题意,在数轴上分别表示各数如下:∴.21.家访是学校与家庭沟通的有效渠道,是形成教育合力的关键,是转化后进生的催化剂.某市教育局组织全市中小学教师开展家访活动活动过程中,教育局随机抽取了部分教师调查其近两周家访次数,将采集到的数据按家访次数分成五类,并分别绘制了下面的两幅不完整的统计图.请根据以上信息,解答下列问题:(1)请把条形统计图补充完整;(2)所抽取的教师中,近两周家访次数的众数是3次,平均每位教师家访 3.24次;(3)若该市有12000名教师,请估计近两周家访不少于3次的教师有多少名?【分析】(1)家访总人数:54÷36%=150(人),家访4次的人数:150×28%=42(人),家访2次的人数:150﹣6﹣54﹣42﹣18=30(人);(2)根据统计图可知,家访3次的人数最多,所以众数为3,平均每位教师家访:(6×1+30×2+54×3+42×4+18×5)÷150=3.24(次);(3)近两周家访不少于3次的教师有12000×=9120(名).解:(1)家访总人数:54÷36%=150(人),家访4次的人数:150×28%=42(人)家访2次的人数:150﹣6﹣54﹣42﹣18=30(人)条形统计图补全如下:(2)根据统计图可知,家访3次的人数最多,所以众数为3,平均每位教师家访:(6×1+30×2+54×3+42×4+18×5)÷150=3.24(次),故答案为3,3.24;(3)近两周家访不少于3次的教师有12000×=9120(名).22.如图,学习了勾股定理后,数学活动兴趣小组的小娟和小燕对离教室不远的一个直角三角形花台斜边上的高进行了探究:两人在直角边AB上距直角顶点B10米远的点D处同时开始测量,点C为终点.小娟沿D→B→C的路径测得所经过的路程是15米,小燕沿D→A→C的路径测得所经过的路程也是15米,这时小娟说我能求出这个直角三角形的花台斜边上的高了,小燕说我也知道怎么求出这个直角三角形的花台斜边上的高了.亲爱的同学们你能求出这个直角三角形的花台斜边上的高吗?若能,请你求出来:若不能,请说明理由?【分析】设BC=a(m),AC=b(m),AD=x(m)根据勾股定理即可得到结论.解:Rt△ABC中,∠B=90°,设BC=a(m),AC=b(m),AD=x(m)则10+a=x+b=15(m),∴a=5(m),b=15﹣x(m)又在Rt△ABC中,由勾股定理得:(10+x)2+a2=b2,∴(10+x)2+52=(15﹣x)2,解得:x=2,即AD=2(米)∴AB=AD+DB=2+10=12米,BC=5米,AC=,米答:这个直角三角花台底边上的高为米.23.如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,点Q的运动速度为xcm/s,其它条件不变,当点P、Q运动到何处时有△ACP与△BPQ全等,求出相应的x的值.【分析】(1)利用AP=BQ=2,BP=AC,可根据“SAS”证明△ACP≌△BPQ;则∠C=∠BPQ,然后证明∠APC+∠BPQ=90°,从而得到PC⊥PQ;(2)讨论:若△ACP≌△BPQ,则AC=BP,AP=BQ,即5=7﹣2t,2t=xt;②若△ACP≌△BQP,则AC=BQ,AP=BP,即5=xt,2t=7﹣2t,然后分别求出x即可.解:(1)△ACP≌△BPQ,PC⊥PQ.理由如下:∵AC⊥AB,BD⊥AB,∴∠A=∠B=90°,∵AP=BQ=2,∴BP=5,∴BP=AC,∴△ACP≌△BPQ(SAS);∴∠C=∠BPQ,∵∠C+∠APC=90°,∴∠APC+∠BPQ=90°,∴∠CPQ=90°,∴PC⊥PQ;(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,可得:5=7﹣2t,2t=xt解得:x=2,t=1;②若△ACP≌△BQP,则AC=BQ,AP=BP,可得:5=xt,2t=7﹣2t解得:x=,t=.综上所述,当△ACP与△BPQ全等时x的值为2或.。

