电力机车工作原理介绍课件PPT

合集下载

电力机车工作原理

电力机车工作原理

电力机车工作原理电力机车是一种通过电能驱动的火车,它与传统的内燃机车相比具有更高的效率和环保性。

电力机车的工作原理涉及到电力系统、牵引系统和控制系统等多个方面。

一、电力系统电力机车的电力系统主要由供电系统、电网接触系统和电力传输系统组成。

1. 供电系统:电力机车的供电系统通常采用架空电缆或第三轨供电方式。

架空电缆供电时,电力通过架空电缆传输到机车上;第三轨供电时,电力通过第三轨传输到机车上。

2. 电网接触系统:电力机车通过电网接触系统与供电系统相连接。

电网接触系统通常由受电弓、接触网和接触线等组成。

受电弓负责与接触网接触,接触网将电能传输到接触线上,再通过接触线传输到机车上。

3. 电力传输系统:电力传输系统包括变压器、整流器和逆变器等设备。

变压器用于将高压电能转换为适合机车使用的低压电能;整流器将交流电转换为直流电,供给牵引系统使用;逆变器将直流电转换为交流电,供给辅助设备使用。

二、牵引系统电力机车的牵引系统主要由电机、传动装置和轮对组成。

1. 电机:电力机车的电机通常采用交流异步电机或直流电机。

电机通过电能转换为机械能,驱动牵引装置使机车运动。

2. 传动装置:传动装置将电机的旋转力矩传递给轮对,使机车得以运动。

常见的传动装置有齿轮传动、链传动和直接耦合等。

3. 轮对:轮对是电力机车的重要组成部分,它与铁轨接触,将机车的牵引力传递给铁轨,推动机车前进。

三、控制系统电力机车的控制系统主要由主控制器、辅助控制设备和信号系统等组成。

1. 主控制器:主控制器是电力机车的核心控制设备,它通过控制电机的电流和电压来实现机车的加速、减速和制动等功能。

2. 辅助控制设备:辅助控制设备包括制动装置、牵引选择器和速度调节器等。

制动装置用于控制机车的制动力;牵引选择器用于选择机车的牵引模式;速度调节器用于控制机车的运行速度。

3. 信号系统:信号系统用于传输和接收机车的控制信号,确保机车的安全运行。

常见的信号系统有列车自动保护系统(ATP)、列车控制系统(ATC)和列车通信系统(ATC)等。

电力机车工作原理

电力机车工作原理

电力机车工作原理一、引言电力机车是一种以电能作为动力源的铁路机车,它通过将电能转化为机械能来驱动车辆运行。

本文将详细介绍电力机车的工作原理,包括电能的供给、电力传输、转换和控制等方面的内容。

二、电能供给电力机车的电能供给主要依靠接触网和受电弓。

接触网是铺设在铁路线路上方的导电路线,通过受电弓与接触网接触,将接触网上的电能传输到机车上。

接触网普通采用交流电供电,电压可根据实际需要调整。

三、电力传输电力机车的电力传输主要通过集电装置完成。

集电装置位于机车车顶,通过受电弓与接触网接触,将接触网上的电能传输到机车的主电路上。

集电装置中的集电弓通过弹簧力和重力的作用保持与接触网的良好接触,确保电能的稳定传输。

四、电力转换电力机车的电能转换主要通过牵引变流器和辅助电源装置完成。

牵引变流器将接收到的交流电能转换为直流电能,供给给牵引机电。

牵引机电通过电能转化为机械能,实现车辆的牵引和制动。

辅助电源装置则为机车提供辅助电能,用于驱动车辆的辅助设备,如照明、空调等。

五、控制系统电力机车的控制系统包括牵引控制系统和制动控制系统。

牵引控制系统通过控制牵引机电的电流和电压,实现车辆的加速和减速。

制动控制系统通过控制制动装置的工作,实现车辆的制动。

牵引和制动控制系统通过操作手柄、按钮等控制装置进行控制,驾驶员可以根据需要调整牵引和制动力的大小。

六、辅助设备电力机车的辅助设备包括空气压缩机、冷却系统、照明系统等。

空气压缩机用于为制动系统和辅助设备提供压缩空气。

冷却系统用于冷却电力机车的电气设备和牵引机电。

照明系统为机车提供照明,确保驾驶员和乘客的安全。

七、安全保护电力机车在运行过程中需要具备多种安全保护装置。

例如,过流保护装置可以监测电路中的电流,当电流超过额定值时,及时切断电路,防止电气设备受损。

