自动控制原理pdf

合集下载

自动控制原理(11J-19)PDF

自动控制原理(11J-19)PDF
2
解: 由图示特性可知,系统为2型系统, 开环频率特性应为
ω K (1 + j ) 5 G ( jω ) = ( jω ) 2
ω L(ω ) = 20 lg 2 + 20 lg 1 + ω 5 K
2
0
L(ω)
-- 40dB/dec
-- 20dB/dec 5 10
ω
(1) 利用低频段特性求K值: (已知:ωa=7.07)
s→0
L1 (ω )=20 log
K
ω
2
= −20 log
ω2
K
7
(Ka=K)
8
9
“2” 型系统Bode图特点:
(1) 起始段为斜率: - 40dB/dec (2) 起始线段(或其延长线)在ω=1处的幅值为:
Ka L1 (ω ) = 20 lg ( jω ) 2
= 20 lg K a = 20 lg K
的交接频率时,斜率增加
(5) 最后在各转折频率附近作误差修正,得精确曲线。
13
3. Bode图相频特性的简捷绘制
● 在低频区,对数相频特性由
−ν × 90 o 开始。
● 在高频段,ω→∞,相频特性趋于
− (n − m) × 90o
● 如果在某一频率范围内,对数幅频特性 L(ω) 的斜率
保持不变,则在此频率范围内,相位也几乎不变。
(2)对于1型系统, 静态位置误差系数为: Kv = K = 10
ess = 1/Kv = 1/K = 1/10 = 0.1
(3)该系统的相位特性
30
ϕ(ω) = -90 − arctg
0
相位特性 ω
0.01
ω
0.01 K (1 + j

《自动控制原理》线性定常连续系统状态方程的解

《自动控制原理》线性定常连续系统状态方程的解

2
k!
= P −1IP + P −1 APt + 1 P −1 A2 Pt 2 + + 1 P −1 Ak Pt k +
2
k!
= P −1 (I + At + 1 A2t 2 + + 1 Ak t k + )P = P −1e At P
2
k!
因而式(9-39)成立。
性质10: 两种常见的状态转移矩阵。设 A = diag[1, 2 ,,n ],
2. 拉普拉斯变换法。将式(9-22)取拉氏变换有
sX (s) = AX (s) + x(0)

(sI − A) X (s) = x(0)
X (s) = (sI − A)−1 x(0)
(9-27)
进行拉氏反变换有
x(t) = −1[(sI − A)−1]x(0)
(9-28)
与(9-25)相比有
e At = −1[(sI − A)−1 ]
进行拉氏反变换有 x(t) = −1(sI − A)−1 x(0) + −1[(sI − A)−1 BU (s)]
由拉氏变换卷积定理
−1[F1(s)F2 (s)] =
t
0 f1 (t − ) f2 ( )d
=
t
0 f1 ( ) f2 (t − )d
在此将(sI − A)−1 视为F1 (s),将BU (s) 视为 F2 (s) ,则有
x(t) = eA(t) x(0) + t eA(t− )Bu( )d 0 t = (t)x(0) + 0 (t − )Bu( )d
结果与式(9-43)相同。上式又可表示为

《自动控制原理》+胡寿松+习题答案(附带例题课件)

《自动控制原理》+胡寿松+习题答案(附带例题课件)

用电技术专业方向)
先修课程: 高等数学、大学物理、积分变换、电路、数字电子技术、模拟电子技术
一、课程性质、目的和任务
本课程为电气工程及其自动化专业的主要专业基础课程之一,目的是使学生掌握负反馈控制原理、控
制系统数学模型的建立和系统性能分析、设计的基本方法,培养学生分析和设计自动控制系统性能的基本
能力并能满足其它后续专业课程对自动控制理论知识的需要。
制系统的性能。了解开环零、极点对系统性能的影响。
5.熟悉频率分析法分析控制系统性能的方法 熟悉典型环节频率特性的求取以及频率特性曲线,掌握系统开环对数频率特性曲线、极坐标曲线绘制
的基本方法。了解根据开环对数频率特性曲线分析闭环系统性能的方法。熟悉用奈奎斯特稳定判据判断系
1
《自动控制原理》电子教案
统稳定性的方法。掌握稳定裕度的计算方法。 6.熟悉控制系统校正的方法 了解串联超前校正、串联滞后校正的校正装置设计的基本原理和方法。 7.熟悉非线性控制系统的分析方法 了解非线性控制系统的特点和常见非线性特性。熟悉非线性控制系统的描述函数法。
熟悉系统微分方程的建立,拉氏变换及其应用。掌握系统传递函数的定义及求取,系统动态结构图 的建立及其简化以及系统不同传递函数的定义及求取。
1.控制系统微分方程的建立 2.非线性数学模型的线性化 3.控制系统的传递函数 4.典型环节的传递函数 5.控制的动态结构图及变换 6.信号流图及梅逊公式 7.反馈控制系统的传递函数 (三)自动控制系统的时域分析法 熟悉控制系统的时域指标,一阶系统的单位阶跃响应、斜坡响应以及性能指标的求取。掌握典型二阶 系统的单位阶跃响应以及性能指标的求取。掌握劳斯稳定判据分析系统的稳定性方法。熟悉控制系统稳态 误差分析以及稳态误差、误差系数的求取。 1. 控制系统性能指标的定义 2.一阶系统性能分析 3.二阶系统性能分析 4. 欠阻尼二阶系统的时域分析和指标计算 5. 高阶系统的时域分析、闭环主导极点和高阶系统的降阶