2020-2021学年陕西省西安市雁塔区高新一中七年级(下)期末数学试卷及参考答案

2020-2021学年陕西省西安市雁塔区高新一中七年级(下)期末数学试卷及参考答案

2020-2021学年西安雁塔区高新一中七年级(下)期末数学试卷一、选择题(每小题3分,10小题,共30分)1.(3分)下列图形中,是中心对称图形的是()A.B.C.D.2.(3分)下列事件为不可能事件的是()A.打开电视,正在播放广告B.明天太阳从东方升起C.投掷飞镖一次,命中靶心D.任意画一个三角形,其内角和是360°3.(3分)若一个三角形的三边长分别为4,7,a,则a的值可能是()A.2B.3C.8D.144.(3分)如图,在△ABC中,∠ACB=90°,AD平分∠BAC交BC于点D,BC=10cm,点D到AB的距离为4cm,则BD的长为()A.4cm B.5cm C.6cm D.8cm5.(3分)下列计算正确的是()A.2a3•3a2=6a6B.a3+2a2=2aC.﹣2a(a﹣b)=﹣2a2﹣2ab D.(﹣a+b)2=a2﹣2ab+b26.(3分)如图,一条公路修到湖边时,需拐弯绕湖而过,若第一次拐角∠A=130°,第二次拐角∠B=150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C为()A.170°B.160°C.150°D.140°7.(3分)如图,△ABC中,AB=AC,D是BC的中点,AB的垂直平分线分别交AB、AD、AC于点E、O、F,则图中全等三角形的对数是()A.2对B.3对C.4对D.5对8.(3分)为增强居民的节水意识,某市自来水公司采用以户为单位分段计费的方式:即每月用水量不超过10吨时,每吨收费a元;若超过10吨,则10吨水按每吨a元收费,超过10吨的部分按每吨b元收费.如图是自来水公司绘制的水费y(元)与当月用水量x (吨)之间的图象,则下列结论不正确的是()A.a=1.5B.b=2C.若小明家当月用水量为14吨,则应缴水费23元D.若小红家6月份缴水费30元,则当月用水量为18.5吨9.(3分)如图,点P为∠AOB内一点,分别作出P点关于OB、OA的对称点P1,P2,连接P1P2交OB于M,交OA于N,若∠AOB=40°,则∠MPN的度数是()A.90°B.100°C.120°D.140°10.(3分)图1是长为a,宽为b(a>b)的小长方形纸片将6张如图1的纸片按图2的方式不重叠地放在长方形ABCD内,已知CD的长度固定不变,BC的长度可以变化,图中阴影部分(即两个长方形)的面积分别表示为S1,S2,若S=S1﹣S2,且S为定值,则a,b满足的关系是()A.a=2b B.a=3b C.a=4b D.a=5b二、填空题(每小题3分,7小题,共21分)11.(3分)如图,∠ABC=∠DCB,只需补充条件,就可以根据“AAS”得到△ABC≌△DCB.12.(3分)为迎接全国第十四届运动会,我校举行“缓堵保畅,安全出行,小手拉大手活动”每天值班老师和部分学生在校门两边站岗执勤(线段CD所在区域).如图,AB∥OH∥CD,AC与BD相交于O,OD⊥CD于点D,OD=OB,已知AB=300米,请根据上述信息求出执勤区域CD的长度是.13.(3分)一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是.14.(3分)如图,△ABC中,AB与AC的垂直平分线EF和MN分别交BC于E,N,垂足分别为F,M若∠EAN=40°,则∠BAC的度数是.15.(3分)若(x﹣4)(5﹣x)=﹣8,则(x﹣4)2+(5﹣x)2=.16.(3分)一个三角形的三条边的长分别是5,7,10,另一个三角形的三条边的长分别是5,3x﹣2,2y+1,若这两个三角形全等,则x+y的值是或.17.(3分)如图,正方形ABCD的边长为4,E为AB边上一点,AE=1.5,F为AD边上一动点,连接EF,以EF为边向右作等腰直角△EFG,∠FEG=90°,连接BG.当BG取最小值时,FD的长度是.三、解答题(共69分)18.(8分)计算:(1)(a+2)(a﹣2)﹣a(a+1);(2)4(x+y)2﹣(3x﹣2y)2.19.(6分)先化简,再求值:[(2x﹣y)(x+2y)﹣(x+y)2+3y2]÷2x,其中x=2,y=﹣.20.(6分)如图,AB、AC、BC是三条笔直的公路,点P是线段BC上的一处加油站,要求加油站到公路AB、AC的距离相等,请利用尺规作图确定点P的位置.(保留作图痕迹,不要求写作法)21.(7分)如图,已知AB=AE,AB∥DE,∠ECB+∠D=180°.那么AD与BC相等吗?请说明理由.22.(8分)小亮和小芳都想参加学校社团组织的暑假实践活动,但只有一个名额,小亮提议用如下方式决定谁去参加活动:将一个转盘九等分,分别标上1至9九个数字.(1)任意转动一次转盘,转到的数字是2的倍数的概率是多少?(2)若转到的数字是2的倍数(6除外),小亮参加活动;若转到的数字是3的倍数(6除外),小芳去参加活动若转到的数字是6或其它数字,则重新转动转盘.你认为这个游戏公平吗?请说明理由.23.(10分)如图,AB=AC=16cm,BC=10cm,点D为AB的中点,点P在边BC上以每秒2cm的速度由点B向点C运动,同时,点M在边CA上由点C向点A匀速运动.(1)当点M的运动速度与点P的运动速度相同,经过1秒后,△BPD与△CMP是否全等?请说明理由;(2)若点M的运动速度与点P的运动速度不相等,当点M的运动速度为多少时,能够使△BPD与△CMP全等?24.(12分)劳动是财富的源泉,也是幸福的源泉高新区某中学对劳动教育进行积极探索和实践,创建学生劳动教育基地,让学生参与农耕劳作.如图,现计划利用校园围墙的一段MN(MN长25m)及40m长的篱笆围成一个长方形菜园ABCD.设AB的长为xm(7.5<x<20).(1)BC的长度为m(用含x的代数式表示),长方形菜园的面积S(m2)与AB的长x(m)的关系式为S=;(2)完成下表:(在横线上填上正确的数据)AB的长x(m)…891011121314…菜园的面积S(m2)…192198182168…(3)通过探究,小明发现长方形菜园的面积S(m2)与AB的长x(m)之间的关系式也可写成S=﹣2(x﹣a)2+n的形式,请求出a、n的值及菜园面积S的最大值.25.(12分)问题提出:(1)我们把两个面积相等但不全等的三角形叫做“偏等积三角形”.如图1,△ABC中,AC=7,BC=9,AB=10,P为AC上一点,当AP=时,△ABP与△CBP是偏等积三角形;问题探究:(2)如图2,△ABD与△ACD是偏等积三角形,AB=2,AC=6,且线段AD的长度为正整数,过点C作CE∥AB交AD的延长线于点E,求AE的长度;问题解决:(3)如图3,四边形ABED是一片绿色花园,△ACB、△DCE是等腰直角三角形,∠ACB =∠DCE=90°(0<∠BCE<90°).①△ACD与△BCE是偏等积三角形吗?请说明理由;②已知BE=60m,△ACD的面积为2100m2.如图4,计划修建一条经过点C的笔直的小路CF,F在BE边上,FC的延长线经过AD中点G.若小路每米造价600元,请计算修建小路的总造价.2020-2021学年陕西省西安市雁塔区高新一中七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,10小题,共30分)1.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,进行解答.【解答】解:A.不是中心对称图形,故此选项不合题意;B.不是中心对称图形,故此选项不合题意;C.是中心对称图形,故此选项符合题意;D.不是中心对称图形,故此选项不合题意;故选:C.【点评】此题主要考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.【分析】根据事件发生的可能性大小判断.【解答】解:A、打开电视,正在播放广告,是随机事件;B、明天太阳从东方升起,是必然事件;C、投掷飞镖一次,命中靶心,是随机事件;D、任意画一个三角形,其内角和是360°,是不可能事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.【分析】根据三角形的三边关系列出不等式,即可求出a的取值范围.【解答】解:∵三角形的三边长分别为4,7,a,∴7﹣4<a<7+4,即3<a<11,故选:C.【点评】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.4.【分析】过点D作DE⊥AB于E,根据角平分线的性质定理得到DC=DE=4cm,结合图形计算,得到答案.【解答】解:过点D作DE⊥AB于E,∵AD平分∠BAC,∠ACB=90°,DE⊥AB,∴DC=DE=4cm,∴BD=BC﹣DC=10﹣4=6(cm),故选:C.【点评】本题考查的是角平分线的性质,掌握角平分线上的点到角的两边的距离相等是解题的关键.5.【分析】各式计算得到结果,即可作出判断.【解答】解:A、原式=6a5,不符合题意;B、原式不能合并,不符合题意;C、原式=﹣2a2+2ab,不符合题意;D、原式=a2﹣2ab+b2,符合题意.故选:D.【点评】此题考查了整式的混合运算,涉及的知识有:单项式乘单项式运算,单项式乘多项式运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.6.【分析】首先过点B作BD∥AE,又由已知AE∥CF,即可得AE∥BD∥CF,然后根据两直线平行,内错角相等,同旁内角互补,即可求得答案.【解答】解:如图,过点B作BD∥AE,由已知可得:AE∥CF,∴AE∥BD∥CF,∴∠ABD=∠A=130°,∠DBC+∠C=180°,∴∠DBC=∠ABC﹣∠ABD=150°﹣130°=20°,∴∠C=180°﹣∠DBC=180°﹣20°=160°.故选:B.【点评】此题考查了平行线的性质.注意掌握两直线平行,内错角相等,同旁内角互补与辅助线的作法是解此题的关键.7.【分析】由AB=AC,D是BC的中点,易得AD是BC的垂直平分线,则可证得△ACD ≌△ABD,△OCD≌△OBD,△AOC≌△AOB,又由EF是AC的垂直平分线,证得△OCE≌△OAE.【解答】解:∵AB=AC,BD=DC,∴AD⊥BC,在△ADB和△ADC中,,∴△ADB≌△ADC(SSS),∵OD垂直平分线段BC,∴OB=OC,同法可证△AOB≌△AOC(SSS),△ODB≌△ODC(SSS),∵OE垂直平分线段AB,∴OA=OB,在△OEA和△OEB中,,∴△OEA≌△OEB(SSS),故选:C.【点评】此题考查了线段垂直平分线的性质、等腰三角形的性质以及全等三角形的判定与性质.注意垂直平分线上任意一点,到线段两端点的距离相等.8.【分析】利用(10,15),(20,35)两点求出a,b的值即可.【解答】解:由图象可知,a=15÷10=1.5;b==2;用水14吨,则应缴水费:1.5×10+2×(14﹣10)=15+8=23(元);缴水费30元,则该用户当月用水为:10+(30﹣15)÷2=17.5(吨).故结论错误的是选项D.故选:D.【点评】本题主要考查了函数的图形,利用数形结合的方法求解是解答本题的关键.9.【分析】首先证明∠P1+∠P2=40°,可得∠PMN=∠P1+∠MPP1=2∠P1,∠PNM=∠P2+∠NPP2=2∠P2,推出∠PMN+∠PNM=2×40°=80°,可得结论.【解答】解:∵P点关于OB的对称点是P1,P点关于OA的对称点是P2,∴PM=P1M,PN=P2N,∠P2=∠P2PN,∠P1=∠P1PM,∵∠AOB=40°,∴∠P2PP1=140°,∴∠P1+∠P2=40°,∴∠PMN=∠P1+∠MPP1=2∠P1,∠PNM=∠P2+∠NPP2=2∠P2,∴∠PMN+∠PNM=2×40°=80°,∴∠MPN=180°﹣(∠PMN+∠PNM)=180°﹣80°=100°,故选:B.【点评】本题考查轴对称的性质.对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.10.【分析】设BC=n,先算求出阴影的面积分别为S1=a(n﹣4b),S2=2b(n﹣a),即可得出面积的差为S=S1﹣S2=(a﹣2b)n﹣2ab,因为S的取值与n无关,即a﹣2b=0,即可得出答案.【解答】解:设BC=n,则S1=a(n﹣4b),S2=2b(n﹣a),∴S=S1﹣S2=a(n﹣4b)﹣2b(n﹣a)=(a﹣2b)n﹣2ab,∵当BC的长度变化时,S的值不变,∴S的取值与n无关,∴a﹣2b=0,即a=2b.故选:A.【点评】本题主要考查了整式的加减运算,读懂题意列出两块阴影部分面积的代数式是解决本题的关键.二、填空题(每小题3分,7小题,共21分)11.【分析】根据AAS的判定方法可得出答案.【解答】解:补充条件∠A=∠D.理由:在△ABC和△DCB中,,所以△ABC≌△DCB(AAS).故答案为:∠A=∠D.【点评】此题主要考查了全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.12.【分析】由AB∥CD,利用平行线的性质可得∠ABO=∠CDO,由垂直的定义可得∠CDO =90°,易得OB⊥AB,由相邻两平行线间的距离相等可得OD=OB,利用ASA定理可得△ABO≌△CDO,由全等三角形的性质可得标语CD的长度.【解答】解:∵AB∥CD,∴∠ABO=∠CDO,∵OD⊥CD,∴∠CDO=90°,∴∠ABO=90°,即OB⊥AB,∵相邻两平行线间的距离相等,∴OD=OB,在△ABO与△CDO中,,∴△ABO≌△CDO(ASA),∴CD=AB=300m.即执勤区域CD的长度是300m,故答案为:300m.【点评】本题主要考查了全等三角形的判定及性质定理,平行线的性质,证得△ABO≌△CDO是解答此题的关键.13.【分析】若将每个小正方形的面积记为1,则大正方形的面积为16,其中阴影部分的面积为6,再根据概率公式求解可得.【解答】解:若将每个小正方形的面积记为1,则大正方形的面积为16,其中阴影部分的面积为6,所以该小球停留在黑色区域的概率是=,故答案为:.【点评】本题主要考查概率公式,解题的关键是掌握求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.14.【分析】根据线段垂直平分线的性质得到AE=BE,AN=CN,根据等腰三角形的性质得到∠BAE=∠B,∠CAN=∠C,根据三角形内角和定理计算,得到答案.【解答】解:EF、MN是边AB、AC的垂直平分线,∴AE=BE,AN=CN,∴∠BAE=∠B,∠CAN=∠C,∵∠EAN=40°,∠B+∠BAE+∠EAN+∠CAN+∠C=180°,∴∠BAE+∠CAN=70°,∴∠BAC=∠BAE+∠CAN+∠EAN=110°,故答案为:110°.【点评】本题考查的是线段垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15.【分析】设(x﹣4)=a,(5﹣x)=b,根据已知等式和完全平方公式求解即可.【解答】解:(1)设x﹣4=a,5﹣x=b,则(x﹣4)(5﹣x)=ab=﹣8,a+b=(x﹣4)+(5﹣x)=1,∴(x﹣4)2+(5﹣x)2=a2+b2=(a+b)2﹣2ab=12﹣2×(﹣8)=1+16=17.故答案为:17.【点评】本题考查了完全平方公式和多项式乘法.熟练掌握完全平方公式是解题的关键.16.【分析】根据全等三角形的性质,可知分两种情况:①,②;解答出即可;【解答】解:由题意得,①,解得,,∴x+y=3+=;②,解得,,∴x+y=4+3=7;故答案为:或7.【点评】本题主要考查了全等三角形的性质,掌握全等三角形的性质,知道本题可分两种情况,是解答的关键.17.【分析】如图所示,过点G作GH⊥AB,交AB的延长线于点H,根据正方形的性质和三角形的内角和可以推出∠1=∠3,根据全等三角形的判定可得△AFE≌△HEG,正方形的边长为4,AE=1.5,设FD=x,BG=y,根据勾股定理可得y²=(1.5﹣x)²+1.5²=(x﹣1.5)²+1.5²,再根据二次函数的性质知,当x=1.5时,y²有最小值1.5²,即当BG取最小值时,FD的长度为1.5.【解答】解:如图所示,过点G作GH⊥AB,交AB的延长线于点H,∵正方形ABCD,∴AD=AB,∠A=90°=∠EHG,又∵∠FEG=90°,FE=EG,∴∠1+∠2=∠2+∠3=90°,∴∠1=∠3,∴△AFE≌△HEG(AAS),∴AE=GH,AF=EH,∵正方形的边长为4,AE=1.5,设FD=x,BG=y,则EH=AF=4﹣x,EB=4﹣1.5=2.5,GH=AE=1.5,BH=EH﹣EB=4﹣x﹣2.5=1.5﹣x,由BG2=BH2+GH2得,y2=(1.5﹣x)2+1.52=(x﹣1.5)2+1.52,∵(x﹣1.5)2的系数1>0,∴当x=1.5时,y2有最小值1.52,∵y>0,∴y有最小值,∴当BG取最小值时,FD的长度为1.5,故答案为:1.5.【点评】本题考查的是正方形的性质,全等三角形的判定和性质,二次函数的应用等.解本题要熟练掌握正方形的性质,全等三角形的判定和性质等基本知识.三、解答题(共69分)18.【分析】(1)根据平方差公式和单项式乘多项式可以解答本题;(2)根据完全平方公式和合并同类项的方法可以解答本题.【解答】解:(1)(a+2)(a﹣2)﹣a(a+1)=a2﹣4﹣a2﹣a=﹣a﹣4;(2)4(x+y)2﹣(3x﹣2y)2=4×(x2+3xy+y2)﹣(9x2﹣12xy+4y2)=9x2+12xy+4y2﹣9x2+12xy﹣4y2=24xy【点评】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.19.【分析】直接利用整式的混合运算法则化简,进而把已知数据代入得出答案.【解答】解:原式=(2x2+4xy﹣xy﹣2y2﹣x2﹣2xy﹣y2+3y2)÷2x=(x2+xy)÷2x=x+y,当x=2,y=﹣时,原式=x+y=×2+×(﹣)=1﹣=.【点评】此题主要考查了整式的混合运算—化简求值,正确掌握相关运算法则是解题关键.20.【分析】直接作出∠BAC的平分线进而得出其交点即可得出答案.【解答】解:如图所示:点P即为所求.【点评】此题主要考查了作图﹣应用与设计作图,熟练掌握角平分线的作法是解题关键.21.【分析】由∠ECB+∠D=180°,∠ECB+∠ACB=180°,可得∠D=∠ACB,再由平行线的性质可得∠AED=∠BCA,结合AB=AE,可判断△ADE≌△BCA,从而得AD=BC.【解答】解:AD=BC,理由:∵∠ECB+∠D=180°,∠ECB+∠ACB=180°,∴∠D=∠ACB,∵AB∥DE,∴∠AED=∠BCA,在△ADE与△BCA中,,∴△ADE≌△BCA(AAS),∴AD=BC.【点评】本题主要考查平行线的性质,全等三角形的判定与性质,解答的关键是结合图形分析清楚其中的角或边的数量关系.22.【分析】(1)直接根据概率公式计算可得;(2)利用概率公式计算出两人去参加活动的概率判断即可.【解答】解:(1)∵共有1,2,3,4,5,6,7,8,9这9种等可能的结果,其中2的倍数有4个,∴P(转到2的倍数)=;(2)游戏不公平,理由如下:共有9种等可能的结果,其中3的倍数有3、6、9共3种可能,2的倍数有2,4,6,8共4种可能,由于转到6时需要重新转转盘,故6舍去,∴小亮去参加活动的概率为:=,小芳去参加活动的概率为:,∵>,∴游戏不公平.【点评】本题考查了游戏的公平性,判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.23.【分析】(1)△BPD与△CMP全等,根据SAS即可判断;(2)利用全等三角形的性质可知CM=BD=8,PC=PB=5,推出t=,推出点M的运动速度=8÷=cm/s;【解答】解:(1)结论:,△BPD与△CMP全等理由:t=1s时,PB=2,CM=2,BD=AB=8,PC=10﹣2=8,∵AB=AC,∴∠B=∠C,在△BDP和△CPM中,,∴△BDP≌CPM.(2)由题意△BPD与△CMP全等,∵CM≠PB,∴CM=BD=8,PC=PB=5,∴t=,∴点M的运动速度=8÷=cm/s.【点评】本题考查全等三角形的判定和性质、行程问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.【分析】(1)矩形面积公式:面积=长×宽,另外长方形菜园的面积S(m2)与AB的长x(m)的关系式要注意x的取值范围;(2)分别代入x求解;(3)把函数关系式配方,从而得出结论.【解答】解:(1)设AB的长为xm,∴BC=40﹣AB﹣CD=(40﹣2x)m,∴S=AB•BC=x(40﹣2x)=﹣2x2+40x,故答案为:(40﹣2x),﹣2x2+40x;(2)将x=9,10,12分别代入解析式S=﹣2x2+40x,当x=9时,S=﹣2×92+40×9=198,当x=10时,S=﹣2×102+40×10=200,当x=12时,S=﹣2×122+40×12=192,故答案为:198,200,192;(3)∵S=﹣2x2+40x=﹣2(x2﹣20x)=﹣2(x﹣10)2+200,∴a=10,n=200,∵﹣2<0,∴当x=10时,S有最大值,最大值为200m2.【点评】本题考查二次函数的应用,解题关键是熟练掌握二次函数的性质.25.【分析】(1)当AP=CP时,则AP=,证S△ABP=S△CBP,再证△ABP与△CBP不全等,即可得出结论;=S△ACD,则BD=CD,再证△CDE≌△BDA(AAS),(2)由偏等积三角形的定义得S△ABD则CE=AB=2,ED=AD,得AE=ED+AD=2AD,然后由三角形的三边关系求解即可;(3)①过A作AM⊥DC于M,过B作BN⊥CE于N,证△ACM≌△BCN(AAS),得AM=BN,则S△ACD=S△BCE,再证△ACD与△BCE不全等,即可得出结论;②过点A作AN∥CD,交CG的延长线于N,证得△AGN≌△DGC(AAS),得到AN=CD,再证△ACN≌△CBE(SAS),得∠ACN=∠CBE,由余角的性质可证CF⊥BE,然=BE•CF,S△BCE=S△ACD=2100,求出后由三角形面积和偏等积三角形的定义得S△BCECF=70(m),即可求解.【解答】解:(1)当AP=CP=时,△ABP与△CBP是偏等积三角形,理由如下:=AP•h,S△CBP=CP•h,设点B到AC的距离为h,则S△ABP=S△CBP,∴S△ABP∵AB=10,BC=7,∴AB≠BC,∵AP=CP、PB=PB,∴△ABP与△CBP不全等,∴△ABP与△CBP是偏等积三角形,故答案为:;=BD•n,S△ACD=CD•n,(2)设点A到BC的距离为n,则S△ABD∵△ABD与△ACD是偏等积三角形,=S△ACD,∴S△ABD∴BD=CD,∵CE∥AB,∴∠ECD=∠B,∠E=∠BAD,在△CDE和△BDA中,,∴△CDE≌△BDA(AAS),∴CE=AB=2,ED=AD,∴AE=ED+AD=2AD,∵线段AD的长度为正整数,∴AE的长度为偶数,在△ACE中,AC=6,CE=2,∴6﹣2<AE<6+2,即:4<AE<8,∴AE=6;(3)①△ACD与△BCE是偏等积三角形,理由如下:过A作AM⊥DC于M,过B作BN⊥CE于N,如图3所示:则∠AMC=∠BNC=90°,∵△ACB、△DCE是等腰直角三角形,∴∠ACB=∠DCE=90°,AC=BC,CD=CE,∴∠BCN+∠ACD=360°﹣∠ACB﹣∠DCE=360°﹣90°﹣90°=180°,∵∠ACM+∠ACD=180°,∴∠ACM=∠BCN,在△ACM和△BCN中,,∴△ACM≌△BCN(AAS),∴AM=BN,=CD•AM,S△BCE=CE•BN,∵S△ACD=S△BCE,∴S△ACD∵∠BCE+∠ACD=180°,0°<∠BCE<90°,∴∠ACD≠∠BCE,∵CD=CE,AC=BC,∴△ACD与△BCE不全等,∴△ACD与△BCE是偏等积三角形;②如图3,过点A作AN∥CD,交CG的延长线于N,则∠N=∠GCD,∵G点为AD的中点,∴AG=GD,在△AGN和△DGC中,,∴△AGN≌△DGC(AAS),∴AN=CD,∵CD=CE,∴AN=CE,∵AN∥CD,∴∠CAN+∠ACD=180°,∵∠ACB=∠DCE=90°,∴∠ACD+∠BCE=360°﹣90°﹣90°=180°,∴∠BCE=∠CAN,在△ACN和△CBE中,,∴△ACN≌△CBE(SAS),∴∠ACN=∠CBE,∵∠ACN+∠BCF=180°﹣90°=90°,∴∠CBE+∠BCF=90°,∴∠BFC=90°,∴CF⊥BE.由①得:△ACD与△BCE是偏等积三角形,=BE•CF,S△BCE=S△ACD=2100,∴S△BCE∴CF===70(m),∴修建小路CF的总造价为:600×70=42000(元).【点评】本题是四边形综合题目,考查了新定义“偏等积三角形”的定义、全等三角形的判定与性质、等腰直角三角形的性质、三角形面积等知识;本题综合性强,熟练掌握“偏等积三角形”的定义,证明△ACM≌△BCN和△ACN≌△CBE是解题的关键,属于中考常考题型.。

西安高新第一中学初中校区东区初级中学七年级下册数学期末试卷(培优篇)(Word版 含解析)

西安高新第一中学初中校区东区初级中学七年级下册数学期末试卷(培优篇)(Word版 含解析)