过热保护装置可以监测电气设备的温度,当温度超过安全范围时,及时切断电路,防止设备过热。

此外,还有防护装置、接地保护装置等,确保机车和乘客的安全。

电力机车工作原理

电力机车工作原理

电力机车工作原理一、引言电力机车是一种使用电力驱动的铁路车辆,它通过电力系统提供的电能来驱动车辆运行。

本文将详细介绍电力机车的工作原理,包括电力系统、牵引系统和控制系统。

二、电力系统1. 供电系统电力机车的供电系统包括接触网、电缆、集电装置等。

接触网是一种悬挂在铁路上方的导电线路,通过接触网将电能传输到机车上。

电缆用于将电能从接触网传输到机车内部的各个系统。

集电装置位于机车车顶,通过碳刷与接触网接触,将电能引入机车。

2. 电源装置电力机车的电源装置包括牵引变流器和辅助电源装置。

牵引变流器将接收到的交流电能转换为直流电能,供给牵引电机使用。

辅助电源装置则为机车提供辅助电能,用于驱动机车的辅助设备,如照明、空调等。

三、牵引系统1. 牵引电机电力机车的牵引电机通常采用直流串联电动机,它具有高起动转矩和宽工作转速范围的特点。

牵引电机通过传动装置将电能转化为机械能,驱动车轮运动。

2. 制动系统电力机车的制动系统包括电阻制动和再生制动。

电阻制动通过将电能转化为热能来减速机车,而再生制动则将制动过程中产生的电能反馈到电力系统中,实现能量回收。

四、控制系统电力机车的控制系统用于控制机车的运行状态和牵引力。

它包括主控制器、制动控制器和辅助控制器等。

主控制器用于控制牵引电机的电流和转矩,实现机车的加速和减速。

制动控制器用于控制制动系统的工作,实现机车的制动。

辅助控制器则用于控制机车的辅助设备。

五、工作原理当电力机车开始运行时,集电装置与接触网接触,将电能引入机车。

电源装置将交流电能转换为直流电能,并供给牵引电机使用。

牵引电机通过传动装置驱动车轮运动,实现机车的牵引。

同时,控制系统监测车速、电流等参数,通过主控制器调节牵引电机的工作状态,以实现机车的加速和减速。

在机车运行过程中,制动系统起到重要作用。

当需要减速或停车时,制动控制器会控制制动系统工作,将电能转化为热能或反馈到电力系统中,实现机车的制动和能量回收。

六、总结电力机车的工作原理是通过电力系统提供的电能,驱动牵引电机实现机车的运行。

铁路机车车辆教学课件PPT电力机车

铁路机车车辆教学课件PPT电力机车
维护与保养
定期对电力机车进行维护和保养,确保其正常运 行,减少对环境的污染。
电力机车的噪声与振动控制
噪声抑制设备
电力机车应配备噪声抑制设备,如消音器和隔音材料,以降低运 行时的噪音。
减震装置
为了减少对周围环境的影响,电力机车应安装减震装置,如减震器 和弹性悬挂系统。
优化设计
通过优化电力机车的结构设计,可以降低运行时的振动和噪音。
电力机车的电动机与传动系统
电动机
电力机车的电动机通常采用交流电动机,具有较高的效率和 可靠性。电动机的功率和转速通过传动系统传递到机车轮轴 上,驱动机车前进。
传动系统
电力机车的传动系统通常采用直流传动或交流传动方式。直 流传动系统通过直流电动机驱动轮轴,交流传动系统则通过 交流电动机驱动轮轴。
电力机车的受电弓与牵引电路
05
电力机车的发展趋势与未来展望
高效节能的电力机车
1 2
高效能
随着技术的不断进步,电力机车将采用更高效的 牵引系统和电机,提高能源利用效率,降低能耗 成本。
节能设计
电力机车将采用轻量化、紧凑化设计,优化空气 动力学性能,减少运行阻力,降低能耗。
3
再生制动
未来电力机车将更加注重再生制动技术的应用, 将制动能量回收并反馈给电网,减少能源浪费。
定期检修
按照规定周期对机车进行全面检 查和维修,确保各项性能达标。
大修
对机车进行全面解体检查和维修, 修复磨损和老化部件,恢复机车
性能。
维修记录
建立维修记录,记录每次检修和 大修的情况,便于跟踪和管理。
04
电力机车的安全与环保
电力机车的安全操作规程
操作前检查
停车与制动
在操作电力机车前,必须进行全面的 检查,包括车体、车轮、车灯、控制 设备等,确保机车处于良好状态。