胡寿松《自动控制原理》(第7版)笔记和课后习题(含考研真题)详解(第1~2章)【圣才出品】

胡寿松《自动控制原理》(第7版)笔记和课后习题(含考研真题)详解(第1~2章)【圣才出品】

第1章自动控制的一般概念1.1复习笔记本章内容主要是经典控制理论中一些基本的概念,一般不会单独考查。

一、自动控制的基本原理与方式1.反馈控制方式反馈控制方式的主要特点是:(1)闭环负反馈控制,即按偏差进行调节;(2)抗干扰性好,控制精度高;(3)系统参数应适当选择,否则可能不能正常工作。

2.开环控制方式开环控制方式可以分为按给定量控制和按扰动控制两种方式,其特点是:(1)无法通过偏差对输出进行调节;(2)抗干扰能力差,适用于精度要求不高或扰动较小的情况。

3.复合控制方式复合控制即开环控制和闭环控制相结合。

二、自动控制系统的分类根据系统性能可将自动控制系统按线性与非线性、连续和离散、定常和时变三个维度进行分类,本书主要介绍了线性连续控制系统、线性定常离散控制系统和非线性控制系统的性能分析。

三、对自动控制系统的基本要求1.基本要求的提法稳定性、快速性和准确性。

2.典型外作用(1)阶跃函数阶跃函数的数学表达式为:0,0(),0t f t R t <⎧⎪=⎨≥⎪⎩(2)斜坡函数斜坡函数的数学表达式为:0,0(),0t f t Rt t <⎧⎪=⎨≥⎪⎩(3)脉冲函数脉冲函数定义为:0000()lim [1()1()]t A f t t t t t →=--(4)正弦函数正弦函数的数学表达式为:f t A tωϕ=-()sin()式中,A为正弦函数的振幅;ω=2πf为正弦函数的角频率;φ为初始相角。

1.2课后习题详解1-1图1-2-1是液位自动控制系统原理示意图。

在任意情况下,希望液面高度c维持不变,试说明系统工作原理并画出系统方块图。

图1-2-1液位自动控制系统原理图解:当Q1≠Q2时,液面高度的变化。

例如,c增加时,浮子升高,使电位器电刷下移,产生控制电压,驱动电动机通过减速器减小阀门开度,使进入水箱的流量减少。

反之,当c 减小时,则系统会自动增大阀门开度,加大流入水量,使液位升到给定高度c。

自动控制原理

自动控制原理

ω = +∞ (1, j 0) ω = ∞
奈氏曲线顺时针包围 (-1,j0)点2圈,即 N=-2 所以有: Z=P-N=2
仿真
即闭环系统在s右半平面有2个极点,所以系统不稳定。
5.4.3 虚轴上有开环极点时的奈氏判据
如下列图所示的奈氏曲线中,判别哪些是稳定的,哪些 是不稳定的。
Im
Im
Im
1
ω = +∞ 0
1.6 ∞
奈氏曲线顺时针包围 (-1,j0)点2圈,即 N=-2 所以有:
(1, j 0)
ω = 0+
仿真
Z=P-N=2
即闭环系统在s右半平面有2个极点,所以系统不稳定。
5.4.3 虚轴上有开环极点时的奈氏判据
对于如下形式的开环传递函数 K G(s)H(s) = s(Ts +1)(T2s +1) 1 其奈氏图与实轴交点为 此时的 ω =
5.4.3 虚轴上有开环极点时的奈氏判据
虚轴上有开环极点时的奈氏判据

由于不能通过F(s)的任何零、极点,所 以当F(s)有若干个极点处于s平面虚轴 (包括原点)上时,则以这些点为圆 心,作半径ε为无穷小的半圆,按逆时 针方向从右侧绕过这些点。 F ( s ) 的极点 因此,F(s)的位于s平面右半部的零点 和极点均被新奈氏回线包围在内。而将 位于坐标原点处的开环极点划到了复平 面的左半部。 这样处理满足了奈氏判据的要求(应用 奈氏判据时必须首先明确位于s平面右 半部和左半部的开环极点的数目)。
2ω + ω + 0.5ω 2ω ω 0.5ω = 0
ω = 1.87
此时
A(ω) = 0.44
可以判断出交点在点(-1,j0) 的右侧

自动控制原理(11J-8)PDF

自动控制原理(11J-8)PDF
与标准二阶系统传递函数对照得:
34.5 = ς = 0.2 2ωn π
(2) 当KA =1500时
ω n = 7500 = 86.6
峰值时间:秒 = tp
π ωn