西安高新第一中学初中校区东区初级中学七年级下册数学期末试卷(培优篇)(Word 版 含解析)一、解答题1.如图1,已AB ∥CD ,∠C =∠A . (1)求证:AD ∥BC ;(2)如图2,若点E 是在平行线AB ,CD 内,AD 右侧的任意一点,探究∠BAE ,∠CDE ,∠E 之间的数量关系,并证明.(3)如图3,若∠C =90°,且点E 在线段BC 上,DF 平分∠EDC ,射线DF 在∠EDC 的内部,且交BC 于点M ,交AE 延长线于点F ,∠AED +∠AEC =180°, ①直接写出∠AED 与∠FDC 的数量关系: .②点P 在射线DA 上,且满足∠DEP =2∠F ,∠DEA ﹣∠PEA =514∠DEB ,补全图形后,求∠EPD 的度数2.如图,//MN GH ,点A 、B 分别在直线MN 、GH 上,点O 在直线MN 、GH 之间,若116NAO ∠=︒,144OBH ∠=︒.(1)AOB ∠= ︒;(2)如图2,点C 、D 是NAO ∠、GBO ∠角平分线上的两点,且35CDB ∠=︒,求ACD ∠ 的度数;(3)如图3,点F 是平面上的一点,连结FA 、FB ,E 是射线FA 上的一点,若MAE ∠=n OAE ∠,HBF n OBF ∠=∠,且60AFB ∠=︒,求n 的值.3.如图,∠EBF =50°,点C 是∠EBF 的边BF 上一点.动点A 从点B 出发在∠EBF 的边BE 上,沿BE 方向运动,在动点A 运动的过程中,始终有过点A 的射线AD ∥BC .(1)在动点A 运动的过程中, (填“是”或“否”)存在某一时刻,使得AD 平分∠EAC ? (2)假设存在AD 平分∠EAC ,在此情形下,你能猜想∠B 和∠ACB 之间有何数量关系?并请说明理由;(3)当AC ⊥BC 时,直接写出∠BAC 的度数和此时AD 与AC 之间的位置关系.4.已知直线//AB CD ,点P 为直线AB 、CD 所确定的平面内的一点. (1)如图1,直接写出APC ∠、A ∠、C ∠之间的数量关系 ; (2)如图2,写出APC ∠、A ∠、C ∠之间的数量关系,并证明;(3)如图3,点E 在射线BA 上,过点E 作//EF PC ,作PEG PEF ∠∠=,点G 在直线CD 上,作BEG ∠的平分线EH 交PC 于点H ,若30APC ∠=,140PAB ∠=,求PEH ∠的度数.5.如图,已知直线//AB 射线CD ,100CEB ∠=︒.P 是射线EB 上一动点,过点P 作PQ //EC 交射线CD 于点Q ,连接CP .作PCF PCQ ∠=∠,交直线AB 于点F ,CG 平分ECF ∠.(1)若点P ,F ,G 都在点E 的右侧,求PCG ∠的度数;(2)若点P ,F ,G 都在点E 的右侧,30EGC ECG ∠-∠=︒,求CPQ ∠的度数; (3)在点P 的运动过程中,是否存在这样的情形,使:4:3EGC EFC ∠∠=?若存在,求出CPQ ∠的度数;若不存在,请说明理由.二、解答题6.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,点B 在两条平行线外,则A ∠与C ∠之间的数量关系为______; (2)点B 在两条平行线之间,过点B 作BD AM ⊥于点D . ①如图2,说明ABD C ∠=∠成立的理由;②如图3,BF 平分DBC ∠交DM 于点,F BE 平分ABD ∠交DM 于点E .若180,3FCB NCF BFC DBE ∠∠∠∠+=︒=,求EBC ∠的度数.7.为更好地理清平行线相关角的关系,小明爸爸为他准备了四根细直木条AB 、BC 、CD 、DE ,做成折线ABCDE ,如图1,且在折点B 、C 、D 处均可自由转出.(1)如图2,小明将折线调节成50B ∠=︒,85C ∠=︒,35D ∠=︒,判断AB 是否平行于ED ,并说明理由;(2)如图3,若35C D ∠=∠=︒,调整线段AB 、BC 使得//AB CD 求出此时B 的度数,要求画出图形,并写出计算过程.(3)若85C ∠=︒,35D ∠=︒,//AB DE ,请直接写出此时B 的度数.8.将两块三角板按如图置,其中三角板边AB AE =,90BAC EAD ∠=∠=︒,45C ∠=︒,30D ∠=︒.(1)下列结论:正确的是_______. ①如果60BFD ∠=︒,则有//BC AD ; ②180BAE CAD ∠+∠=︒;③如果//BC AD ,则AB 平分EAD ∠.(2)如果150CAD ∠=︒,判断BFD ∠与C ∠是否相等,请说明理由.(3)将三角板ABC 绕点A 顺时针转动,直到边AC 与AD 重合即停止,转动的过程中当两块三角板恰有两边平行时,请直接写出EAB ∠所有可能的度数.9.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况,如图,灯A 射线自AM 顺时针旋转至AN 便立即回转,灯B 射线自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视,若灯A 转动的速度是a °/秒,灯B 转动的速度是b °/秒,且a 、b 满足()2450a b a b -++-=.假定这一带长江两岸河堤是平行的,即//PQ MN ,且60BAN ∠=︒(1)求a 、b 的值;(2)若灯B 射线先转动45秒,灯A 射线才开始转动,当灯B 射线第一次到达BQ 时运动停止,问A 灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作CD AC ⊥交PQ 于点D ,则在转动过程中,BAC ∠与BCD ∠的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.10.如图,两个形状,大小完全相同的含有30°、60°的三角板如图放置,PA 、PB 与直线MN 重合,且三角板PAC ,三角板PBD 均可以绕点P 逆时针旋转. (1)①如图1,∠DPC = 度.②我们规定,如果两个三角形只要有一组边平行,我们就称这两个三角形为“孪生三角形”,如图1,三角板BPD 不动,三角板PAC 从图示位置开始每秒10°逆时针旋转一周(0°<旋转<360°),问旋转时间t 为多少时,这两个三角形是“孪生三角形”.(2)如图3,若三角板PAC 的边PA 从PN 处开始绕点P 逆时针旋转,转速3°/秒,同时三角板PBD 的边PB 从PM 处开始绕点P 逆时针旋转,转速2°/秒,在两个三角板旋转过程中,(PC 转到与PM 重合时,两三角板都停止转动).设两个三角板旋转时间为t 秒,以下两个结论:①CPDBPN∠∠为定值;②∠BPN +∠CPD 为定值,请选择你认为对的结论加以证明.三、解答题11.如图,直线//AB CD ,E 、F 是AB 、CD 上的两点,直线l 与AB 、CD 分别交于点G 、H ,点P 是直线l 上的一个动点(不与点G 、H 重合),连接PE 、PF .(1)当点P 与点E 、F 在一直线上时,GEP EGP ∠=∠,60FHP ∠=︒,则PFD ∠=_____.(2)若点P 与点E 、F 不在一直线上,试探索AEP ∠、EPF ∠、CFP ∠之间的关系,并证明你的结论.12.如图,在ABC 中,AD 是高,AE 是角平分线,20B ∠=︒,60C ∠=°.(1)求CAD ∠、AEC ∠和EAD ∠的度数.(2)若图形发生了变化,已知的两个角度数改为:当30B ∠=︒,60C ∠=°,则EAD ∠=__________︒.当50B ∠=︒,C 60∠=︒时,则EAD ∠=__________︒. 当60B ∠=︒,60C ∠=°时,则EAD ∠=__________︒. 当70B ∠=︒,60C ∠=°时,则EAD ∠=__________︒.(3)若B 和C ∠的度数改为用字母α和β来表示,你能找到EAD ∠与α和β之间的关系吗?请直接写出你发现的结论. 13.(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图 1,MN 是平面镜,若入射光线 AO 与水平镜面夹角为∠1,反射光线 OB 与水平镜面夹角为∠2,则∠1=∠2 .(现象解释)如图 2,有两块平面镜 OM ,ON ,且 OM ⊥ON ,入射光线 AB 经过两次反射,得到反射光线CD.求证AB∥CD.(尝试探究)如图 3,有两块平面镜OM,ON,且∠MON =55︒,入射光线AB 经过两次反射,得到反射光线CD,光线AB 与CD 相交于点E,求∠BEC 的大小.(深入思考)如图 4,有两块平面镜OM,ON,且∠MON =α ,入射光线AB 经过两次反射,得到反射光线CD,光线AB 与CD 所在的直线相交于点E,∠BED=β , α 与β 之间满足的等量关系是 .(直接写出结果)14.如图1,已知AB∥CD,BE平分∠ABD,DE平分∠BDC.(1)求证:∠BED=90°;(2)如图2,延长BE交CD于点H,点F为线段EH上一动点,∠EDF=α,∠ABF的角平分线与∠CDF的角平分线DG交于点G,试用含α的式子表示∠BGD的大小;(3)如图3,延长BE交CD于点H,点F为线段EH上一动点,∠EBM的角平分线与∠FDN的角平分线交于点G,探究∠BGD与∠BFD之间的数量关系,请直接写出结论:.15.已知,如图1,直线l2⊥l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C 不与点A重合,点D在直线11上,点A的右侧,过D作l3⊥l1,点E在直线l3上,点D的下方.(1)l2与l3的位置关系是;(2)如图1,若CE平分∠BCD,且∠BCD=70°,则∠CED=°,∠ADC=°;(3)如图2,若CD⊥BD于D,作∠BCD的角平分线,交BD于F,交AD于G.试说明:∠DGF=∠DFG;(4)如图3,若∠DBE=∠DEB,点C在射线AM上运动,∠BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索∠N:∠BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值.【参考答案】一、解答题1.(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°【分析】(1)根据平行线的性质及判定可得结论;(2)过点E作EF∥AB,根解析:(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°【分析】(1)根据平行线的性质及判定可得结论;(2)过点E作EF∥AB,根据平行线的性质得AB∥CD∥EF,然后由两直线平行内错角相等可得结论;(3)①根据∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可导出角的关系;②先根据∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根据∠DEA-∠DEB,求出∠AED=50°,即可得出∠EPD的度数.∠PEA=514【详解】解:(1)证明:AB∥CD,∴∠A+∠D=180°,∵∠C=∠A,∴∠C+∠D=180°,∴AD∥BC;(2)∠BAE+∠CDE=∠AED,理由如下:如图2,过点E作EF∥AB,∵AB∥CD∴AB∥CD∥EF∴∠BAE=∠AEF,∠CDE=∠DEF即∠FEA+∠FED=∠CDE+∠BAE∴∠BAE+∠CDE=∠AED;(3)①∠AED-∠FDC=45°;∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,∴∠AEC=∠DEC+∠AEB,∴∠AED=∠AEB,∵DF平分∠EDC∠DEC=2∠FDC∴∠DEC=90°-2∠FDC,∴2∠AED+(90°-2∠FDC)=180°,∴∠AED-∠FDC=45°,故答案为:∠AED-∠FDC=45°;②如图3,∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°,∴∠F=45°,∴∠DEP=2∠F=90°,∵∠DEA-∠PEA=514∠DEB=57∠DEA,∴∠PEA =27∠AED ,∴∠DEP =∠PEA +∠AED =97∠AED =90°,∴∠AED =70°, ∵∠AED +∠AEC =180°, ∴∠DEC +2∠AED =180°, ∴∠DEC =40°, ∵AD ∥BC , ∴∠ADE =∠DEC =40°,在△PDE 中,∠EPD =180°-∠DEP -∠AED =50°, 即∠EPD =50°. 【点睛】本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键.2.(1)100;(2)75°;(3)n=3. 【分析】(1)如图:过O 作OP//MN ,由MN//OP//GH 得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n =3. 【分析】(1)如图:过O 作OP //MN ,由MN //OP //GH 得∠NAO +∠POA =180°,∠POB +∠OBH =180°,即∠NAO +∠AOB +∠OBH =360°,即可求出∠AOB ;(2)如图:分别延长AC 、CD 交GH 于点E 、F ,先根据角平分线求得58NAC ∠=︒,再根据平行线的性质得到58CEF ∠=︒;进一步求得18DBF ∠=︒,17DFB ∠=︒,然后根据三角形外角的性质解答即可;(3)设BF 交MN 于K ,由∠NAO =116°,得∠MAO =64°,故∠MAE =641nn ︒⨯+,同理∠OBH =144°,∠HBF =n ∠OBF ,得∠FBH =1441n n ︒⨯+,从而=n BKA FBH n ∠∠=⨯︒+1441,又∠FKN =∠F +∠FAK ,得144606411n nn n ︒︒︒⨯=+⨯++,即可求n . 【详解】解:(1)如图:过O 作OP //MN , ∵MN //GHl ∴MN //OP //GH∴∠NAO +∠POA =180°,∠POB +∠OBH =180° ∴∠NAO +∠AOB +∠OBH =360° ∵∠NAO =116°,∠OBH =144° ∴∠AOB =360°-116°-144°=100°;(2)分别延长AC 、CD 交GH 于点E 、F ,∵AC 平分NAO ∠且116NAO ∠=︒, ∴58NAC ∠=︒, 又∵MN //GH , ∴58CEF ∠=︒;∵144OBH ∠=︒,36OBG ∠=︒ ∵BD 平分OBG ∠, ∴18DBF ∠=︒, 又∵,CDB ∠=︒35∴351817DFB CDB DBF ∠=∠-∠=-=︒; ∴175875ACD DFB AEF ∠=∠+∠=︒+︒=︒; (3)设FB 交MN 于K ,∵116NAO ∠=︒,则MAO ∠=︒64; ∴641nMAE n ∠=⨯︒+ ∵144OBH ∠=︒, ∴+1n FBH n ∠=⨯︒144,=n BKA FBH n ∠∠=⨯︒+1441, 在△FAK 中,64601nBKA FKA F n ∠=∠+∠=⨯︒+︒+, ∴144646011n n n n ⨯︒=⨯︒+︒++, ∴3n =.经检验:3n =是原方程的根,且符合题意. 【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.3.(1)是;(2)∠B=∠ACB,证明见解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD解析:(1)是;(2)∠B=∠ACB,证明见解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则当∠ACB=∠B时,有AD平分∠EAC;(2)根据角平分线可得∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则有∠ACB=∠B;(3)由AC⊥BC,有∠ACB=90°,则可求∠BAC=40°,由平行线的性质可得AC⊥AD.【详解】解:(1)是,理由如下:要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则当∠ACB=∠B时,有AD平分∠EAC;故答案为:是;(2)∠B=∠ACB,理由如下:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠B=∠EAD,∠ACB=∠CAD,∴∠B=∠ACB.(3)∵AC⊥BC,∴∠ACB=90°,∵∠EBF=50°,∴∠BAC=40°,∵AD∥BC,∴AD⊥AC.【点睛】此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键.4.(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55°【分析】(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360解析:(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55°【分析】(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360°;(2)作PQ∥AB,易得AB∥PQ∥CD,根据两直线平行,内错角相等,即可证得∠APC=∠A+∠C;∠FEG,(3)由(2)知,∠APC=∠PAB-∠PCD,先证∠BEF=∠PQB=110°、∠PEG=12∠GEH=1∠BEG,根据∠PEH=∠PEG-∠GEH可得答案.2【详解】解:(1)∠A+∠C+∠APC=360°如图1所示,过点P作PQ∥AB,∴∠A+∠APQ=180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如图2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=12∠FEG,∵EH平分∠BEG,∴∠GEH=12∠BEG,∴∠PEH=∠PEG-∠GEH=1 2∠FEG-12∠BEG=12∠BEF=55°.【点睛】此题考查了平行线的性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.5.(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠G解析:(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=25°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=4x-3x=x,分两种情况讨论:①当点G、F在点E 的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.【详解】解:(1)∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=12∠QCF+12∠FCE=12∠ECQ=40°;(2)∵AB∥CD∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°,又∵∠EGC-∠ECG=30°,∴∠EGC=55°,∠ECG=25°,∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=12(80°-50°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=∠FCD=4x-3x=x,①当点G、F在点E的右侧时,则∠ECG=x,∠PCF=∠PCD=32 x,∵∠ECD=80°,∴x+x+32x+32x=80°,解得x=16°,∴∠CPQ=∠ECP=x+x+32x=56°;②当点G、F在点E的左侧时,则∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∴∠PCQ=12∠FCQ=60°,∴∠CPQ=∠ECP=80°-60°=20°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.二、解答题6.(1)∠A+∠C=90°;(2)①见解析;②105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥解析:(1)∠A+∠C=90°;(2)①见解析;②105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得2α+β+3α+3α+β=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【详解】解:(1)如图1,AM与BC的交点记作点O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°;(2)①如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥DM,BG CN//,∴∠C=∠CBG,∠ABD=∠C;②如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.7.(1)平行,理由见解析;(2)35°或145°,画图、过程见解析;(3)50°或130°或60°或120°【分析】(1)过点C作CF∥AB,根据∠B=50°,∠C=85°,∠D=35°,即可得C解析:(1)平行,理由见解析;(2)35°或145°,画图、过程见解析;(3)50°或130°或60°或120°【分析】(1)过点C作CF∥AB,根据∠B=50°,∠C=85°,∠D=35°,即可得CF∥ED,进而可以判断AB平行于ED;(2)根据题意作AB∥CD,即可∠B=∠C=35°;(3)分别画图,根据平行线的性质计算出∠B的度数.【详解】解:(1)AB平行于ED,理由如下:如图2,过点C作CF∥AB,∴∠BCF=∠B=50°,∵∠BCD=85°,∴∠FCD=85°-50°=35°,∵∠D=35°,∴∠FCD=∠D,∴CF∥ED,∵CF∥AB,∴AB∥ED;(2)如图,即为所求作的图形.