电力机车工作原理

电力机车工作原理

电力机车电力机车本身不带原动机,靠接受接触网送来的电流作为能源,由牵引电动机驱动机车的车轮。

电力机车具有功率大、热效率高、速度快、过载能力强和运行可靠等主要优点,而且不污染环境,特别适用于运输繁忙的铁路干线和隧道多,坡度大的山区铁路。

电力机车是从接触网上获取电能的,接触网供给电力机车的电流有直流和交流两种。

由于电流制不同,所用的电力机车也不一样,基本上可以分为直-直流电力机车、交-直流电力机车、交-直-交流电力机车三类。

直-直流电力机车采用直流制供电,牵引变电所内设有整流装置,它将三相交流电变成直流电后,再送到接触网上。

因此,电力机车可直接从接触网上取得直流电供给直流串励牵引电动机使用,简化了机车上的设备。

直流制的缺点是接触网的电压低,一般为l500V或3000 V,接触导线要求很粗,要消耗大量的有色金属,加大了建设投资。

交-直流电力机车采用交流制供电,目前世界上大多数国家都采用工频(50Hz)交流制,或25 Hz低频交流制。

在这种供电制下,牵引变电所将三相交流电改变成25 kV工业频率单相交流电后送到接触网上。

但是在电力机车上采用的仍然是直流串励电动机(这种电动机最大优点是调速简单,只要改变电动机的端电压,就能很方便地在较大范围内实现对机车的调速。

但是这种电机由于带有整流子,使制造和维修都很复杂,体积也较大),把交流电变为直流电的任务在机车上完成。

由于接触网电压比直流制时提高了很多,接触导线的直径可以相对减小,减少了有色金属的消耗和建没投资。

因此,工频交流制得到了广泛采用,世界上绝大多数电力机车也是交-直流电力机车。

交-直-交流电力机车采用交流无整流子牵引电动机(即三相异步电动机),这种电动机在制造、性能、功能,体积、重量、成本、维护及可靠性等方面远比整流子电机优越得多。

它之所以迟迟不能在电力机车上应用,主要原因是调速比较困难。

这种机车具有优良的牵引能力,很有发展前途。

德国制造的E120型电力机车就是这种机车。

电力机车电机 PPT课件(共5单元)项目三交流电机基础

电力机车电机 PPT课件(共5单元)项目三交流电机基础

任务四三相异步电动
任务四三相异步电动机的启动、反转、 调速和制动
一、三相异步电动机的启动
1.小容量电动机空载或轻载启动--直接启动 2.中、大容量电动机空载或轻载启动--降压启动 3.小容量电动机重载启动--鼠笼电机的特殊型式 4.中、大容量电动机重载启动--绕线电动机启动
3.变频调速
任务四三相异步电动机的启动、反转、 调速和制动
三、三相异步电动机的反转和制动
1.反转
三相异步电动机的旋转方向取决于定子旋转磁场的旋转 方向,并且两者的方向相同。只要改变旋转磁场的方向,就 能使三相异步电动机反转。因此,将三相接线端中的任意两 相接线端对调,改变相序,就改变了旋转磁场的方向,从而 使三相异步电动机反转。
任务一 异步电动机的基本结构
二、交流绕组概述
2.交流绕组的基本要求 三相异步电动机交流绕组的形式多种多样,具体要求如下: (1) 在一定的导体数下,绕组的合成电动势和磁势在波形上应 尽可能为正弦波,在数值上尽可能大,而绕组的损耗要小,用铜 量要省。 (2) 对三相绕组,各相的电动势和磁势要求对称而各相的电阻 和电抗都相同。为此必须保证各绕组所用材料、形状、尺寸及匝 数都相同且各相绕组在空间的分布应彼此相差120°电角度。 (3) 绕组的绝缘和机械强度要可靠,散热条件要好。 (4) 制造、安装、检修要方便。
任务四三相异步电动机的启动、反转、 调速和制动
二、三相异步电动机的调速
任务四三相异步电动机的启动、反转、 调速和制动
二、三相异步电动机的调速
1.变极调速
任务四三相异步电动机的启动、反转、 调速和制动
二、三相异步电动机的调速
2.变转差率调速
任务四三相异步电动机的启动、反转、 调速和制动