= = 0.037 1 − ς 2 84.85
πς
1−ς 2
超调量:% = σ e= 52.7%
0.1732s (Δ= 0.05)
29
ts µ= tf 其中: t f = Td = 2π
ωd
=

ωn 1 − ς 2
(阻尼振荡周期)
18
(5)控制精度(稳态误差 ess )
1 −ςωn t x ( t ) 1− sin(ωd t + arccos ς ) hc(t ) = e 2 1− ς
xc (∞ ) = 1
瞬态分量随时间t的增长衰减到零,而稳态分量 等于1,因此由理论式得到:欠阻尼二阶系统的单位 阶跃响应稳态误差为零。
ωn
(6.45ς −= 1.7) 1.44
30
系统在单位阶跃作用下的响应曲线
c(t)
KA=1500 KA=200 1 KA=13.5 ς = 2.1 0
ς = 0.2
ς = 0.454
t
31
练习题
控制系统如图 3-23(a) 所示,引入速度反
馈后的控制系统如图 3-23(b) 所示。要求图 (b) 系统 单位阶跃响应的超调量为 Mp%=16.4% ,峰值时间为
2 nn
2
C ( s)
ω C ( s ) 闭环传递函数: = 2 2 R( s ) s + 2ςωn s + ωn
2 n
2
闭环极点: s1 = − p1 = −ςωn + ωn ς − 1

最新自动控制原理.pdf

最新自动控制原理.pdf

第一章自动控制的一般概念1.1 引言自动控制理论是研究关于自动控制系统组成、分析和设计的一般性理论,是研究自动控制共同规律的技术科学。

自动控制理论的任务是研究自动控制系统中变量的运动规律以及改变这种运动规律的可能性和途径,为建立高性能的自动控制系统提供必要的理论根据。

1.2 自动控制和自动控制系统的基本概念1.2.1自动控制问题的提出在许多工业生产过程或生产设备运行中,往往需要对某些物理量(如温度、压力、流量、液位、电压、位移、转速等)进行控制,使其尽量维持在某个数值附近,或使其按一定规律变化。

如图1-l所示是锅炉给水人工控制示意图。

人工调节是一个“检测偏差、纠正偏差”的过程。

可以用一整套自动控制仪表(自动调节器)来代替操作人员的作用。

图1-2所示是锅炉给水汽包水位自动控制示意图。

图1-2 汽包锅炉给水自动调节示意图1—过热器;2—汽包;3—省煤器;4—给水凋节阀;5—水位计任何一个控制系统,都包含着被控对象和控制器两个组成部分。

1.2.2 开环控制系统常见的控制方式有三种:开环控制、闭环控制和复合控制。

系统的控制输入不受输出影响的控制系统称为开环控制系统。

图1-3所示的烘箱温度控制系统是一个开环控制系统。

烘箱是被控对象,烘箱的温度是被控量,也称为系统输出量。

开关设定位置为系统的给定量或输入量,电阻及加热元件可看成是调压器(控制器)。

该系统中只有输入量对输出量的单向控制作用,输出量对输入量没有任何影响和联系。

烘箱温度开环控制系统可用图1-4所示的方框图表示。

1.2.3 闭环控制系统在图1-3所示的烘箱温度开环控制系统中,加入一些装置,构成了如图1-5所示的烘箱温度闭环控制系统。

系统中,烘箱是被控对象,炉温是被控量,给定量是由给定电位器设定的电压r u (表征烘箱温度的希望值)。

系统方框图如图1-6所示。

通常,把从系统输入量到输出量之间的通道称为前向通道;从输出量到反馈信号之间的通道称为反馈通道。

自动控制原理第四章2

自动控制原理第四章2
10
开、闭环零极点与根轨迹设计
给F(s)增加零点(续)
F(s) =
K
,
s(s + a)(s + b)
C
a > 0, b > a.
z 给F(s)增加零点: s = – c, c > b .
原系统根轨迹的共轭复 根部分向左弯曲
增加零点可以改善系统 的相对稳定程度
12
开、闭环零极点与根轨迹设计
增加开环零点对根轨迹的影响
渐近中心: ? C
有两条复根根轨迹,向右弯曲得更厉害
D
给F(s)增加极点将使根轨迹的 主导部分向右半s平面移动 9
开、闭环零极点与根轨迹设计
给F(s)增加零点
z增加一个实零点:
F (s)
=
K(s + b) ,
s(s + a)
a > 0, b > a.
z增加一对共轭复零点: B
σ
A
原系统根轨迹的共轭复根部分向
F(s)
=
K(s + s2(s +
b) a)
.
图C a = 8.
图D a = 3.
图E
a = b = 1.
极点 s = – a 和 零点 s = – b 相互抵消
分离点式子
s1,2
=

a
+ 4
3
± 1 a 2 − 10 a + 9 4
对于 a < 9 无意义
系统退化为二 阶情形,根轨 迹为整个虚轴
17
分离点式子
s1,2
=

a
+ 4
3
±
1 4
a2 − 10a + 9
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档