∵AB∥CD,∴∠ABC=∠C=35°,∴∠B的度数为:35°;∵A′B∥CD,∴∠ABC+∠C=180°,∴∠B的度数为:145°;∴∠B的度数为:35°或145°;(3)如图2,过点C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠FCD=∠D=35°,∵∠BCD=85°,∴∠BCF=85°-35°=50°,∴∠B=∠BCF=50°.答:∠B的度数为50°.如图5,过C作CF∥AB,则AB∥CF∥CD,∴∠FCD=∠D=35°,∵∠BCD=85°,∴∠BCF=85°-35°=50°,∵AB∥CF,∴∠B+∠BCF=180°,∴∠B=130°;如图6,∵∠C=85°,∠D=35°,∴∠CFD=180°-85°-35°=60°,∵AB∥DE,∴∠B=∠CFD=60°,如图7,同理得:∠B=35°+85°=120°,综上所述,∠B的度数为50°或130°或60°或120°.【点睛】本题考查了平行线的判定与性质,解决本题的关键是区分平行线的判定与性质,并熟练运用.8.(1)②③;(2)相等,理由见解析;(3)30°或45°或75°或120°或135°【分析】(1)根据平行线的判定和性质分别判定即可;(2)利用角的和差,结合∠CAB=∠DAE=90°进行判断解析:(1)②③;(2)相等,理由见解析;(3)30°或45°或75°或120°或135°【分析】(1)根据平行线的判定和性质分别判定即可;(2)利用角的和差,结合∠CAB=∠DAE=90°进行判断;(3)依据这两块三角尺各有一条边互相平行,分五种情况讨论,即可得到∠EAB角度所有可能的值.【详解】解:(1)①∵∠BFD=60°,∠B=45°,∴∠BAD+∠D=∠BFD+∠B=105°,∴∠BAD=105°-30°=75°,∴∠BAD≠∠B,∴BC和AD不平行,故①错误;②∵∠BAC+∠DAE=180°,∴∠BAE+∠CAD=∠BAE+∠CAE+∠DAE=180°,故②正确;③若BC∥AD,则∠BAD=∠B=45°,∴∠BAE=45°,即AB平分∠EAD,故③正确;故答案为:②③;(2)相等,理由是:∵∠CAD=150°,∴∠BAE=180°-150°=30°,∴∠BAD=60°,∵∠BAD+∠D=∠BFD+∠B,∴∠BFD=60°+30°-45°=45°=∠C;(3)若AC∥DE,则∠CAE=∠E=60°,∴∠EAB=90°-60°=30°;若BC∥AD,则∠B=∠BAD=45°,∴∠EAB=45°;若BC∥DE,则∠E=∠AFB=60°,∴∠EAB=180°-60°-45°=75°;若AB∥DE,则∠D=∠DAB=30°,∴∠EAB =30°+90°=120°;若AE ∥BC ,则∠C =∠CAE =45°,∴∠EAB =45°+90°=135°;综上:∠EAB 的度数可能为30°或45°或75°或120°或135°.【点睛】本题考查了平行线的判定和性质,角平分线的定义,解题的关键是理解题意,分情况画出图形,学会用分类讨论的思想思考问题.9.(1),;(2)15秒或63秒;(3)不发生变化,【分析】(1)利用非负数的性质解决问题即可.(2)分三种情形,利用平行线的性质构建方程即可解决问题.(3)由参数表示,即可判断.【详解】解析:(1)4a =,1b =;(2)15秒或63秒;(3)不发生变化,34BAC BCD ∠=∠【分析】(1)利用非负数的性质解决问题即可.(2)分三种情形,利用平行线的性质构建方程即可解决问题.(3)由参数t 表示BAC ∠,BCD ∠即可判断.【详解】解:(1)∵()2450a b a b -++-=,∴4050a b a b -=⎧⎨+-=⎩, 4a ∴=,1b =;(2)设A 灯转动t 秒,两灯的光束互相平行,①当045t <<时,4(45)1t t =+⨯,解得15t =;②当4590t <<时,()418018045t t -=-+,解得63t =;③当90135t <<时,436045t t -=+,解得135t =,(不合题意)综上所述,当t =15秒或63秒时,两灯的光束互相平行;(3)设A 灯转动时间为t 秒,1804CAN t ∠=︒-,60(1804)4120BAC t t ∴∠=︒-︒-=-︒,又//PQ MN ,18041803BCA CBD CAN t t t ∴∠=∠+∠=+︒-=︒-,而90ACD ∠=︒,9090(1803)390BCD BCA t t ∴∠=︒-∠=︒-︒-=-︒,:4:3BAC BCD ∴∠∠=,即34BAC BCD ∠=∠.【点睛】本题考查平行线的性质和判定,非负数的性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.10.(1)①90;②t 为或或或或或或;(2)①正确,②错误,证明见解析.【分析】(1)①由平角的定义,结合已知条件可得:从而可得答案;②当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和解析:(1)①90;②t 为3s 或6s 或9s 或18s 或21s 或24s 或27s ;(2)①正确,②错误,证明见解析.【分析】(1)①由平角的定义,结合已知条件可得:180,DPC CPA DPB ∠=︒-∠-∠从而可得答案;②当//BD PC 时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差求解旋转角,可得旋转时间;当//PA BD 时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当//AC DP 时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当//AC BD 时,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当//AC BP 时的旋转时间与//PA BD 相同;(2)分两种情况讨论:当PD 在MN 上方时,当PD 在MN 下方时,①分别用含t 的代数式表示,CPD BPN ∠∠,从而可得CPD BPN∠∠的值;②分别用含t 的代数式表示,CPD BPN ∠∠,得到BPN CPD ∠+∠是一个含t 的代数式,从而可得答案.【详解】解:(1)①∵∠DPC =180°﹣∠CPA ﹣∠DPB ,∠CPA =60°,∠DPB =30°,∴∠DPC =180﹣30﹣60=90°,故答案为90;②如图1﹣1,当BD ∥PC 时,∵PC ∥BD ,∠DBP =90°,∴∠CPN =∠DBP =90°,∵∠CPA =60°,∴∠APN =30°,∵转速为10°/秒,∴旋转时间为3秒;如图1﹣2,当PC ∥BD 时,∵//,PC BD ∠PBD =90°,∴∠CPB =∠DBP =90°,∵∠CPA =60°,∴∠APM =30°,∵三角板PAC 绕点P 逆时针旋转的角度为180°+30°=210°,∵转速为10°/秒,∴旋转时间为21秒,如图1﹣3,当PA∥BD时,即点D与点C重合,此时∠ACP=∠BPD=30°,则AC∥BP,∵PA∥BD,∴∠DBP=∠APN=90°,∴三角板PAC绕点P逆时针旋转的角度为90°,∵转速为10°/秒,∴旋转时间为9秒,如图1﹣4,当PA∥BD时,∵∠DPB=∠ACP=30°,∴AC∥BP,∵PA∥BD,∴∠DBP=∠BPA=90°,∴三角板PAC绕点P逆时针旋转的角度为90°+180°=270°,∵转速为10°/秒,∴旋转时间为27秒,如图1﹣5,当AC∥DP时,∵AC∥DP,∴∠C=∠DPC=30°,∴∠APN=180°﹣30°﹣30°﹣60°=60°,∴三角板PAC绕点P逆时针旋转的角度为60°,∵转速为10°/秒,∴旋转时间为6秒,AC DP时,如图1﹣6,当//AC DP,//DPA PAC∴∠=∠=︒,90DPN DPA∠+∠=︒-︒+︒=︒,1803090240∴三角板PAC绕点P逆时针旋转的角度为240︒,∵转速为10°/秒,∴旋转时间为24秒,如图1﹣7,当AC∥BD时,∵AC∥BD,∴∠DBP=∠BAC=90°,∴点A在MN上,∴三角板PAC绕点P逆时针旋转的角度为180°,∵转速为10°/秒,∴旋转时间为18秒,AC BP时,如图1-3,1-4,旋转时间分别为:9s,27s.当//综上所述:当t为3s或6s或9s或18s或21s或24s或27s时,这两个三角形是“孪生三角形”;(2)如图,当PD在MN上方时,①正确,理由如下:设运动时间为t秒,则∠BPM=2t,∴∠BPN=180°﹣2t,∠DPM=30°﹣2t,∠APN=3t.∴∠CPD=180°﹣∠DPM﹣∠CPA﹣∠APN=90°﹣t,21802,BPN CPD t ∴∠=∠=︒- ∴1.2CPD BPN ∠=∠ ②∠BPN +∠CPD =180°﹣2t +90°﹣t =270°﹣3t ,可以看出∠BPN +∠CPD 随着时间在变化,不为定值,结论错误.当PD 在MN 下方时,如图,①正确,理由如下:设运动时间为t 秒,则∠BPM =2t ,∴∠BPN =180°﹣2t ,∠DPM =230,t -︒ ∠APN =3t .∴∠CPD =360CPA APN DPB BPN ︒-∠-∠-∠-∠()360603301802t t =︒-︒--︒-︒-=90t ︒-21802,BPN CPD t ∴∠=∠=︒-∴1.2CPD BPN ∠=∠ ②∠BPN +∠CPD =180°﹣2t +90°﹣t =270°﹣3t ,可以看出∠BPN +∠CPD 随着时间在变化,不为定值,结论错误.综上:①正确,②错误.【点睛】本题考查的是角的和差倍分关系,平行线的性质与判定,角的动态定义(旋转角)的理解,掌握分类讨论的思想是解题的关键.三、解答题11.(1)120°;(2)∠EPF =∠AEP+∠CFP 或∠AEP=∠EPF+∠CFP ,证明见详解.【分析】(1)根据题意,当点与点、在一直线上时,作出图形,由AB ∥CD ,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF =∠AEP+∠CFP 或∠AEP=∠EPF+∠CFP ,证明见详解.【分析】(1)根据题意,当点P 与点E 、F 在一直线上时,作出图形,由AB ∥CD ,∠FHP=60°,可以推出GEP EGP ∠=∠=60°,计算∠PFD 即可;(2)根据点P 是动点,分三种情况讨论:①当点P 在AB 与CD 之间时;②当点P 在AB上方时;③当点P在CD下方时,分别求出∠AEP、∠EPF、∠CFP之间的关系即可.【详解】(1)当点P与点E、F在一直线上时,作图如下,∠=∠,∵AB∥CD,∠FHP=60°,GEP EGP∠=∠=∠FHP=60°,∴GEP EGP∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案为:120°;(2)满足关系式为∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.证明:根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时,过点P作PQ∥AB,如下图,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF =∠AEP+∠CFP;②当点P在AB上方时,如下图所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③当点P 在CD 下方时,∵AB ∥CD ,∴∠AEP=∠EQF ,∴∠EQF=∠EPF+∠CFP ,∴∠AEP=∠EPF+∠CFP ,综上所述,∠AEP 、∠EPF 、∠CFP 之间满足的关系式为:∠EPF =∠AEP+∠CFP 或∠AEP=∠EPF+∠CFP ,故答案为:∠EPF =∠AEP+∠CFP 或∠AEP=∠EPF+∠CFP .【点睛】本题考查了平行线的性质,外角的性质,掌握平行线的性质是解题的关键,注意分情况讨论问题.12.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,.【分析】(1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数;解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当αβ<时,1()2EAD βα∠=-;当αβ>时,1()2EAD αβ∠=-. 【分析】(1)先利用三角形内角和定理求出BAC ∠的度数,再根据角平分线和高的性质分别得出EAC ∠和DAC ∠的度数,进而可求AEC ∠和EAD ∠的度数;(2)先利用三角形内角和定理求出BAC ∠的度数,再根据角平分线和高的性质分别得出EAC ∠和DAC ∠的度数,则前三问利用EAD EAC DAC ∠=∠-∠即可得出答案,第4问利用EAD DAC EAC ∠=∠-∠即可得出答案;(3)按照(2)的方法,将相应的数换成字母即可得出答案.【详解】(1)∵20B ∠=︒,60C ∠=°,∴180100BAC B C ∠=-∠-∠=︒︒ .∵AE 平分BAC ∠, ∴1502EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ADE ∴∠=∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,20EAD EAC CAD ∴∠=∠-∠=︒ ,9070AEC EAD ∴∠=︒-∠=︒ .(2)当30B ∠=︒,60C ∠=°时,∵30B ∠=︒,60C ∠=°,∴18090BAC B C ∠=︒-∠-∠=︒.∵AE 平分BAC ∠, ∴1452EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,15EAD EAC CAD ∴∠=∠-∠=︒ ;当50B ∠=︒,60C ∠=°时,∵50B ∠=︒,60C ∠=°,∴18070BAC B C ∠=-∠-∠=︒︒ .∵AE 平分BAC ∠, ∴1352EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,5EAD EAC CAD ∴∠=∠-∠=︒ ;当60B ∠=︒,60C ∠=°时,∵60B ∠=︒,60C ∠=°,∴18060BAC B C ∠=︒-∠-∠=︒.∵AE 平分BAC ∠, ∴1302EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,0EAD EAC CAD ∴∠=∠-∠=︒ ;当70B ∠=︒,60C ∠=°时,∵70B ∠=︒,60C ∠=°,∴18050BAC B C ∠=︒-∠-∠=︒.∵AE 平分BAC ∠, ∴1252EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,5EAD DAC EAC ∴∠=∠-∠=︒ .(3)当B C ∠<∠ 时,即αβ<时,∵B α∠=,C β∠=,∴180180BAC B C αβ∠=︒-∠-∠=︒-- .∵AE 平分BAC ∠,∴1111(180)902222EAC BAC αβαβ∠=∠=︒--=--. ∵AD 是高,90ADC ∴∠=︒ ,9090CAD C β∴∠=︒-∠=︒- ,1()2EAD EAC CAD βα∴∠=∠-∠=- ; 当B C ∠>∠ 时,即αβ>时,∵B α∠=,C β∠=,∴180180BAC B C αβ∠=︒-∠-∠=︒-- .∵AE 平分BAC ∠,∴1111(180)902222EAC BAC αβαβ∠=∠=︒--=--. ∵AD 是高,90ADC ∴∠=︒ ,9090CAD C β∴∠=︒-∠=︒- ,1()2EAD DAC EAC αβ∴∠=∠-∠=- ; 综上所述,当αβ<时,1()2EAD βα∠=-;当αβ>时,1()2EAD αβ∠=-. 【点睛】本题主要考查三角形内角和定理和三角形的角平分线,高,掌握三角形内角和定理和直角三角形两锐角互余是解题的关键.13.【现象解释】见解析;【尝试探究】BEC 70;【深入思考】 2.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠解析:【现象解释】见解析;【尝试探究】∠BEC = 70︒;【深入思考】β= 2α.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB∥CD;[尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°;[深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可证得β=2α.【详解】[现象解释]如图2,∵OM⊥ON,∴∠CON=90°,∴∠2+∠3=90°∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴∠DCB+∠ABC=180°,∴AB∥CD;【尝试探究】如图3,在△OBC中,∵∠COB=55°,∴∠2+∠3=125°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=250°,∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,∴∠EBC+BCE=360°-250°=110°,∴∠BEC=180°-110°=70°;【深入思考】如图4,β=2α,理由如下:∵∠1=∠2,∠3=∠4,∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,∵∠BOC=∠3-∠2=α,∴β=2α.【点睛】本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键.14.(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°解析:(1)见解析;(2)∠BGD=902a︒-;(3)2∠BGD+∠BFD=360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=12(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°,从而根据∠BED=180°﹣(∠EBD+∠EDB)即可得到答案;(2)过点G作GP∥AB,根据AB∥CD,得到GP∥AB∥CD,从而得到∠BGD=∠BGP+∠PGD=∠ABG+∠CDG,然后根据∠EBD+∠EDB=90°,∠ABD+∠BDC=180°,得到∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,再利用角平分线的定义求出2∠ABG+2∠CDG=90°﹣α即可得到答案;(3)过点F、G分别作FM∥AB、GM∥AB,从而得到AB∥GM∥FN∥CD,得到∠BGD=∠BGM+∠DGM=∠4+∠6,根据BG平分∠FBP,DG平分∠FDQ,∠4=12∠FBP=12(180°﹣∠3),∠6=12∠FDQ=12(180°﹣∠5),即可求解.【详解】解:(1)证明:∵BE平分∠ABD,∴∠EBD=12∠ABD,∵DE平分∠BDC,∴∠EDB=12∠BDC,∴∠EBD+∠EDB=12(∠ABD+∠BDC),∵AB∥CD,∴∠ABD+∠BDC=180°,∴∠EBD+∠EDB=90°,∴∠BED=180°﹣(∠EBD+∠EDB)=90°.(2)解:如图2,由(1)知:∠EBD+∠EDB=90°,又∵∠ABD+∠BDC=180°,∴∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,∵BG平分∠ABE,DG平分∠CDF,∴∠ABE=2∠ABG,∠CDF=2∠CDG,∴2∠ABG+2∠CDG=90°﹣α,过点G作GP∥AB,∵AB∥CD,∴GP∥AB∥CD∴∠ABG=∠BGP,∠PGD=∠CDG,∴∠BGD=∠BGP+∠PGD=∠ABG+∠CDG=902α-;(3)如图,过点F、G分别作FN∥AB、GM∥AB,∵AB∥CD,∴AB∥GM∥FN∥CD,∴∠3=∠BFN,∠5=∠DFN,∠4=∠BGM,∠6=∠DGM,∴∠BFD=∠BFN+∠DFN=∠3+∠5,∠BGD=∠BGM+∠DGM=∠4+∠6,∵BG平分∠FBP,DG平分∠FDQ,∴∠4=12∠FBP=12(180°﹣∠3),∠6=12∠FDQ=12(180°﹣∠5),∴∠BFD+∠BGD=∠3+∠5+∠4+∠6,=∠3+∠5+12(180°﹣∠3)+12(180°﹣∠5),=180°+12(∠3+∠5),=180°+12∠BFD,整理得:2∠BGD+∠BFD=360°.【点睛】本题主要考查了平行线的性质与判定,角平分线的性质和三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.15.(1)互相平行;(2)35,20;(3)见解析;(4)不变,【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行解析:(1)互相平行;(2)35,20;(3)见解析;(4)不变,12【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行线的性质即可得到结论;(4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论.【详解】解:(1)直线l2⊥l1,l3⊥l1,∴l2∥l3,即l2与l3的位置关系是互相平行,故答案为:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=1BCD,2∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案为:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF=∠DFG;;理由如下:(4)∠N:∠BCD的值不会变化,等于12∵l2∥l3,∴∠BED=∠EBH,∵∠DBE=∠DEB,∴∠DBE=∠EBH,∴∠DBH=2∠DBE,∵∠BCD+∠BDC=∠DBH,∴∠BCD+∠BDC=2∠DBE,∵∠N+∠BDN=∠DBE,∴∠BCD+∠BDC=2∠N+2∠BDN,∵DN平分∠BDC,∴∠BDC=2∠BDN,∴∠BCD=2∠N,∴∠N:∠BCD=1.2【点睛】本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键.。