电力机车工作原理

电力机车工作原理
三相异步电动机的固有机械特性
sn
D
0
C
sN nN
?几个关键点 : ?起动点 :A ?最大转矩点 :B ?额定工作点 :C
sm nm
B
10
A TN Tst
Tem Tmax
第一章 电力机车工作原理 ?电动(0<S<1) ,发电(s<0),制动(s>1)三种运行状态
第一章 电力机车工作原理
人为地改变电动机地任一个参数(如U1、f1、 p、定子回路电阻或电抗、转子回路电阻或 电抗的机械特性称为人为机械特性。
? 第一节 直直型电力机车工作原理
第一章 电力机车工作原理
? 一、直-直型电力机车工作原理
第一章 电力机车工作原理
? 直流电力机车的特点: ? (1)结构简单,造价低,经济性好。 ? (2)牵引性能好,调速方便。 ? (3)控制简单,运行可靠。 ? (4)供电效率低。 ? (5)基建投资大。 ? (6)效率低,有级调速。
第一章 电力机车工作原理
异步 电 动 机 的 矩 速 特 性
第一章 电力机车工作原理
? 运行特性: ? 要求:恒转距启动,恒功率运行。 ? 图中,额定功率以下采用恒磁通控制,额定
功率以上采用恒功率控制。
第一章 电力机车工作原理
? 2、直流电力机车的基本特性: ? (1)速度特性 ? 定义:机车运行速度与牵引电动机电枢电流的
第一章 电力机车工作原理
? 系统的工作特点: ? (1)功率/体积比大。 ? (2)交流电机维修量小。 ? (3)机车具有优良的牵引和制动运行性
能。 ? (4)简化了主电路。 ? (5)减少了对信号和通信设备的干扰。
第一章 电力机车工作原理
? 三、电力机车的硬件配置 ? 1、车顶高压设备: ? 功能:通过弓网接触,使机车获得电能。 ? 2、车内变流设备: ? 功能;实现电能形式的转换,以满足调速和