2020-2021西安市高新第一中学初一数学下期末试卷(及答案)

2020-2021西安市高新第一中学初一数学下期末试卷(及答案)

2020-2021西安市高新第一中学初一数学下期末试卷(及答案)一、选择题1.如图,直线BC 与MN 相交于点O ,AO ⊥BC ,OE 平分∠BON ,若∠EON =20°,则∠AOM 的度数为( )A .40°B .50°C .60°D .70° 2.下列各式中计算正确的是( ) A .93=±B .2(3)3-=-C .33(3)3-=±D .3273=3.已知关于x 的不等式组 的解中有3个整数解,则m 的取值范围是( )A .3<m≤4B .4≤m<5C .4<m≤5D .4≤m≤54.为了了解天鹅湖校区2019-2020学年1600名七年级学生的体重情况,从中抽取了100名学生的体重,就这个问题,下面说法正确的是( ) A .1600名学生的体重是总体 B .1600名学生是总体C .每个学生是个体D .100名学生是所抽取的一个样本5.计算2535-+-的值是( ) A .-1B .1C .525-D .255-6.小明对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示.下列说法中正确的是( )A .喜欢乒乓球的人数(1)班比(2)班多B .喜欢足球的人数(1)班比(2)班多C .喜欢羽毛球的人数(1)班比(2)班多D .喜欢篮球的人数(2)班比(1)班多7.在实数0,-π,3,-4中,最小的数是( ) A .0 B .-πC .3D .-48.已知32x y =-⎧⎨=-⎩是方程组12ax cy cx by +=⎧⎨-=⎩的解,则a 、b 间的关系是( ) A .491b a -=B .321a b +=C .491b a -=-D .941a b +=9.下列图中∠1和∠2是同位角的是( )A .(1)、(2)、(3)B .(2)、(3)、(4)C .(3)、(4)、(5)D .(1)、(2)、(5)10.对于两个不相等的实数,a b ,我们规定符号{}max ,a b 表示,a b 中较大的数,如{}max 2,44=,按这个规定,方程{}21max ,x x x x+-=的解为 ( ) A .1-2B .2-2C .1-212+或D .1+2或-111.若点(),1P a a -在x 轴上,则点()2,1Q a a -+在第( )象限. A .一B .二C .三D .四12.已知a ,b 为两个连续整数,且a<191-<b,则这两个整数是( ) A .1和2B .2和3C .3和4D .4和5二、填空题13.一棵树高h (m )与生长时间n (年)之间有一定关系,请你根据下表中数据,写出h (m )与n (年)之间的关系式:_____. n/年 2 4 6 8 … h/m2.63.23.84.4…14.已知,如图,∠BAE+∠AED=180°,∠1=∠2,那么∠M=∠N (下面是推理过程,请你填空).解:∵∠BAE+∠AED=180°(已知)∴ AB ∥ ( ) ∴∠BAE= ( 两直线平行,内错角相等 ) 又∵∠1=∠2∴∠BAE ﹣∠1= ﹣∠2即∠MAE= ∴ ∥NE ( ) ∴∠M=∠N ( )15.若3的整数部分是a ,小数部分是b ,则3a b -=______. 16.关于x 的不等式(3a-2)x<2的解为x >,则a 的取值范围是________17.已知方程组236x y x y +=⎧⎨-=⎩的解满足方程x +2y =k ,则k 的值是__________.18.在平面直角坐标系中,若x 轴上的点P 到y 轴的距离为3,则点P 的坐标是________.19.比较大小:2313 20.5______.三、解答题21.某校八年级举行英语演讲比赛,准备用1200元钱(全部用完)购买A ,B 两种笔记本作为奖品,已知A ,B 两种每本分别为12元和20元,设购入A 种x 本,B 种y 本. (1)求y 关于x 的函数表达式.(2)若购进A 种的数量不少于B 种的数量. ①求至少购进A 种多少本?②根据①的购买,发现B 种太多,在费用不变的情况下把一部分B 种调换成另一种C ,调换后C 种的数量多于B 种的数量,已知C 种每本8元,则调换后C 种至少有______本(直接写出答案)22.如图,在平面直角坐标系xOy 中,点A (a ,0),B (c ,c ),C (0,c ),且满足2(8)c 40a ++=,P 点从A 点出发沿x 轴正方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴负方向以每秒1个单位长度的速度匀速移动. (1)直接写出点B 的坐标,AO 和BC 位置关系是;(2)当P 、Q 分别是线段AO ,OC 上时,连接PB ,QB ,使2PAB QBC S S ∆∆=,求出点P 的坐标;(3)在P 、Q 的运动过程中,当∠CBQ =30°时,请探究∠OPQ 和∠PQB 的数量关系,并说明理由.23.某停车场的收费标准如下:小型汽车10元/辆,中型汽车15元/辆,现停车场共有50辆中、小型汽车,共缴纳停车费560元,中、小型汽车各有多少辆?24.如图,平面直角坐标系中,ABCD为长方形,其中点A、C坐标分别为(﹣8,4)、(2,﹣8),且AD∥x轴,交y轴于M点,AB交x轴于N.(1)求B、D两点坐标和长方形ABCD的面积;(2)一动点P从A出发(不与A点重合),以12个单位/秒的速度沿AB向B点运动,在P点运动过程中,连接MP、OP,请直接写出∠AMP、∠MPO、∠PON之间的数量关系;(3)是否存在某一时刻t,使三角形AMP的面积等于长方形面积的13?若存在,求t的值并求此时点P的坐标;若不存在请说明理由.25.为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:(1)该班总人数是;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】首先根据角的平分线的定义求得∠BON,然后根据对顶角相等求得∠MOC,然后根据∠AOM=90°﹣∠COM即可求解.【详解】∵OE平分∠BON,∴∠BON=2∠EON=40°,∴∠COM=∠BON=40°,∵AO⊥BC,∴∠AOC=90°,∴∠AOM=90°﹣∠COM=90°﹣40°=50°.故选B.【点睛】本题考查了垂直的定义、角平分线的定义以及对顶角的性质,正确求得∠MOC的度数是关键.2.D解析:D【解析】【分析】直接利用算术平方根、平方根以及立方根的定义分别化简求出答案.【详解】A3=,此选项错误错误,不符合题意;B3=,此选项错误错误,不符合题意;C3=-,此选项错误错误,不符合题意;D3=,此选项正确,符合题意;故选:D.【点睛】本题主要考查了算术平方根、平方根、立方根的概念,正确理解和灵活运用相关知识是解题关键.3.C解析:C【解析】【分析】表示出不等式组的解集,由解集中有3个整数解,确定出m的范围即可.【详解】不等式组解集为1<x<m,由不等式组有3个整数解,且为2,3,4,得到4<m≤5,故选C.【点睛】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.4.A解析:A【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A、1600名学生的体重是总体,故A正确;B、1600名学生的体重是总体,故B错误;C、每个学生的体重是个体,故C错误;D、从中抽取了100名学生的体重是一个样本,故D错误;故选:A.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.5.B解析:B 【解析】 【分析】根据正数的绝对值是它本身和负数的绝对值是它的相反数,化简合并即可得到答案. 【详解】解:23+-(23231-+=-+=, 故选B . 【点睛】本题主要考查了去绝对值的知识点,掌握正数的绝对值是它本身和负数的绝对值是它的相反数是解题的关键.6.C解析:C 【解析】 【分析】根据扇形图算出(1)班中篮球,羽毛球,乒乓球,足球,羽毛球的人数和(2)班的人数作比较,(2)班的人数从折线统计图直接可看出. 【详解】解:A 、乒乓球:(1)班50×16%=8人,(2)班有9人,8<9,故本选项错误; B 、足球:(1)班50×14%=7人,(2)班有13人,7<13,故本选项错误; C 、羽毛球:(1)班50×40%=20人,(2)班有18人,20>18,故本选项正确; D 、篮球:(1)班50×30%=15人,(2)班有10人,15>10,故本选项错误. 故选C. 【点睛】本题考查扇形统计图和折线统计图,扇形统计图表现部分占整体的百分比,折线统计图表现变化,在这能看出每组的人数,求出(1)班喜欢球类的人数和(2)班比较可得出答案.7.D解析:D 【解析】 【分析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解. 【详解】∵正数大于0和一切负数, ∴只需比较-π和-4的大小, ∵|-π|<|-4|,∴最小的数是-4.故选D.【点睛】此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.8.D解析:D【解析】【分析】把3{2xy=-=-,代入1{2ax cycx by+=-=,即可得到关于,,a b c的方程组,从而得到结果.【详解】由题意得,321322a cc b--=⎧⎨-+=⎩①②,3,2⨯⨯①②得,963 644a cc b--=⎧⎨-+=⎩③④-④③得941a b+=,故选:D.9.D解析:D【解析】【分析】根据同位角的定义,对每个图进行判断即可.【详解】(1)图中∠1和∠2是同位角;故本项符合题意;(2)图中∠1和∠2是同位角;故本项符合题意;(3)图中∠1和∠2不是同位角;故本项不符合题意;(4)图中∠1和∠2不是同位角;故本项不符合题意;(5)图中∠1和∠2是同位角;故本项符合题意.图中是同位角的是(1)、(2)、(5).故选D.【点睛】本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.10.D解析:D【解析】【分析】分x x <-和x x >-两种情况将所求方程变形,求出解即可. 【详解】当x x <-,即0x <时,所求方程变形为21x x x+-=, 去分母得:2210x x ++=,即210x +=(),解得:121x x ==-,经检验1x =-是分式方程的解;当x x >-,即0x >时,所求方程变形为21x x x+=,去分母得:2210x x --=,代入公式得:212x ±==解得:3411x x ==经检验1x =综上,所求方程的解为1+-1. 故选D. 【点睛】本题考查的知识点是分式方程的解,解题关键是弄清题中的新定义.11.B解析:B 【解析】 【分析】由点P 在x 轴上求出a 的值,从而得出点Q 的坐标,继而得出答案. 【详解】∵点P (a ,a-1)在x 轴上, ∴a-1=0,即a=1, 则点Q 坐标为(-1,2), ∴点Q 在第二象限, 故选:B . 【点睛】此题考查点的坐标,解题的关键是掌握各象限及坐标轴上点的横纵坐标特点.12.C解析:C 【解析】试题解析:∵45,∴3<4,∴这两个连续整数是3和4, 故选C .二、填空题13.h =03n+2【解析】【分析】本题主要考查了用待定系数法求一次函数的解析式可先设出通式然后将已知的条件代入式子中求出未知数的值进而求出函数的解析式【详解】设该函数的解析式为h =kn+b 将n =2h =2解析:h =0.3n+2 【解析】 【分析】本题主要考查了用待定系数法求一次函数的解析式,可先设出通式,然后将已知的条件代入式子中求出未知数的值,进而求出函数的解析式. 【详解】设该函数的解析式为h =kn+b ,将n =2,h =2.6以及n =4,h =3.2代入后可得2 2.64 3.2k b k b +=⎧⎨+=⎩, 解得0.32k b =⎧⎨=⎩,∴h =0.3n+2,验证:将n =6,h =3.8代入所求的函数式中,符合解析式;将n =8,h =4.4代入所求的函数式中,符合解析式;因此h (m )与n (年)之间的关系式为h =0.3n+2. 故答案为:h =0.3n+2. 【点睛】本题主要考查用待定系数法求一次函数关系式的方法.用来表示函数关系的等式叫做函数解析式,也称为函数关系式.14.见解析【解析】【分析】由已知易得AB∥CD 则∠BAE=∠AEC 又∠1=∠2所以∠MAE=∠AEN 则AM∥EN 故∠M=∠N【详解】∵∠BAE+∠AED=180°(已知)∴AB∥CD(同旁内角互补两直线解析:见解析 【解析】 【分析】由已知易得AB ∥CD ,则∠BAE=∠AEC ,又∠1=∠2,所以∠MAE=∠AEN ,则AM ∥EN ,故∠M=∠N . 【详解】∵∠BAE +∠AED =180°(已知) ∴AB ∥CD (同旁内角互补,两直线平行) ∠BAE =∠AEC (两直线平行,内错角相等) 又∵∠1=∠2,∴∠BAE−∠1=∠AEC−∠2,即∠MAE=∠NEA,∴AM∥EN,(内错角相等,两直线平行)∴∠M=∠N(两直线平行,内错角相等)【点睛】考查平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键. 15.【解析】【详解】若的整数部分为a小数部分为b∴a=1b=∴a-b==1故答案为1解析:【解析】【详解】若3的整数部分为a,小数部分为b,-,∴a=1,b=31--=1.∴3a-b=3(31)故答案为1.16.x<23【解析】【分析】根据已知不等式的解集确定出a的范围即可【详解】∵关于x的不等式(3a-2)x<2的解为x>23a-2∴3a-2<0解得:a<23故答案为:a<23【点睛】此题考查了解一元一次解析:x<【解析】【分析】根据已知不等式的解集确定出a的范围即可.【详解】∵关于x的不等式(3a-2)x<2的解为x>,∴3a-2<0,解得:a<,故答案为:a<【点睛】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.17.-3【解析】分析:解出已知方程组中xy的值代入方程x+2y=k即可详解:解方程组得代入方程x+2y=k得k=-3故本题答案为:-3点睛:本题的实质是考查三元一次方程组的解法需要对三元一次方程组的定义解析:-3【解析】分析:解出已知方程组中x,y的值代入方程x+2y=k即可.详解:解方程组236x yx y+=⎧⎨-=⎩,得33 xy⎧⎨-⎩==,代入方程x+2y=k,得k=-3.故本题答案为:-3.点睛:本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成无该未知数的二元一次方程组.18.(±30)【解析】解:若x轴上的点P到y轴的距离为3则∴x=±3故P的坐标为(±30)故答案为:(±30)解析:(±3,0)【解析】解:若x轴上的点P到y轴的距离为3,则3x=,∴x=±3.故P的坐标为(±3,0).故答案为:(±3,0).19.<【解析】试题解析:∵∴∴解析:<【解析】试题解析:∵∴20.【解析】【分析】根据负数的绝对值是它的相反数可得答案【详解】解:-的绝对值是故答案为【点睛】本题考查了实数的性质负数的绝对值是它的相反数非负数的绝对值是它本身【解析】【分析】根据负数的绝对值是它的相反数,可得答案.【详解】解:【点睛】本题考查了实数的性质,负数的绝对值是它的相反数,非负数的绝对值是它本身.三、解答题21.(1)y=30035x-,(2)①至少购进A种40本,②30.【解析】【分析】(1)根据A种的费用+B种的费用=1200元,可求y关于x的函数表达式;(2)①根据购进A种的数量不少于B种的数量,列出不等式,可求解;②设B种的数量m本,C种的数量n本,根据题意找出m,n的关系式,再根据调换后C 种的数量多于B种的数量,列出不等式,可求解.【详解】解:(1)∵12x+20y=1200,∴y=30035x-,(2)①∵购进A种的数量不少于B种的数量,∴x≥y,∴x≥30035x-,∴x≥752,∵x,y为正整数,∴至少购进A种40本,②设A种的数量为x本,B种的数量y本,C种的数量c本,根据题意得:12x+20y+8c=1200∴y=300235c x--∵C种的数量多于B种的数量∴c>y∴c>300235c x--∴c>30037x-,∵购进A种的数量不少于B种的数量,∴x≥y∴x≥300235c x--∴c≥150﹣4x∴c >30037x -, 且x ,y ,c 为正整数,∴C 种至少有30本故答案为30本.【点睛】本题考查一次函数的应用,不等式组等知识,解题的关键是学会构建一次函数解决实际问题,属于中考常考题型.22.(1)(-4,-4) ,BC ∥AO ;(2)P (−4,0);(3)∠PQB =∠OPQ +30°或∠BQP +∠OPQ =150°【解析】【分析】(1)由2(8)40a c +++=解出c ,得到B 点,易知BC ∥AO ;(2)过B 点作BE ⊥AO 于E ,设时间经过t 秒,AP =2t ,OQ =t ,CQ =4-t ;用t 表示出PAB S ∆与QBC S ∆,根据2PAB QBC S S ∆∆=列出方程解出t 即可;(3)要分情况进行讨论,①当点Q 在点C 的上方时;过Q 点作QH ∥AO 如图1所示,利用平行线的性质可得到∠PQB =∠OPQ +30°;②当点Q 在点C 的下方时;过Q 点作HJ ∥AO 如图2所示,同样利用平行线的性质可得到,∠BQP +∠OPQ =150°【详解】(1)由2(8)40a c +++=得到c+4=0,得到c=-4(-4,-4) ,BC ∥AO(2)过B 点作BE ⊥AO 于E设时间经过t 秒,则AP =2t ,OQ =t ,CQ =4-t∵BE =4,BC =4,∴APB 1AP 2S =·1BE 2442t t =⨯⨯= ()BCQ 11 S CQ?BC 448222t t ==⨯-⨯=- ∵APB BCQ 2S S =∴()4282t t =-解得t =2∴AP =2t =4∴P (−4,0)(3) ①当点Q 在点C 的上方时;过Q 点作QH ∥AO 如图一所示,∴∠OPQ=∠PQH .又∵BC ∥AO ,QH ∥AO∴QH ∥BC∴∠HQB =∠BCQ=30°. ∴∠OPQ +∠BCQ =∠PQH +∠BQH .∴即∠PQB =∠OPQ +∠CBQ.即∠PQB =∠OPQ +30°②当点Q 在点C 的下方时;过Q 点作HJ ∥AO 如图二所示,∴∠OPQ =∠PQJ.又∵BC ∥AO ,QH ∥AO∴QH ∥BC∴∠HQB =∠BCQ =30°. ∴∠HQB +∠BQP +∠PQJ =180°,∴30°+∠BQP +∠OPQ =180°即∠BQP +∠OPQ =150°综上所述∠PQB =∠OPQ +30°或∠BQP +∠OPQ =150°【点睛】本题重点考察非负项的性质、三角形面积的计算、平行线的性质等知识点,综合程度比较高,第三问对Q 点进行分情况讨论,作出辅助线是解题关键23.小型车有38辆,中型车有12辆【解析】【分析】设小型车有x 辆,中型车有y 辆,根据“小型汽车10元/辆,中型汽车15元/辆,现停车场共有50辆中、小型汽车,共缴纳停车费560元”,列出关于x 和y 的二元一次方程组,解之即可.【详解】解:设小型车有x 辆,中型车有y 辆,根据题意得:501015560x y x y +=⎧⎨+=⎩, 解得:3812x y =⎧⎨=⎩, 答:小型车有38辆,中型车有12辆.【点睛】本题考查了二元一次方程组的应用,正确找出等量关系,列出二元一次方程组是解题的关键.24.(1)B (﹣8,﹣8),D (2,4),120;(2)∠MPO=∠AMP+∠PON ;∠MPO=∠AMP-∠PON ;(3)存在,P 点坐标为(﹣8,﹣6).【解析】【分析】(1)利用点A 、C 的坐标和长方形的性质易得B (﹣8,﹣8),D (2,4),然后根据长方形的面积公式即可计算长方形ABCD 的面积;(2)分点P 在线段AN 上和点P 在线段NB 上两种情况进行讨论即可得;(3)由于AM=8,AP=12t ,根据三角形面积公式可得S △AMP =t ,再利用三角形AMP 的面积等于长方形面积的13,即可计算出t=20,从而可得AP=10,再根据点的坐标的表示方法即可写出点P 的坐标.【详解】(1)∵点A 、C 坐标分别为(﹣8,4)、(2,﹣8),∴B (﹣8,﹣8),D (2,4),长方形ABCD 的面积=(2+8)×(4+8)=120;(2)当点P 在线段AN 上时,作PQ ∥AM ,如图,∵AM ∥ON ,∴AM ∥PQ ∥ON ,∴∠QPM=∠AMP ,∠QPO=∠PON ,∴∠QPM+∠QPO=∠AMP+∠PON ,即∠MPO=∠AMP+∠PON ;当点P 在线段NB 上时,作PQ ∥AM ,如图,∵AM ∥ON ,∴AM ∥PQ ∥ON ,∴∠QPM=∠AMP ,∠QPO=∠PON ,∴∠QPM-∠QPO=∠AMP-∠PON ,即∠MPO=∠AMP-∠PON ;(3)存在,∵AM=8,AP=12t ,∴S △AMP =12×8×12t=2t , ∵三角形AMP 的面积等于长方形面积的13, ∴2t=120×13=40,∴t=20,AP=12×20=10, ∵AN=4,∴PN=6∴P 点坐标为(﹣8,﹣6).【点睛】 本题考查了坐标与图形性质,结合图形、运用分类讨论思想进行解答是关键.25.(1)40;(2)答案见解析;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.【解析】【分析】(1)由两个统计图可以发现第一次22名优秀的同学占55%,故该班总人数为2255%=40÷;(2)第四次优秀人数为:4085%=34⨯,第三次优秀率为3240×100%=80%,据此可以补全统计图;(3)根据图像可以写出优秀人数逐渐增多,增大的幅度逐渐减小等信息.【详解】解:(1)由题意可得:该班总人数是:22÷55%=40(人);故答案为:40;(2)由(1)得,第四次优秀的人数为:40×85%=34(人),第三次优秀率为:3240×100%=80%;如图所示:;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.【点睛】此题主要考查了条形统计图以及折线统计图,利用图形获取正确信息是解题关键.。

2020-2021西安高新一中初中校区初一数学下期末模拟试卷(附答案)

2020-2021西安高新一中初中校区初一数学下期末模拟试卷(附答案)
14.3【解析】找到立方等于27的数即可解:∵33=27∴27的立方根是3故答案为3考查了求一个数的立方根用到的知识点为:开方与乘方互为逆运算
解析:3
【解析】
找到立方等于27的数即可.
解:∵33=27,
∴27的立方根是3,
故答案为3.
考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算
15.【解析】【分析】如图在直角三角形中的斜边长为因为斜边长即为半径长且OA为半径所以OA=即A表示的实数是【详解】由题意得OA=∵点A在原点的左边∴点A表示的实数是-故答案为-【点睛】本题考查了勾股定理
17.关于 的不等式 的非负整数解为________.
18.两条直线相交所成的四个角中,有两个角分别是(2x-10)°和(110-x)°,则x=_____.
19.不等式 的最大整数解是______
20.如图,将△ABC沿BC方向平移1个单位得到△DEF,若△ABC的周长等于8,则四边形ABFD的周长等于_______.
【分析】
首先解两个不等式求出不等式组解集,然后将解集在数轴上的表示出来即可.
【详解】
解: ,
解不等式①得:x<2,
解不等式②得:x≥-1,
在数轴上表示解集为:

故选:B.
【点睛】
本题考查了解一元一次不等式组及在数轴上表示不等式组解集,解题关键是熟练掌握确定不等式组解集的方法:同大取大、同小取小、大小小大中间找、大大小小无解了.
(2)将△AOB向左平移3个单位长度,再向上平移2个单位长度得到△A1O1B1,请画出△A1O1B1;
(3)在(2)的条件下,△AOB边AB上有一点P的坐标为(a,b),则平移后对应点P1的坐标为______.
25.若关于x,y的方程组 有相同的解.