HXD1型电力机车-电气原理ppt课件

HXD1型电力机车-电气原理ppt课件

AC 230V电路
DC 110V电源及其配电
Page 23
二、辅助电路原理
➢辅助电压特性及主要参数
辅助电气系统-主要部件介绍
恒频恒压回路输出电压: 440V 恒频恒压回路输出频率:60Hz 变频变压回路输出电压范围: 80~440V 变频变压回路输出频率: 80~440V、 10~60Hz
变频变压回路U/f输出特性曲线
最大输入电流 :1640A
中间额定电压:DC 1800V
额定输出电流 :4×598 A
额定效率:不小于98%
控制电压:DC 110V
启动转矩:9717Nm
IGBT模块技术参数
额定电压:3300V
额定电流:1200A
开关频率:450Hz
冷却方式:水冷
牵引变流器TCU
一、主电路原理
➢ 牵引电机
Page 14
Page 24
二、辅助电路原理
辅助电气系统原理图和功能说明
➢ 3AC 440V负载供电原理
Page 25
主要辅机配置 冗余功能 库用辅机起动、库内动车功能
二、辅助电路原理
➢ 辅助电路的冗余功能
正常情况下,集成在主变流柜中的两个辅助逆变器,一个工作 在变频变压模式,一个工作在恒频恒压模式。两个辅助逆变器的输出 接触器之后设置了一个冗余接触器,可实现两路辅助回路的冗余供电 功能。当一个辅助逆变器出现故障时,辅助回路将重新配置,故障辅 助逆变器的输出接触器自动断开,冗余接触器闭合,正常运行的辅助 逆变器将承担所有负载。此时所有辅助设备都以恒频恒压方式工作。
Page 37
四、电气原理图说明
➢ 电气原理图电气设备代码
电气设备代码前缀” -”字母代码,依据标准DIN EN -2,具体电气设备清单见ZL功能区,举例如下:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三节 交直交型电力机车工作原理
交直交型电力机车属于交流传动机车。由逆变 器供电,机车和动车组采用交流异步电动机做牵引 动力。根据变流器结构的不同,目前交(直)交型 机车和动车组有电压型、电流型两种基本结构。 我们以电压型交直交变流器供电、三相异步电动机 作牵引电动机的机车为例分析,原理如图所示。
过各自的齿轮传动装置,驱动机车动轮牵引列车运行。
二、直流电力机车的特点
1.机车结构简单,造价低,经济性好; 2.采用适合于牵引的直流串励电动机、调速方便、控制 简单、运行可靠; 3.供电效率低。由于受牵引电动机端电压的限制,接触 网电压一般为1500伏~3000伏。传输一定功率时电流较 大,接触网导线损耗量较大,因此供电效率低。
⑵由于机车内设有变压器,调压十分方便,牵 引电动机的工作电压不再受接触网电压的限制,机 车就可以选择最有利的工作电压,使牵引电动机的 工作更为可靠。
⑶牵引电动机采用适合牵引的串励或复励电动机, 可以获得良好的牵引性能和启动性能,尤其启动时 它采用了调节整流电压的方式,省略了启动电阻, 不仅减轻了电气设备的重量、降低了启动能耗,而 且改善了电力机车的启动性能,提高了机车的运行 可靠性。
4.基建投资大。为了减少接触网上的压降,电气化区 段的牵引变电所数量较多,造成基建投资大。 5.效率低,有级调速。由于机车使用调压电阻进行启 动、调速,因此调节过程中有能量损耗使效率很低, 同时也难以实现连续、平滑地调节。随着电力电子技 术的发展,应用斩波器技术进行调速,可以对牵引电 动机端电压进行连续、平滑地调节,从而实现无级调 速。
①环节——整流电路基本作用是将交流电转换 为直流电。具体电路可以是不可控整流桥、相控 整流桥、四象限脉冲变流器。
②环节——直流环节滤波器基本作用是平滑A 处的纹波(脉动),消除或减少谐波含量,改善机 车的功率因数。采用不同的整流电路,其滤波电路 也不同,功能有所差别。
③环节——逆变器用于将直流电转换为三相交流 电,同时具有较宽的调频范围和调压范围,一般采 用正弦波脉宽调制(PWM)技术。或采用电压相量 (VVCPWM)控制技术,减少网压波动的影响。
④环节——电抗器,其主要作用是:降低电机、 电缆中的高频成分,控制噪声的传播,抑制电机 启动过程中的谐波分量;保证频繁断开电机电路 时不损坏变频器;
系统的工作特点:
1.功率/体积比大。 2.交流电机维修量小。 3.机车具有优异的牵引和制动运行性能。 4.简化了主线路。