西安高新第一中学七年级数学下册期末压轴难题测试卷及答案

西安高新第一中学七年级数学下册期末压轴难题测试卷及答案

西安高新第一中学七年级数学下册期末压轴难题测试卷及答案一、选择题1.16的算术平方根是()A .4B .4-C .2D .2-2.四根火柴棒摆成如图所示的象形“口”字,平移此象形字火柴棒后,变成的象形文字正确的是( )A .B .C .D . 3.平面直角坐标系中有一点()2021,2022P -,则点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③垂直于同一条直线的两条直线平行:④同旁内角互补.其中错误的有( )A .1个B .2个C .3个D .4个5.如图,已知//BC DE ,BF 平分ABC ∠,DC 平分ADE ∠,则下列判断:①ACB E ∠=∠;②DF 平分ADC ∠;③BFD BDF ∠=∠;④ABF BCD ∠=∠中,正确的有( )A .1个B .2个C .3个D .4个 6.下列说法中正确的是( )①1的平方根是1; ②5是25的算术平方根;③(﹣4)2的平方根是﹣4;④(﹣4)3的立方根是﹣4;⑤0.01是0.1的一个平方根.A .①④B .②④C .②③D .②⑤ 7.如图,直线l ∥m ,等腰Rt △ABC 中,∠ACB =90°,直线l 分别与AC 、BC 边交于点D 、E ,另一个顶点B 在直线m 上,若∠1=28°,则∠2=( )A .75°B .73°C .62°D .17°8.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点(1,0)、(2,0)、(2,1)(1,1)、(1,2)、(2,2)..根据这个规律,第2021个点的坐标为( )A .(45,4)B .(45,9)C .(45,21)D .(45,0)二、填空题9.125的算术平方根是___. 10.在平面直角坐标系中,点A (2,1)关于x 轴对称的点的坐标是_____.11.如图,在ABC ∆中A α∠=,作ABC ∠的角平分线与ACB ∠的外角的角平分线交于点1A ;1A BC ∠的角平分线与1A CB ∠角平分线交于2A ,如此下去,则2021A ∠=__________.12.如图,己知AB ∥CD .OE 平分∠AOC ,OE ⊥OF ,∠C =50°,则∠AOF 的度数为___.13.如图,把一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G ,D 、C 分别在M 、N 的位置上,若56EFG ∠=︒,则1∠=____________,2∠=____________.14.定义一种新运算“”规则如下:对于两个有理数a ,b ,a b ab b =-,若()()521x -=-,则x =______15.在平面直角坐标系中,已知点P (﹣2,3),PA ∥y 轴,PA=3,则点A 的坐标为__. 16.如图,在平面直角坐标系中:A (1,1),B (﹣1,1),C (﹣1,﹣3),D (1,﹣3),现把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A →B →C →D →A →……的规律紧绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是________.三、解答题17.计算题(1)122332. (23314827- 18.求下列各式中x 的值:(1)23126x -=(2)()3180x --=19.补全下列推理过程:如图,已知EF //AD ,∠1=∠2,∠BAC =70°,求∠AGD .解:∵EF //AD∴∠2= ( )又∵∠1=∠2( )∴∠1=∠3( )∴AB // ( )∴∠BAC + =180°( )∵∠BAC =70°∴∠AGD = .20.如图,在平面直角坐标系中,已知三角形ABC 三点的坐标分别为()1,4A -,()3,2B -,()1,1C .(1)求三角形ABC 的面积;(2)在x 轴上存在一点N ,使三角形BON 的面积等于三角形ABC 面积,求点N 的坐标. 21.数学张老师在课堂上提出一个问题:“2 1.414≈,它是个无限不循环小数,也叫无理数,它的整数部分是1,那么有谁能说出它的小数部分是多少”,小明举2-1来表示它的小数部分,张老师夸奖小明真聪明,肯定了他的说法.现请你根据小明的说法解答: (13(2)a 3b 5-3a b +(3)已知3,其中x 是一个正整数,0<y <1,求(20202-3x y +的值. 二十二、解答题22.工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数2 1.414≈3 1.732≈)二十三、解答题23.已知:AB //CD .点E 在CD 上,点F ,H 在AB 上,点G 在AB ,CD 之间,连接FG ,EH ,GE ,∠GFB =∠CEH .(1)如图1,求证:GF //EH ;(2)如图2,若∠GEH =α,FM 平分∠AFG ,EM 平分∠GEC ,试问∠M 与α之间有怎样的数量关系(用含α的式子表示∠M )?请写出你的猜想,并加以证明.24.如图1,E 点在BC 上,∠A =∠D ,AB ∥CD .(1)直接写出∠ACB 和∠BED 的数量关系 ;(2)如图2,BG 平分∠ABE ,与∠CDE 的邻补角∠EDF 的平分线交于H 点.若∠E 比∠H 大60°,求∠E ;(3)保持(2)中所求的∠E 不变,如图3,BM 平分∠ABE 的邻补角∠EBK ,DN 平分∠CDE ,作BP ∥DN ,则∠PBM 的度数是否改变?若不变,请求值;若改变,请说理由.25.如图1,CE 平分ACD ∠,AE 平分BAC ∠,90EAC ACE ∠+∠=()1请判断AB 与CD 的位置关系并说明理由;()2如图2,当90E ∠=且AB 与CD 的位置关系保持不变,移动直角顶点E ,使MCE ECD ∠=∠,当直角顶点E 点移动时,问BAE ∠与MCD ∠否存在确定的数量关系?并说明理由.()3如图3,P 为线段AC 上一定点,点Q 为直线CD 上一动点且AB 与CD 的位置关系保持不变,①当点Q 在射线CD 上运动时(点C 除外),CPQ CQP ∠+∠与BAC ∠有何数量关系?猜想结论并说明理由.②当点Q 在射线CD 的反向延长线上运动时(点C 除外),CPQ CQP ∠+∠与BAC ∠有何数量关系?直接写出猜想结论,不需说明理由.26.如图,在ABC 中,ABC ∠与ACB ∠的角平分线交于O 点.(1)若40A ∠=︒,则BOC ∠= ︒;(2)若A n ∠=︒,则BOC ∠= ︒;(3)若A n ∠=︒,ABC ∠与ACB ∠的角平分线交于O 点,ABO ∠的平分线与ACO ∠的平分线交于点1O ,,2016O BD ∠的平分线与2016O CE ∠的平分线交于点2017O ,则2017O ∠=︒.【参考答案】一、选择题1.A解析:A【分析】根据算术平方根的意义求解即可.【详解】解:16的算术平方根为4,故选:A .【点睛】本题考查了算术平方根,理解算术平方根的意义是解决问题的关键.2.C【分析】根据火柴头的方向、平移的定义即可得.【详解】解:此象形字火柴棒中,有两根火柴头朝向左,一根火柴头朝向上,一根火柴头朝向下,因为平移不改变火柴头的朝向,所以观察四个选项可知,只有解析:C【分析】根据火柴头的方向、平移的定义即可得.【详解】解:此象形字火柴棒中,有两根火柴头朝向左,一根火柴头朝向上,一根火柴头朝向下,因为平移不改变火柴头的朝向,所以观察四个选项可知,只有选项C符合,故选:C.【点睛】本题考查了平移,掌握理解平移的概念是解题关键.3.D【分析】根据平面直角坐标系内各象限内点的坐标符号特征判定即可.【详解】解:根据平面直角坐标系内各象限内点的坐标符号特征可知:()P-在第四象限2021,2022故选D.【点睛】本题考查了各象限内点的坐标的符号特征,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).记住各象限内点的坐标的符号是解决的关键.4.C【分析】根据对顶角的性质、同旁内角的概念、平行公理及推论逐一进行判断即可.【详解】解:①对顶角相等,原命题正确;②过直线外一点有且只有一条直线与已知直线平行,原命题错误;③在同一平面内,垂直于同一条直线的两条直线平行,原命题错误;④两直线平行,同旁内角互补,原命题错误.故选:C.【点睛】本题考查了平行公理及推论,对顶角、邻补角和同旁内角等知识,熟记其概念和性质是解题的关键.5.B【分析】根据平行线的性质求出ACB E∠=∠,根据角平分线定义和平行线的性质求出BF DC,再根据平行线的性质判断即可.ABF CBF ADC EDC∠=∠=∠=∠,推出//【详解】BC DE,∵//∴ACB E ∠=∠,∴①正确;∵//BC DE ,∴ABC ADE ∠=∠,∵BF 平分ABC ∠,DC 平分ADE ∠, ∴12ABF CBF ABC ∠=∠=∠,12ADC EDC ADE ∠=∠=∠, ∴ABF CBF ADC EDC ∠=∠=∠=∠,∴//BF DC ,∴BFD FDC ∠=∠,∴根据已知不能推出ADF CDF ∠=∠,∴②错误;③错误;∵ABF ADC ∠=∠,ADC EDC ∠=∠,∴ABF EDC ∠=∠,∵//DE BC ,∴BCD EDC ∠=∠,∴ABF BCD ∠=∠,∴④正确;即正确的有2个,故选:B .【点睛】本题考查了平行线的性质和判定,角平分线定义的应用,能灵活运用平行线的性质和判定进行推理是解此题的关键.6.B【分析】根据平方根,算术平方根,立方根的概念进行分析,从而作出判断.【详解】解:1的平方根是±1,故说法①错误;5是25的算术平方根,故说法②正确;(-4)2的平方根是±4,故说法③错误;(-4)3的立方根是-4,故说法④正确;0.1是0.01的一个平方根,故说法⑤错误;综上,②④正确,故选:B .【点睛】本题考查了算术平方根,平方根,立方根的概念,理解相关定义,注意符号是解题关键. 7.B【分析】如图标注字母M ,首先根据等腰直角三角形的性质得出EBM ∠,再利用平行线的性质即可得出∠2的度数.【详解】解:如图标注字母M ,∵△ABC 是等腰直角三角形,∴45A ABC ∠=∠=︒,∴1284573EBM EBA ∠=∠+∠=︒+︒=︒,又∵l ∥m ,∴273EBM ∠=∠=︒,故选:B .【点睛】本题主要考查等腰直角三角形的性质和平行线的性质,解题关键是熟练掌握等腰直角三角形的性质和平行线的性质.平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.8.A【分析】到每一个横坐标结束,经过整数点的个数等于最后横坐标的平方,横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,横坐标为偶数时以横坐标为1,纵坐标以横坐标减1结束,横坐标以n 结束的有n2个解析:A【分析】到每一个横坐标结束,经过整数点的个数等于最后横坐标的平方,横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,横坐标为偶数时以横坐标为1,纵坐标以横坐标减1结束,横坐标以n 结束的有n 2个点,【详解】解:观察图形可知,到每一个横坐标结束,经过整数点的个数等于最后横坐标的平方, 横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,横坐标为偶数时以横坐标为1,纵坐标以横坐标减1结束,∴横坐标以n 结束的有n 2个点,第2025个点是(45,0),∴2021个点的坐标是(45,4);故选:A .【点睛】本题考查了点的坐标,观察出点的个数与横坐标存在平方关系是解题的关键.二、填空题9.【分析】直接利用算术平方根的定义计算得出答案.【详解】解:的算术平方根是:.故答案为:.【点睛】本题主要考查了算术平方根,正确掌握相关定义是解题关键. 解析:15【分析】直接利用算术平方根的定义计算得出答案.【详解】解:12515 . 故答案为:15. 【点睛】本题主要考查了算术平方根,正确掌握相关定义是解题关键.10.(2,﹣1)【分析】平面直角坐标系中任意一点P (x ,y ),关于x 轴的对称点的坐标是(x ,﹣y ),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于x 轴的对称点,横坐标不变,纵坐标解析:(2,﹣1)【分析】平面直角坐标系中任意一点P (x ,y ),关于x 轴的对称点的坐标是(x ,﹣y ),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于x 轴的对称点,横坐标不变,纵坐标变成相反数.【详解】解:点(2,1)关于x 轴对称的点的坐标是(2,﹣1),故答案为(2,﹣1).【点睛】熟练掌握关于坐标轴对称的点的坐标特点是本题的解题关键. 关于x 轴的对称点,横坐标不变,纵坐标变成相反数.关于y 轴的对称点,纵坐标不变,横坐标变成相反数. 11.【分析】根据角平分线的定义以及三角形外角的性质,三角形内角和定理得出与,与的关系,找出规律即可.【详解】解:设BC 延长与点D ,∵,的角平分线与的外角的角平分线交于点,∴,同 解析:202112α【分析】根据角平分线的定义以及三角形外角的性质,三角形内角和定理得出A ∠与1A ∠,A ∠与2A ∠的关系,找出规律即可.【详解】解:设BC 延长与点D ,∵180ACD ACB ∠=︒-∠, ABC ∠的角平分线与ACD ∠的外角的角平分线交于点1A ,∴111180()A A BC ACB ACA ∠=︒-∠+∠+∠11180(180)22ABC ACB ACB =︒-∠-∠-︒-∠ 190()2ABC ACB =︒-∠+∠ 190(180)2A =︒-︒-∠ 12A =∠, 同理可得1221122A A A ∠=∠=∠, 2331122A A A ∠=∠=∠, ∴2021202112A A ∠=∠,∵A α∠=,∴2021202112A α∠=,故答案为:202112α.【点睛】 本题主要考查三角形外角的性质,角平分线的定义,三角形内角和等知识点,熟知以上知识点,找出角度之间的规律是解题的关键.12.115°【分析】要求∠AOF 的度数,结合已知条件只需要求出∠AOE 的度数,根据角平分线的定义可以得到∠AOE=∠AOC ,再利用平行线的性质得到∠C=∠AOC 即可求解.【详解】解:∵AB ∥CD解析:115°【分析】要求∠AOF 的度数,结合已知条件只需要求出∠AOE 的度数,根据角平分线的定义可以得到∠AOE =∠AOC ,再利用平行线的性质得到∠C =∠AOC 即可求解.【详解】解:∵AB ∥CD ,∠C =50°,∴∠C =∠AOC =50°,∵OE 平分∠AOC ,∴12AOE COE AOC ===∠∠∠25°, ∵OE ⊥OF ,∴∠EOF =90°,∴∠AOF =∠AOE +∠EOF =115°,故答案为:115°.【点睛】本题主要考查了平行线的性质,角平分线的性质,垂直的定义,解题的关键在于能够熟练掌握相关知识进行求解.13.68°; 112°.【分析】首先根据折叠的性质和平行线的性质求∠FED 的度数,然后根据平角的定义求出∠1的度数,最后根据平行线的性质求出∠2的度数.解:∵延折叠得到,解析:68°; 112°.【分析】首先根据折叠的性质和平行线的性质求∠FED 的度数,然后根据平角的定义求出∠1的度数,最后根据平行线的性质求出∠2的度数.【详解】解:∵EDCF 延EF 折叠得到EMNF ,∴DEF MEF ∠=∠,∵//AD BC ,56EFG ∠=︒,∴56DEF EFG ∠=∠=︒(两直线平行,内错角相等),∴56MEF DEF ∠=∠=︒,∴1180180565668DEF MEF ∠=︒-∠-∠=︒-︒-︒=︒,又∵//AD BC ,∴12180∠+∠=︒,∴2180118068112∠=︒-∠=︒-︒=︒.综上168∠=︒,2112∠=︒.故答案为:68°;112°.【点睛】本题考查了平行线的性质,翻折变换的性质,熟记各性质并准确识图是解题的关键. 14.【分析】根据给定新运算的运算法则可以得到关于x 的方程,解方程即可得到解答.【详解】解:由题意得:(5x-x )⊙(−2)=−1,∴-2(5x-x )-(-2)=-1,∴-8x+2=-1,解之得 解析:38【分析】根据给定新运算的运算法则可以得到关于x 的方程,解方程即可得到解答.【详解】解:由题意得:(5x-x )⊙(−2)=−1,∴-2(5x-x )-(-2)=-1,∴-8x+2=-1,解之得:38x =, 故答案为38. 【点睛】本题考查新定义下的实数运算,通过阅读题目材料找出有关定义和运算法则并应用于新问题的解决是解题关键 .15.(-2,6)或(-2,0).根据平行于y 轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案.【详解】解:由点P (-2,3),PA ∥y 轴,PA=3,得在P 点解析:(-2,6)或(-2,0).【分析】根据平行于y 轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案.【详解】解:由点P (-2,3),PA ∥y 轴,PA=3,得在P 点上方的A 点坐标(-2,6),在P 点下方的A 点坐标(-2,0),故答案为:(-2,6)或(-2,0).【点睛】本题考查了点的坐标,掌握平行于y 轴的直线上点的横坐标相等是解题关键,注意到一点距离相等的点有两个,以防遗漏.16.【分析】先求出四边形ABCD 的周长为12,再计算,得到余数为5,由此解题.【详解】解:A (1,1),B (﹣1,1),C (﹣1,﹣3),D (1,﹣3),四边形ABCD 的周长为2+4+2+4=解析:()1,2--【分析】先求出四边形ABCD 的周长为12,再计算2021121685÷=,得到余数为5,由此解题.【详解】 解:A (1,1),B (﹣1,1),C (﹣1,﹣3),D (1,﹣3),∴四边形ABCD 的周长为2+4+2+4=12,2021121685÷=2AB =∴细线另一端所在位置的点在B 点的下方3个单位的位置,即点的坐标(1,2)-- 故答案为:(1,2)--.【点睛】本题考查规律型:点的坐标,解题关键是理解题意,求出四边形的周长,属于中考常考题型.三、解答题17.(1)1;(2).【分析】(1)先根据绝对值的性质去绝对值符号,再进行加减运算即可;(2)先根据算术平方根、立方根的性质化简,再进行加减运算即可.【详解】解:(1)原式=;(2)原式=.解析:(1)1;(2)13-. 【分析】(1)先根据绝对值的性质去绝对值符号,再进行加减运算即可;(2)先根据算术平方根、立方根的性质化简,再进行加减运算即可.【详解】解:(1)原式121;(2)原式=112233--=-. 【点睛】本题考查绝对值、算术平方根、立方根的性质,熟练的掌握性质进行运算是解题的关键. 18.(1);(2)【分析】(1)先移项,再把系数化1,然后根据平方根的性质,即可求解;(2)先移项,再根据立方根的性质,即可求解.【详解】(1)解:∵∴∴∴;(2)解:∵∴∴∴.解析:(1)3x =±;(2)3x =【分析】(1)先移项,再把系数化1,然后根据平方根的性质,即可求解;(2)先移项,再根据立方根的性质,即可求解.【详解】(1)解:∵23126x -=∴29x=x=±;∴3x--=(2)解:∵()3180∴()318x-=x-=∴12∴3x=.【点睛】本题主要考查了平方根和立方根的性质,熟练掌握相关性质是解题的关键.19.∠3;两直线平行,同位角相等;已知;等量代换;DG;内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补;110°【分析】根据平行线的性质得出∠2=∠3,求出∠1=∠3,根据平行线的判定得解析:∠3;两直线平行,同位角相等;已知;等量代换;DG;内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补;110°【分析】根据平行线的性质得出∠2=∠3,求出∠1=∠3,根据平行线的判定得出AB//DG,根据平行线的性质推出∠BAC+∠AGD=180°,代入求出即可求得∠AGD.【详解】解:∵EF//AD,∴∠2=∠3(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴AB//DG,(内错角相等,两直线平行)∴∠BAC+∠AGD=180°,(两直线平行,同旁内角互补)∵∠BAC=70°,∴∠AGD=110°故答案为:∠3,两直线平行,同位角相等,已知,等量代换,DG,内错角相等,两直线平行,∠AGD,两直线平行,同旁内角互补;110°.【点睛】本题考查了平行线的性质和判定的应用,能正确根据平行线的性质和判定定理进行推理是解此题的关键.20.(1)的面积为5;(2)或【分析】(1)根据割补法可直接进行求解;(2)由(1)可得,进而△的面积以点B的纵坐标为高,ON为底,然后可得ON=5,最后问题可求解.解:(1)由图象可解析:(1)ABC 的面积为5;(2)()5,0N -或()5,0N【分析】(1)根据割补法可直接进行求解;(2)由(1)可得5BON S =,进而△BON 的面积以点B 的纵坐标为高,ON 为底,然后可得ON =5,最后问题可求解.【详解】解:(1)由图象可得: 111342223145222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=; (2)设点(),0N a ,由题意得:5BON ABC S S ==,∴△BON 的面积以点B 的纵坐标为高,ON 为底,即1252BON Sa =⨯⨯=, ∴5a =±,∴()5,0N -或()5,0N .【点睛】 本题主要考查图形与坐标,熟练掌握点的坐标表示的几何意义及割补法是解题的关键. 21.(1)-1;(2)1;(3)19【分析】(1)先求出的整数部分,即可求出结论;(2)先求出和的整数部分,即可求出a 和b 的值,从而求出结论; (3)求出的小数部分即可求出y ,从而求出x 的值,代入解析:(11;(2)1;(3)19【分析】(1(2a 和b 的值,从而求出结论;(3y ,从而求出x 的值,代入求值即可.【详解】解:(1)∵12 ∴1∴1;(2)∵12,23 ∴12∴1;∴1,b=2∴a b +-12+-=1(3)∵1∴1∴1)=9∴(20202x y +-=2020291⨯+-=181+=19 【点睛】本题主要考查了无理数大小的估算,根据估算求得无理数的整数部分和小数部分是解答本题的关键.二十二、解答题22.(1)6分米;(2)满足.【分析】(1)由正方形面积可知,求出的值即可;(2)设长方形的长宽分别为4a 分米、3a 分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可.【详解】解:(解析:(1)6分米;(2)满足.【分析】(1(2)设长方形的长宽分别为4a 分米、3a 分米,根据面积得出方程,求出a ,求出长方形的长和宽和6比较即可.【详解】解:(16分米;(2)设长方形的长为4a 分米,则宽为3a 分米.则4324a a ⋅=,解得:a =∴长为4 5.6566a ≈<,宽为3 4.242 6.a ≈<∴满足要求.【点睛】本题主要考查了算术平方根及实数大小比较,用了转化思想,即把实际问题转化成数学问题.二十三、解答题23.(1)见解析;(2),证明见解析.【分析】(1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解;(2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可.【详解析:(1)见解析;(2)902FME α∠=︒-,证明见解析. 【分析】(1)由平行线的性质得到CEH EHB ∠=∠,等量代换得出GFB EHB ∠=∠,即可根据“同位角相等,两直线平行”得解;(2)过点M 作//MQ AB ,过点G 作//GP AB ,根据平行线的性质及角平分线的定义求解即可.【详解】(1)证明://AB CD ,CEH EHB ∴∠=∠,GFB CEH ∠=∠,GFB EHB ∴∠=∠,//GF EH ∴;(2)解:902FME α∠=︒-,理由如下:如图2,过点M 作//MQ AB ,过点G 作//GP AB ,//AB CD ,//MQ CD ∴,AFM FMQ ∴∠=∠,QME MEC ∠=∠,FME FMQ QME AFM MEC ∴∠=∠+∠=∠+∠,同理,FGE FGP PGE AFG GEC ∠=∠+∠=∠+∠,FM 平分AFG ∠,EM 平分GEC ∠,2AFG AFM ∴∠=∠,2GEC MEC ∠=∠,2FGE FME ∴∠=∠,由(1)知,//GF EH ,180FGE GEH ∴∠+∠=︒,GEH α∠=,180FGE α∴∠=︒-,2180FME α∴∠=︒-,902FME α∴∠=︒-.【点睛】此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键.24.(1)∠ACB+∠BED=180°;(2)100°;(3)40°【分析】(1)如图1,延长DE 交AB 于点F ,根据ABCD 可得∠DFB=∠D ,则∠DFB=∠A ,可得ACDF ,根据平行线的性质得∠A解析:(1)∠ACB +∠BED =180°;(2)100°;(3)40°【分析】(1)如图1,延长DE 交AB 于点F ,根据AB //CD 可得∠DFB =∠D ,则∠DFB =∠A ,可得AC //DF ,根据平行线的性质得∠ACB +∠CEF =180°,由对顶角相等可得结论;(2)如图2,作EM //CD ,HN //CD ,根据AB //CD ,可得AB //EM //HN //CD ,根据平行线的性质得角之间的关系,再根据∠DEB 比∠DHB 大60°,列出等式即可求∠DEB 的度数; (3)如图3,过点E 作ES //CD ,设直线DF 和直线BP 相交于点G ,根据平行线的性质和角平分线定义可求∠PBM 的度数.【详解】解:(1)如图1,延长DE 交AB 于点F ,//AB CD ,DFB D ∴∠=∠,A D ∠=∠,A DFB ∴∠=∠,//AC DF ∴,180ACB CEF ∴∠+∠=︒,180ACB BED ∴∠+∠=︒,故答案为:180ACB BED ∠+∠=︒;(2)如图2,作//EM CD ,//HN CD ,//AB CD ,//////AB EM HN CD ∴,1180EDF ∴∠+∠=︒,MEB ABE ∠=∠, BG 平分ABE ∠, 12ABG ABE ∴∠=∠, //AB HN ,2ABG ∴∠=∠,//CF HN ,23β∴∠+∠=∠,∴132ABE β∠+∠=∠, DH 平分EDF ∠,132EDF ∴∠=∠, ∴1122ABE EDF β∠+∠=∠,1()2EDF ABE β∴∠=∠-∠, 2EDF ABE β∴∠-∠=∠,设DEB α∠=∠,1180180()1802MEB EDF ABE EDF ABE αβ∠=∠+∠=︒-∠+∠=︒-∠-∠=︒-∠,DEB ∠比DHB ∠大60︒,60αβ∴∠-︒=∠,1802(60)αα∴∠=︒-∠-︒,解得100α∠=︒.DEB ∴∠的度数为100︒;(3)PBM ∠的度数不变,理由如下:如图3,过点E 作//ES CD ,设直线DF 和直线BP 相交于点G ,BM 平分EBK ∠,DN 平分CDE ∠,12EBM MBK EBK ∴∠=∠=∠, 12CDN EDN CDE ∠=∠=∠, //ES CD ,//AB CD ,////ES AB CD ∴,DES CDE ∴∠=∠,180BES ABE EBK ∠=∠=︒-∠,G PBK ∠=∠,由(2)可知:100DEB ∠=︒,180100CDE EBK ∴∠+︒-∠=︒,80EBK CDE ∴∠-∠=︒,//BP DN ,CDN G ∴∠=∠,12PBK G CDN CDE ∴∠=∠=∠=∠, PBM MBK PBK ∴∠=∠-∠1122EBK CDE =∠-∠ 1()2EBK CDE =∠-∠ 1802=⨯︒ 40=︒.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.25.(1)详见解析;(2)∠BAE+∠MCD=90°,理由详见解析;(3)详见解析.【详解】试题分析:(1)先根据CE 平分∠ACD ,AE 平分∠BAC 得出∠BAC=2∠EAC ,∠ACD=2∠ACE ,再解析:(1)详见解析;(2)∠BAE+12∠MCD=90°,理由详见解析;(3)详见解析. 【详解】试题分析:(1)先根据CE 平分∠ACD ,AE 平分∠BAC 得出∠BAC =2∠EAC ,∠ACD =2∠ACE ,再由∠EAC +∠ACE =90°可知∠BAC +∠ACD =180,故可得出结论;(2)过E 作EF ∥AB ,根据平行线的性质可知EF ∥AB ∥CD ,∠BAE =∠AEF ,∠FEC =∠DCE ,故∠BAE +∠ECD =90°,再由∠MCE =∠ECD 即可得出结论;(3)根据AB ∥CD 可知∠BAC +∠ACD =180°,∠QPC +∠PQC +∠PCQ =180°,故∠BAC =∠PQC +∠QPC .试题解析:证明:(1)∵CE 平分∠ACD ,AE 平分∠BAC ,∴∠BAC =2∠EAC ,∠ACD =2∠ACE .∵∠EAC+∠ACE=90°,∴∠BAC+∠ACD=180,∴AB∥CD;(2)∠BAE+12∠MCD=90°.证明如下:过E作EF∥AB.∵AB∥CD,∴EF∥∥AB∥CD,∴∠BAE=∠AEF,∠FEC=∠DCE.∵∠E=90°,∴∠BAE+∠ECD=90°.∵∠MCE=∠ECD,∴∠BAE+12∠MCD=90°;(3)①∠BAC=∠PQC+∠QPC.理由如下:如图3:∵AB∥CD,∴∠BAC+∠ACD=180°.∵∠QPC+∠PQC+∠PCQ=180°,∴∠BAC=∠PQC+∠QPC;②∠PQC+∠QPC+∠BAC=180°.理由如下:如图4:∵AB∥CD,∴∠BAC=∠ACQ.∵∠PQC+∠PCQ+∠ACQ=180°,∴∠PQC+∠QPC+∠BAC=180°.点睛:本题考查了平行线的性质,根据题意作出平行线是解答此题的关键.26.(1)110(2)(90 +n)(3)×90°+n°【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是∠ABC与∠ACB的角平解析:(1)110(2)(90 +12n)(3)201712×90°+20182018212n°【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是∠ABC与∠ACB的角平分线,用n°的代数式表示出∠OBC与∠OCB的和,再根据三角形的内角和定理求出∠BOC的度数;(3)根据规律直接计算即可.【详解】解:(1)∵∠A=40°,∴∠ABC+∠ACB=140°,∵点O是∠AB故答案为:110°;C与∠ACB的角平分线的交点,∴∠OBC+∠OCB=70°,∴∠BOC=110°.(2)∵∠A=n°,∴∠ABC+∠ACB=180°-n°,∵BO 、CO 分别是∠ABC 与∠ACB 的角平分线, ∴∠OBC +∠OCB =12∠ABC +12∠ACB =12(∠ABC +∠ACB ) =12(180°﹣n °)=90°﹣12n °,∴∠BOC =180°﹣(∠OBC +∠OCB )=90°+12n °. 故答案为:(90+12n );(3)由(2)得∠O =90°+12n °,∵∠ABO 的平分线与∠ACO 的平分线交于点O 1, ∴∠O 1BC =34∠ABC ,∠O 1CB =34∠ACB , ∴∠O 1=180°﹣34(∠ABC +∠ACB )=180°﹣34(180°﹣∠A )=14×180°+34n °, 同理,∠O 2=18×180°+78n °, ∴∠O n =112n +×180°+11212n n ++- n °, ∴∠O 2017=201812×180°+20182018212-n °, 故答案为:201712×90°+20182018212-n °. 【点睛】 本题考查了三角形内角和定理,角平分线定义的应用,注意:三角形的内角和等于180°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. 个B. 个C. 个D. 个
二、填空题
11.分解因式:m2﹣9=_____.
12.计算 的结果为______.
13.积的乘方公式为:(ab)m=.(m是正整数).请写出这一公式的推理过程.
14.分解因式: __________.
15.已知: ……,设A=2(3+1)(32+1)(34+1)(316+1)(332+1)+1,则A的个位数字是__________.
解:将方程②变形:4x+10y+y=5,即2(2x+5y)+y=5③.
把方程①代入③得:2×3+y=5,∴y=﹣1①得x=4,所以,方程组的解为 .
请你解决以下问题:
(1)模仿小铭的“整体代换”法解方程组 .
(2)已知x,y满足方程组 ,求x2+4y2﹣xy的值.
27.因式分解:
(1)12abc﹣9a2b;
22.已知关于 、 的二元一次方程组 (k为常数).
(1)求这个二元一次方程组的解(用含k的代数式表示);
(2)若 ,求k的值;
(3)若 ,设 ,且m为正整数,求m的值.
23.对于多项式x3﹣5x2+x+10,我们把x=2代入此多项式,发现x=2能使多项式x3﹣5x2+x+10的值为0,由此可以断定多项式x3﹣5x2+x+10中有因式(x﹣2),(注:把x=a代入多项式,能使多项式的值为0,则多项式一定含有因式(x﹣a)),于是我们可以把多项式写成:x3﹣5x2+x+10=(x﹣2)(x2+mx+n),分别求出m、n后再代入x3﹣5x2+x+10=(x﹣2)(x2+mx+n),就可以把多项式x3﹣5x2+x+10因式分解.(1)求式子中m、n的值;(2)以上这种因式分解的方法叫“试根法”,用“试根法”分解多项式x3+5x2+8x+4.
三、解答题
21.已知:直线 ,点E,F分别在直线AB,CD上,点M为两平行线内部一点.
(1)如图1,∠AEM,∠M,∠CFM的数量关系为________;(直接写出答案)
(2)如图2,∠MEB和∠MFD的角平分线交于点N,若∠EMF等于130°,求∠ENF的度数;
(3)如图3,点G为直线CD上一点,延长GM交直线AB于点Q,点P为MG上一点,射线PF、EH相交于点H,满足 , ,设∠EMF=α,求∠H的度数(用含α的代数式表示).
西安高新一中初中校区七年级下册数学期末试题及答案解答
一、选择题
1.若 ,那么 、 、 三数的大小为().
A. B. C. D.
2.一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为1:3,则这个多边形为( )
A.三角形B.四边形C.六边形D.八边形
3.要使(4x﹣a)(x+1)的积中不含有x的一次项,则a等于()
∴c>a>b,
故选B.
【点睛】
本题考查有理数的大小比较,解题的关键是熟练掌握乘方运算法则、负整数指数幂及零指数幂.
2.D
解析:D
【分析】
一个外角与一个内角的比为1 : 3,则内角和是外角和的3倍,根据多边形的外角和是360°,即可求得多边形的内角的度数,依据多边形的内角和公式即可求解.
【详解】
解:多边形的内角和是:360°×3=1080°.
C. D.
6.已知4m=a,8n=b,其中m,n为正整数,则22m+6n=( )
A.ab2B.a+b2C.a2b3D.a2+b3
7.某中学现有学生500人,计划一年后女生在校生增加 ,男生在校生增加 ,这样,在校学生将增加 ,设该校现有女生人数 和男生 ,则列方程组为()
A. B.
C. D.
8.科学家发现2019﹣nCoV冠状肺炎病毒颗粒的平均直径约为0.00000012m.数据0.00000012用科学记数法表示为( )
16.内角和等于外角和2倍的多边形是__________边形.
17.已知 ,则x=__________,y=__________.
18.计算:x(x﹣2)=_____
19.如图,根据长方形中的数据,计算阴影部分的面积为______.
20.把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠1=52°,∠2=18°,则∠3=_____.
(2)a2﹣25;
(3)x3﹣2x2y+xy2;
(4)m2(x﹣y)﹣(x﹣y).
28.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1,可以得到 这个等式,请解答下列问题:
(1)写出图2中所表示的数学等式.
(2)根据整式乘法的运算法则,通过计算验证上述等式.
(3)利用(1)中得到的结论,解决下面的问题:
设多边形的边数是n,
则(n-2)•180=1080,
24.计算
(1) ;(ຫໍສະໝຸດ ) .25.如图,D、E、F分别在ΔABC的三条边上,DE//AB,∠1+∠2=180º.
(1)试说明:DF//AC;
(2)若∠1=120º,DF平分∠BDE,则∠C=______º.
26.阅读下列材料,学习完“代入消元法”和“加减消元法“解二元一次方程组后,善于思考的小铭在解方程组 时,采用了一种“整体代换”的解法:
A.﹣4B.2C.3D.4
4.下列方程组中,解是 的是( )
A. B.
C. D.
5.在餐馆里,王伯伯买了5个菜,3个馒头,老板少收2元,只收50元,李太太买了11个菜,5个馒头,老板以售价的九折优惠,只收90元,若菜每个x元,馒头每个y元,则下列能表示题目中的数量关系的二元一次方程组是( )
A. B.
A.1.2×107B.0.12×10﹣6C.1.2×10﹣7D.1.2×10﹣8
9.下列运算正确的是( )
A.a2+a2=a4B.(﹣b2)3=﹣b6
C.2x•2x2=2x3D.(m﹣n)2=m2﹣n2
10.下列说法: 没有算术平方根;若一个数的平方根等于它本身,则这个数是 或 ;有理数和数轴上的点一一对应;负数没有立方根,其中正确的是( )
若 , ,则 .
(4)小明同学用图3中 张边长为 的正方形, 张边长为 的正方形, 张长宽分别为 、 的长方形纸片拼出一个面积为 的长方形,则 .
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【分析】
先根据乘方运算法则、负整数指数幂及零指数幂分别计算,再判断大小即可得.
【详解】
解:a=0.32=0.09,b= -3-2= ,c=(-3)0=1,
相关文档
最新文档