交流传动机车具有启动牵引力大、恒功率 范围宽、粘着系数高、电机维护简单、功率因 数高、等效干扰电流小等诸多优点,是目前我 国铁路发展的必然趋势。
电力机车总体及特性
主讲:汪科
简介
非Байду номын сангаас给式机车
蒸汽机车 内燃机车
自给式机车
电力机车
第一章 电力机车工作原理
电力机车按供电电流制——传动型式分为四类: ➢直流供电——直流牵引电动机的直直型电力机车; ➢交流供电——直(脉)流牵引电动机的交直型电力 机车; ➢交流供电——变流器环节——三相交流异步电动机 的交直交型电力机车 ➢交流供电——变频环节——三相交流同步电动机的 交交型电力机车。
(4)由于整流器电力机车采用单相50Hz整流, 其输出电压有很大脉动,因而流过牵引电动机的电 流也有较大脉动。脉动电流不仅使牵引电机的损耗 增加,而且使牵引电机的换向恶化,因此在整流器 电力机车上需要装设平波电抗器PK和固定磁场分路 电阻R0以限制电流的脉动,改善电动机的工作条件。 同时,在牵引电动机的结构上亦作了特殊设计。
第一节 直直型电力机车工作原理
一、基本工作原理
直流电力机车使用的是直流电源和直流串励牵引电动
机,目前有些工矿电力机车、地铁电动车组和城市无轨 电车仍采用这种型式。 工作过程为:机车由受电弓从接触网取得直流电,经 断路器QD,启动电阻R向四台直流牵引电动机M1~M4供 电,牵引电流经钢轨流回变电所。四台牵引电动机接 通电源后即行旋转,把电能转变为机械能,再分别通
第二节 交直型电力机车工作原理
一、基本工作原理
图1-2 整流器电力机车工作原理
图1-2所示为整流器电力机车的两种基本原理线 路图。单相交流电由接触网通过受电弓引入牵引变压 器的高压绕组,再经钢轨接地。
1.中点抽头式全波整流电路电力机车工作原理
在图1-2(a)中牵引变压器二次侧绕组分成oa、 ob两段,两段电压大小相等、方向相反。整流元件D1、 D2的正极分别与二次侧绕组的a、b点相接,负极相互 联接在一起。牵引电动机的一端与变压器二次侧绕组 的中点o相接,另一端经平波电抗器PK与整流电路的 输出端即整流元件的负极相接。
电路正常工作,当变压器二次侧电压正半周a点为 高电位时,整流元件D1导通,电流由a点经D1、平波电 抗器PK、牵引电动机M回到O点,构成一闭合回路。此时,
整流元件D2因承受反向电压而截止。当变压器二次侧电 压负半周b点为高电位时,整流元件D2导通,电流由b点 经、D2、平波电抗器PK、牵引电动机M回到O点,也构成 一闭合回路。D1因承受反向电压而截止。由此可知,在 交流电压的正负两个半周内,变压器二次侧绕组oa、ob
机车在工作时,受电弓将网压引入机车变压器 一次侧绕组,经变压器二次侧绕组降压后送入①环 节,将交流电转换为直流电,经②环节平滑A处脉 动,送入③环节,将直流电逆变为电压和频率可调 的三相交流电,经④环节平波电抗器,供给⑤环节 三相异步牵引电动机,实现牵引运行。在这个系统 中,机车先将电网的交流能量转换为直流能量,然 后进一步转换成电压和频率可调的交流能量。各环 节的作用分述如下:
二、整流器电力机车的工作特点 由以上分析,我们可以看出整流器电力机车有 以下特点:
⑴整流器电力机车的变流过程是在机车内完成 的(直直型电力机车的变流过程是在牵引变电所进 行),因此整流器电力机车是一个集变压、变流、 牵引为一体的综合装置,不仅简化了电气化牵引的 供电设备,而且由于采用交流电网供电,提高了接 触网的供电电压,使一定功率的电能得以采用小电 流输送,既可减小接触网导线的截面,节省有色金 属用量,也可减少电能损耗,提高电力机车的供电 效率。
谢谢!
交替流过电流而牵引电动机M中则始终流过连续不断的
方向不变的电流,保证了直流(脉流)牵引电动机的正
常工作。
2.桥式全波整流电路电力机车工作原理
电路正常工作,当变压器二次侧电压正半周a点 为高电位时,整流元件D1、D3导通,整流电流由绕组a 点经整流元件D1、平波电抗器PK、牵引电动机M、整 流元件D3回到绕组b点,此时整流元件D2、D4承受反向 电压而截止。在变压器二次侧电压负半周b点为高电 位时,整流元件D2、D4导通,整流电流由b点经整流元 件D2、平波电抗器PK、牵引电动机M、整流元件D4回 到a点。此时整流元件D1、D3因承受向电反压而截止。 由此可见,在交流电压的正、负半周内都有电流流过 变压器二次侧绕组且方向不同,而牵引电动机M中则 始终流过方向不变的电流。
相关文档
最新文档